
Regarding general matter (1), as referee #1 has pointed out as well, our study is indeed predictive and 

conceptual in nature. In our paper, we want to acknowledge Geoffrey Bodenhausen’s contributions to 

the field by discussing how CCR experiments developed in his group over the years can potentially be 

used to investigate and characterize local (segmental) dynamics in (partially) disordered proteins. 

Let us clarify: We do not claim nor intend to provide a thorough and general description of IDP 

dynamics. While segmental motions are clearly present in IDPs (Rezaei‐Ghaleh et al. 2018, Parigi et 

al. 2014), it is obvious that the concept of diffusion anisotropy cannot be expected to rigorously apply. 

Still, this somewhat elusive concept has been invoked in previous studies even for proteins such as α-

Synuclein (Mantsyzov et al. 2014). This leads us to the central question of our study: If the segmental 

motion of IDPs exhibited features/trends associated with anisotropic tumbling, how could we best 

detect it? Can we define a sensitive and unambiguous experimental measure?  

Complementing NHN CCR, we show that C’Cα CCR allows to probe the peptide plane quite literally 

from a different angle. The isolated zero frequency components are straightforward to compare and 

particularly sensitive for larger correlation times, allowing to probe the presence or lack(!) of 

anisotropic dynamics in IDPs on the local scale of the peptide unit. To assess the combined 

information content of the CCR rates, we build on the previously invoked and simplified model of a 

tumbling symmetric top. The “dampening” effect of local motions is approximated as simply as 

possible using a single exponential decay with equal weight for both NHN and C’Cα. We do not claim 

this treatment is rigorous nor do we imply that features of this MF-like anisotropic tumbling should be 

expected for all protein systems. The experiments were conceptualized and designed to assess the 

presence of features/trends associated with this simplified dynamic model. 

In the following paragraphs, we will address the questions and remarks of referee #2. First, we see fit 

to discuss the formal objections. 

• Eq. (2) (mr-2021-35) is very general. We cannot follow how it might be invalid. In fact, the 

study of (Tjandra et al. 1996) highlighted as counter-argument features this very expression 

already in Eq. (2) as well as in the appendix Eq. (A.1). 
 

• The same holds true for the objected expression (3) (mr-2021-35). Eq. (3) is a very general 

form of a TCF. It only implies that the decay can be modeled as a superposition of 

exponential decays. All commonly employed analytical models and even MD-extracted TCFs 

adhere to this general shape. We believe sufficient references have been provided.  
 

• From (2) and (3) follows (4) (mr-2021-35), so we must disagree with the objections raised. 

With the angle between u and v fixed, the same expression is also found in (Tjandra et al. 

1996) between (A.1) and (A.2). 
 

• We do not understand in what way Eqs. (6) and (7) (mr-2021-35) are confusing. Again, they 

are taken from the highlighted study of (Tjandra et al. 1996), see Appendix (A.14). The 

expression suggested by referee #2 makes use of the auto-correlated expression (A.15). We 

already commented on the possibility to approximate the entire cross-correlated TCF by an 

auto-correlated TCF on page 6. As the angle between C’Cα and σyy is rather large, we prefer 

to model Ctumb(t) according to (A.14). Referenced in the paper, a different representation has 

been derived by (Deschamps & Bodenhausen, 2001). Can referee #2 clarify, is the validity of 

Eqs. (6) and (7) (mr-2021-35) being questioned or the combination with a fourth Lorentzian 

in Eq. (10)? 
 

• From (2) to (9) (mr-2021-35) we simply establish the effect of anisotropic diffusion on the 

TCF which depends on the relative orientations of u and v. For HαHN intraresidual and 

sequential NOEs, this model has been invoked to rationalize unexpected variations in α-



Synuclein (Mantsyzov et al. 2014, p. 1281-1282). However, as HαHN distances vary with φ 

and ψ, the observed effects were ultimately considered to be dominated by distance variations 

(p. 1286). C’Cα CCR would not suffer from this ambiguity, which is why we propose it as an 

alternative. 

 

• In addition, to assess the effect of isotropic local motions, we simply introduce an additional 

exponential decay / Lorentzian. As we said in the manuscript “While the fast isotropic 

motions could be modeled in more detail to better fit the shape of the TCF using e.g. the 

extended MF approach(Clore et al., 1990) or correlation time distributions(Hsu et al., 2018), 

we only intend to divide J(0), i.e. the TCF’s enclosed area, into contributions with and 

without orientational biases.” (page 6). Eq. (10) (mr-2021-35) is a rough MF-like 

approximation, (1-S²)τ3 is simply the contribution to J(0) attributed to isotropic motions. 
While in principle arbitrary how this contribution is denoted, S² and τint tend to provide a 

better “feel” for many. Including additional and/or differently termed isotropic terms would 

not change the behavior of Q, only their cumulative size is relevant. 

 

Our approximation can be justified from various angles which we have sketched in the paper. 

