
 

 

 
As in our response to referee #1, we feel this notion is warranted. Still, with the given deadline, the 

developed concepts and the preliminary data represent the project’s current status. We deem it a 

worthwhile contribution to the Festschrift. 

We feel these two general issues should be treated and highlighted separately. We will refer to these 

arguments throughout. 

Issue 1) Are we justified to invoke the concept of a tumbling symmetric top in the context of IDPs? 

As we emphasized before, IDPs cannot be expected to generally adhere to this model. We do not 

suggest a TCF of this type to model IDPs. We want to probe whether there are anisotropy 

features/biases in the (segmental) dynamics of (partially) disordered proteins commonly associated 

with this model. Studies invoking this concept in the context of (partially) disordered proteins were 

provided ranging from “fully disordered” to partially structured segments. IDPs are not “random 

coils” but a diverse class of proteins with context specific structural features. 

As stated in the manuscript, isolating the J(0) components of NHN CCR and C’Cα CCR provides a 

very general measure for the presence of anisotropic dynamics at the scale of the peptide plane even 

without a specific dynamic model in mind. Since we can identify the isotropic case, we can also detect 

deviations thereof. We only consider the simplistic and qualitative definition of a tumbling “segment” 

previously asserted by (Mantsyzov et al. 2014) to assess the sensitivity of Q. As emphasized in the 

Introduction, we are agnostic about the relevance/applicability of this simplified representation. Q 

could likely rule out this concept in many/most cases, it depends on the specific signature. The 

experiments were designed to probe the presence of anisotropic “slow” motions associated with 

segmental tumbling. If the J(0)s of the two spin pairs are similar, peptide plane dynamics in IDPs 

would appear to be isotropic and well-probed by conventional 15N relaxation. If the obtained J(0)s 

exhibit pronounced differences, the source of anisotropy should certainly be investigated in further 

detail (preferably in conjunction with MD simulations). As IDPs are a diverse family of proteins, the 

results will necessarily depend on the system under investigation. 

We do not see any inherent contradiction in assessing and illustrating the sensitivity of Q using the 

previously invoked concept of a symmetric top. The limited validity of this model for IDPs is 

emphasized throughout the paper. We can certainly emphasize these considerations and further clarify 

the exemplary nature of this model in the manuscript. 



 

 

Issue 2) Does our proposed spectral density represent CCR of a tumbling symmetric top? Is the 

approximate MF-like inclusion of local motions properly handled? 

Based on the objections thus far, we deem our description of the tumbling symmetric top appropriate 

as it is. The apparent deficiencies are addressed in detail below. 

 

In the following, we will address the open questions and comments: 

As stated in our previous response and in the original manuscript, we do not suggest that any 

parameters such as 𝐷∥ 𝐷⊥⁄  could be ”determined” as the dynamic model is too simplified. We are only 

comparing the J(0)s, we do not claim that solving the inverse problem, i.e. extraction of the 

(hypothetical) diffusion tensor, was possible or intended. That being said, why would 𝐷∥ 𝐷⊥⁄  be likely 

to differ for consecutive peptide planes if they tumble in a concerted fashion? We would not rule out 

this effect, but we would speculate that the relative orientations of the peptide planes are a more 

relevant source of uncertainty. 

MD simulations are highlighted throughout the manuscript, but we can further emphasize their 

potential. In the authors’ opinions, MD simulations are the ideal “dynamic model” for IDPs. If the 

CCR rates turn out to be “heterogeneous enough”, we will certainly include simulations in a future 

study. Limited to (φ,ψ)-space, like in (Mantsyzov et al. 2014), coil libraries can be suitable priors for 

structural inference (Kauffmann et al. 2021). To investigate dynamics of consecutive residues, we 

tend to prefer MD simulations over the static and generic nature of coil priors. 

See Issue 1, we are not modeling the dynamics of IDPs, we are considering a MF-like symmetric top. 