While one can argue about the physical meaning of MF-type models, two different approaches 

connecting τint with τ0 τ1 τ2 were highlighted. We agree that the word “coupling” is a poor 

choice. We were referring to how the factorization (which generally implies no dynamic 

coupling) Ctumb(t)Cint(t) is handled. It should be noted that already this product form is not 

strictly applicable in case of anisotropic tumbling. (Kroenke et al. 1998) keep Ctumb(t) 

anisotropic, Eq. (1), which yields a τ3, τ4 and τ5 and retains orientational biases even with S²=0. 

We follow (Barbato et al. 1992), Eqs. (6a) and (6b) / (Tjandra et al. 1995), sec. Theory, who 

approximate τ3 assuming an effective isotropic Ctumb(t), see below. Cint(t) decays from P2(u·v) 

towards S²uv which for the approximated isotropic tumbling can be expressed as S²uv = 

S²P2(u·v) (Ghose et al., 1998), Eq. (19), Appendix, or (Fischer et al. 1997), Eq. (29), which 

yields the “second term of eq 3”. 

 

The MF approach of (Halle 2009), which does not assume the factorization of Ctumb(t)Cint(t), 

was highlighted as well. The auto-correlated expression for anisotropic diffusion is found in 

Eq. (2.40). Treatment of cross-correlations are described in section D. Replacing 1 in Eq. 

(2.40) with κuv = P2(u·v), Eq. (2.59), and again approximating S²uv = S²κuv = S²P2(u·v), the 

expressions of (Tjandra et al. 1996), Eqs. (3), (4) and (6) are obtained. These correspond to 

Halle’s Eq. (2.64) for isotropic internal mobility which relates the cross-correlated TCF to the 

auto-correlated TCF as suggested by referee #2. The chosen exponential form of Cint(t) and the 

choice of τeff can be motivated as above. If the angular dependencies of Ctumb(t) are encoded by 

Eqs. (6) and (7) (mr-2021-35) instead of S²uv = S²P2(u·v), Eq. (10) (mr-2021-35) is obtained. 

The expression suggested by (Ghose et al., 1998), Eq. (7), is very similar but lacks the 

prefactor P2(u·v) for the internal TCF, which is problematic for large angles (e.g. between 

C’Cα and σyy). Regarding the necessity of various assumptions (including frame transformation 

properties) as well as the general validity of different MF approaches, we find Halle’s remarks 

in VI.A worth highlighting. 
 

We feel Eq. (10) (mr-2021-35) adheres closely to conventional descriptions of MF-adjusted 

diffusion anisotropy. Again, we are not claiming this is how an IDP will realistically behave. 

Rather, what signature would the simplified image of anisotropic tumbling imply? And to 

what extent could we still detect it if we include faster isotropic motions in a simplified 

manner? 

 

• “Why should the effective correlation time for global motion be equal to τ2
-1?” It appears 

referee #2 is mistaken, 𝜏𝑒𝑓𝑓 =  (4𝐷⊥ + 2𝐷∥)−1 ≠ (4𝐷∥ +  2𝐷⊥)−1 = 𝜏2. As we referenced 



(Barbato et al. 1992, Tjandra et al. 1995), it is calculated from the trace of the diffusion tensor  

𝜏𝑒𝑓𝑓 = 6𝐷−1 = 6 1
3⁄ (𝐷𝑥 + 𝐷𝑦 + 𝐷𝑧)−1 =  6 1

3⁄ (𝐷⊥ + 𝐷⊥ + 𝐷∥)−1 = (4𝐷⊥ + 2𝐷∥)−1 

 

General matters 

(2) As stated before, the concept of anisotropic tumbling of α-helical and chain-like elements has been 

invoked in that very same paper (Mantsyzov et al 2014), pages 1281-1282. It was speculated that the 

local orientation of the spin pairs with respect to the CαCα vector (in part) explains the variations of 

intraresidual and sequential 1Hα1HN NOEs. 

(3) Following (Mantsyzov et al 2014), we assume that the peptide plane is embedded within the same 

diffusion tensor. Its unique axis is assumed to lie in the peptide plane such that the sketched edge cases 

(parallel/perpendicular) are covered. The details are described in the Methods section.  

(4) As we mentioned before, we do not expect Eq. (10) (mr-2021-35) to apply in any strict sense. It is 

indeed the spectral density for MF-like anisotropic tumbling of a (sufficiently) rigid symmetric top. 

That being said, the general form of Eq. (10), i.e. a weighted sum of Lorentzians, can be expected to 

describe the TCFs of virtually any protein system in isotropic solution. 

(5) We agree that fitting experimental relaxation parameters with only few Lorentzians has its 

limitations. The number of parameters and consequential statistical uncertainties are problems in their 

own right. In fact, Crawley and Palmer address this issue in this Festschrift (mr-2021-28). In our 

study, we have referenced different possibilities ranging from correlation time distributions to spectral 

density visualizations. Again, we are interested in detecting effects of anisotropic dynamics in J(0). 

We do not intend nor suggest to fit experimental relaxation parameters of IDPs using Eq. (10) (mr-

2021-35). 
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