 
Where does the angular relation between u and v go? As pointed out by referee #2 in the context of 

(Ghose et al. 1998) as well, in the limit of isotropic global motion one has Σ𝐾=0,1,2𝐴𝐾(𝑢, 𝑣) 𝜏𝐾

1+(𝜔𝜏𝐾)
2 →

𝑃2(𝑢 ∙ 𝑣) 𝜏0
1+(𝜔𝜏0)2. As the index “0” might be confusing for some readers, we note that as 

𝐷∥ 𝐷⊥⁄ = 1 ,  𝜏0 = 𝜏1 = 𝜏2 = 𝜏𝑡𝑢𝑚𝑏 = (6𝐷)−1.  

 

This is not correct. In that limit we state that 𝑆𝑢𝑣
2 → 𝑃2(𝑢 ∙ 𝑣)𝑆2 such that  

𝑃2(𝑢 ∙ 𝑣) − 𝑆𝑢𝑣
2 → (1 − 𝑆2)𝑃2(𝑢 ∙ 𝑣)

 
This is not the isotropic limit of Eq 1 (Eq 10 mr-2021-35). As stated above, 𝐴𝐾(𝑢, 𝑣) sums up to 

𝑃2(𝑢 ∙ 𝑣) and we are not sure why the “auto” 𝑆2 and the “cross” 𝑆𝑢𝑣
2  became mixed liked this. The 

isotropic limit of Eq 1 (Eq 10 mr-2021-35) is exactly as required: 

 



 

 

If 𝑆𝑢𝑣
2  was used throughout, we would instead obtain  

 

𝐽𝑢,𝑣(𝜔) = 𝑆𝑢𝑣
2

𝜏0

1 + (𝜔𝜏0)2
+ (𝑃2(𝑢 ∙ 𝑣) − 𝑆𝑢𝑣

2 )
𝜏𝑒

1 + (𝜔𝜏𝑒)2
 

(Ghose et al. 1998) Eq 9, as later referred to by referee #2, with the angular relations now contained in 

𝑆𝑢𝑣
2 . 

This isotropic limit is both contained in Eq 11 (mr-2021-35) and illustrated in Fig. 4 (mr-2021-35). As 

mentioned in the manuscript, it can be seen that the limit of fully isotropic local motions and isotropic 

tumbling coincides at around 0.3. 

 

With the validity of A.14 (Tjandra et al. 1996) now established, we can agree that it represents the 

analytic solution for a tumbling rigid symmetric top. This is an improvement over the approximation 

via the auto-correlated TCF. Thus, for 𝑆2 = 1, Eq. 1 (Eq. 10 mr-2021-35) is exact. For 𝑆2 = 0, it is 

also exact. As established above, for isotropic tumbling, 𝐷∥ 𝐷⊥⁄ = 1, it also follows MF-type 

expressions as above and referenced in the manuscript/response. 

In essence, Eq. 1 (Eq. 10 mr-2021-35) weights/mixes the two exact solutions via 𝑆2. This 

approximation becomes better the closer 𝑆2 is to 0 or 1, the closer 𝐷∥ 𝐷⊥⁄ is to 1 and/or the closer u·v 

is to 1. We cannot follow at what size and combination of u·v, 𝑆2 and 𝐷∥ 𝐷⊥⁄  the approximation 

becomes entirely unreasonable especially when considering that the only “large” angle is between 

C’Cα and σyy which contributes with smaller weight in terms of both size (σyy-σzz) and the initial value 

of 𝑃2(𝑢 ∙ 𝑣) (as highlighted in the manuscript). 𝐽C’Cα,𝑥𝑥(0) is clearly the dominant component. 

We cannot see how the value of u·v for C’Cα and σyy might break the (anyways approximate) 

interpolation between rigid anisotropic tumbling and fully isotropic motions presented in Fig. 4 (mr-

2021-35). 

 

This is not an issue of semantics. We still do not see how Eqs. 2-4 (mr-2021-35) do not represent very 

general properties of TCFs encountered in solution-state NMR. How are MF-like TCFs not contained 

within these boundaries? 

Clearly Eq. 3 is less general than Eq. 2, one could generalize further and consider an infinite sum. We 

never introduced Eq. 3 as the most general description, we only responded to the claim that it does not 

comply with MF-type TCFs. 

For most practical purposes, we do not see how the difference between large N and infinity might 

result in substantial discrepancies both in the context of our manuscript and with respect to TCF 

shapes of proteins in isotropic solution. That being said, we do value the benefits of continuous 



 

 

notation. Before introducing Eq. 3, we specifically reference the concept of correlation time 

distributions (mr-2021-35 page 4). 

 

In the first response of referee #2, we got the impression that the general notation and validity of A.14 

(Tjandra et al. 1996) was being questioned. We apologize if we misunderstood. 

 

 

We were responding to the following statement, referring to Eqs 2-9 (mr-2021-35) as problematic: 

  
In case this led to confusion, it should be highlighted that this is not the proposed spectral density (Eq 

10 mr-2021-35). We considered this as a transcription error. 

More generally, see Issues 1 and 2. 

 

As discussed above, we do not agree with this statement. In addition, the highlighted TCF of (Ghose 

et al. 1998) includes a similar spin system, namely C’–N. Arguably, the angular relations of C’ CSA – 

C’N DP CCR are not too different from C’ CSA – C’Cα DP CCR. More details below. 

 

We discussed in multiple paragraphs how the isotropic contribution can be justified. It is part of the 

reason we denote it as such as it provides a better “feel” for many. Still, we find the contribution of  

𝑃2(𝑢 ∙ 𝑣)(1 − 𝑆²)
𝜏3

1+(𝜔𝜏3)²
 on J(0) worth highlighting in purely mathematical terms. 

 

We were referring and contextualizing with respect to the question of referee #2: “What physical 

framework could possibly justify the second term of eq 3?”, i.e. 𝑃2(𝑢 ∙ 𝑣)(1 − 𝑆²)
𝜏3

1+(𝜔𝜏3)²
 



 

 

The articles were cited to explain all components, i.e. the factor 𝑃2(𝑢 ∙ 𝑣), the use of an auto-

correlated order parameter 𝑆² and the concept of the effective isotropic tumbling time. 

Generally, see Issues 1 and 2.  

Specifically:  

As Halle’s MF-B (Halle 2009) does not prespecify the form of Cint(t), the exponential form requires 

commentary. We specifically referred to the previous references to justify it. 

 

As stated above, the effect of summation over l is not the issue. We explicitly referred to the internal 

TCF of (Ghose et al. 1998) Eq. 9 (using the previous notation): 

𝐽𝑢,𝑣(𝜔) = 𝑆² ∑ 𝐴𝑘(𝑢, 𝑣)
2

𝐾=0

𝜏𝑘

1 + (𝜔𝜏𝑘)2
+ (1 − 𝑆2)

𝜏𝑒

1 + (𝜔𝜏𝑒)2
                   (𝑎) 

Note that the index “x” for “cross” in the order parameters has been omitted for clarity. (Ghose et al. 

1998) justify the above expression as follows “In order to obtain expressions analogous to 

conventional Lipari–Szabo theory, we express the auto- and cross-correlation spectral density 

functions using effective order parameters.” (page 488). 

Defined to be analogous to the conventional “auto” order parameters, the “effective order parameters” 

lie between 0 and 1. This can be seen in two ways: In the fully rigid tumbling limit 𝐽𝑢,𝑣(𝜔) =

∑ 𝐴𝑘(𝑢, 𝑣)2
𝑘=0

𝜏𝑘

1+(𝜔𝜏𝑘)²
, thus 𝑆2 = 1. It can also be seen from the initial value 1 of the internal TCF. 

We cannot follow the “evolution of this equation into eq 9 of that article”. For isotropic tumbling, 

Σ𝐾=0,1,2𝐴𝐾(𝑢, 𝑣) 𝜏𝐾

1+(𝜔𝜏𝐾)
2 → 𝑃2(𝑢 ∙ 𝑣) 𝜏0

1+(𝜔𝜏0)2, we would obtain: 

𝐽𝑢,𝑣(𝜔) = 𝑆²𝑃2(𝑢 ∙ 𝑣)
𝜏0

1 + (𝜔𝜏0)2
+ (1 − 𝑆2)

𝜏𝑒

1 + (𝜔𝜏𝑒)2
                     (𝑏) 

This is not the isotropic limit of Eq. 9 of (Ghose et al.) which reads 

𝐽𝑢,𝑣(𝜔) = 𝑆𝑢𝑣
2

𝜏0

1 + (𝜔𝜏0)²
+ (𝑃2(𝑢 ∙ 𝑣) − 𝑆𝑢𝑣

2 )
𝜏𝑒

1 + (𝜔𝜏𝑒)2
                     (𝑐) 

with the angular relations encoded by 𝑆𝑢𝑣
2 . Using 𝑆𝑢𝑣

2 = 𝑃2(𝑢 ∙ 𝑣)𝑆2, we obtain the familiar 

𝐽𝑢,𝑣(𝜔) = 𝑃2(𝑢 ∙ 𝑣)(𝑆²
𝜏0

1 + (𝜔𝜏0)2
+ (1 − 𝑆2)

𝜏𝑒

1 + (𝜔𝜏𝑒)2
)                    (𝑑) 

Importantly, we do not think (Ghose et al. 1998) are implying Eq 7 (a) evolves into Eq 9 (c). Eq 7 (a) 

is defined purely by analogy. Arguably, the index “x” for “cross” is used in a somewhat confusing 

manner. If the order parameters in Eq 7 (a) were interpreted as “proper” cross-type, one would 



 

 

encounter different issues. In the fully rigid tumbling limit, the angles would be accounted for twice, 

i.e. it would decay from 𝑃2(𝑢 ∙ 𝑣)² while the internal TCF would still decay from 1. One would not 

end up with Eq. 9 (c). 

It can be seen how this not too problematic for smaller angles, but as we stated in our first response, 

we feel that the lack of 𝑃2(𝑢 ∙ 𝑣) for the internal TCF is problematic for larger angles. By having the 

internal TCF decay from 𝑃2(𝑢 ∙ 𝑣) towards 𝑆𝑢𝑣
2 = 𝑃2(𝑢 ∙ 𝑣)𝑆2, Eq. 10 (mr-2021-35) is obtained.  

To be clear, we feel the expressions of (Ghose et al. 1998) are still reasonable. Analogies are a good 

way to make the features of an (anyways approximate) dynamic model more relatable. 

Regarding the sensitivity assessment and the dynamic model, we feel it is adequate, see Issues 1 and 

2. The isolated J(0) components of NHN CCR and C’Cα CCR probe the motions of the shared peptide 

plane at the same frequency. Thus, they are straightforward to compare and the expectation for 

isotropic motions can easily be specified. To us this is an adequate tool for detecting the presence of 

anisotropic dynamics. 

 

We apologize for the misunderstanding. We already commented on the concept of correlation time 

distributions, which the approach appears to build on. However, it puts an interesting twist on it by 

emphasizing the timescales the relaxation parameters are most sensitive to. For now, we feel our 

proposed (spectral density mapping like) protocol should be appropriate for detecting actual effects 

without specifying the form of the spectral density. Regarding the spectral density used to assess our 

protocol, see Issues 1 and 2. The references are appreciated and might prove useful in future 

applications when it comes to interpreting the observed effects in structural/dynamical terms. 

Comments (2), (3) and (4) have been addressed above. 
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