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The authors of this manuscript mr-2021-35 suggest a strategy for detecting anisotropic 

diffusion, 𝐷 ≠ 𝐷 (where D denotes a second-rank diffusion tensor), in intrinsically disordered 

proteins (IPDs), on the basis or NMR cross-correlated relaxation (CCR). The spin systems 

considered include 15N1H and 13C’13C. It was shown previously for 15N1H that the transverse 

and longitudinal CCR rate constants can be combined linearly so as to yield an expression which 

depends solely on the measurable spectral density, JCD(), for  = 0 (“C” stands for the 15N CSA 

interaction and “D” for the 15N1H dipolar interaction). This strategy is adopted here for the 

13C’13C spin system (with “C” standing for the 13C’ CSA interaction and “D” for the 13C’13C 

dipolar interaction). An improved experimental method for measuring the longitudinal CCR rate 

constant for 13C’13C is reported. JCD(0) data are acquired experimentally for both spin systems. 

On the theoretical side a new form for JCD(), which should enable detecting 𝐷 ≠ 𝐷 when  = 

0, is suggested. Detection sensitivity is illustrated. My comments refer to several matters of general 

character, and to the form of the JCD() function.  

 

General matters. (1) This study is totally predictive in nature. No validation, and/or examples 

illustrating actual applicability are provided. (2) A cursory survey of the NMR-based studies of 

IDPs cited in mr-2021-35 shows that methods examining local features point to a random-coil 

situation (e.g., see Mantsyzov et al. 2014). CCR in 15N1H and 13C’13C is a local feature. 

Obtaining information on long-range “order”, in particular “diffusion anisotropy”, requires 

empirical spectral densities comprising statistical elements, to be used in combination with coil 

libraries and molecular dynamics simulations (e.g., see Mantsyzov et al. 2014). These elements 

are absent in mr-2021-35 scheme. (3) It is indicated that anisotropic “segmental” motion is 
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targeted. How are these “segments” defined? In other word, how is the second-rank diffusion 

tensor, D, defined? (4) It is pointed out that NMR relaxation analysis methods applicable to folded 

proteins are not applicable to IDPs. The model-free (MF) spectral density, a variant of which is 

suggested here, refers to protein and probe as rigid bodies moving in a statistically independent 

(decoupled) manner. In IDPs the protein is not rigid and its motion is not decoupled from the 

motion of the probe. The spectral density suggested here does not reflect these features; rather, it 

is similar in character to the MF spectral density. (5) In the context of item (2) – please note that 

the “dynamics detectors” method (Smith et al. Angew. Chem. Int. Ed. 2017 56. 13590), shown to 

actually surpass MF, comprises statistical elements. Recently it was applied to proteins in solution 

(Smith et al. JCP 2019, 151, 034102). The authors might want to check applicability to IDPs.  

 

JCD(). Let us focus on 15N1H spin system as paradigm. The essence of the following is 

equally applicable to the spin system 13C’13C. Within a very good approximation the 15N1H 

dipolar/15N CSA cross-correlated spectral density, JCD(), is given for globular proteins by 

(Tjandra et al. JACS 1996, 118, 6986):  

 

JCD()  P2(cosθ) JDD() = P2(cosθ) j0()      (1) 

 

where θ denotes the angle between the principal axes of the axial 15N1H dipolar and 15N CSA 

tensors. JDD() is the measurable spectral density for auto-correlated dipolar relaxation. j0() is 

the K = 0 component of the solution, jK(), K = 0, 1, 2, of the dynamic model considered. For 

wobble-in-a-cone j0() is given by the MF spectral density (Lipari & Szabo JCP 1981, 75, 2971).  
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The point I wish to make is as follows. The physical picture underlying NMR relaxation is 

inherent in the jK(), K = 0, 1, 2, functions, which are not measurable. To render them measurable 

one has to carry out appropriate frame transformations. The equality in eq 1 is due to the fact that 

the model-related local ordering frame, M, where the jK() functions are defined, and the NMR-

related D frame, are taken the same in MF. The approximate equality in eq 1 is due to the fact that 

the C frame and the M = D frame are not the same but θ is small (Tjandra et al. JACS 1996, 118, 

6986). Hence, only the K = 0 component, P2(cosθ), in the M = D to C frame transformation 

survives.  

Thus, JDD, JCC and JCD are geometric implementations of jK(), K = 0, 1, 2. Equation (2) 

of mr-2021-35 represents time-dependent cross-correlation between the (axial) D and C frames. 

As shown above, the C frame is obtained from the D (= M) frame by a frame transformation based 

on time-independent Euler angles. This post-solution frame transformation can also be found in a 

different but related case in Szabo JCP 1980, 72, 4620. This invalidates eq 2. 

Equations 24 do not comply with the theory of moments, which underlies the MF time 

correlation function utilized here as basis. Equation 6 represents the frame transformation from the 

15N1H dipolar frame (u) to the global diffusion frame (Tjandra et al. JACS 1995, 117, 12562). 

One should have:   

 

∑ 𝐴𝐾𝐾=0,1,2 (𝑢)
𝜏𝐾

1 + (𝜔𝜏𝐾)2         (2) 

 

The index, v, in eq 6 [(𝐴𝐾(𝑢, 𝑣)] is not comprehensible in this context. Equation 7 is very 

confusing. The coefficients 𝐴𝐾(u) are in actual fact time-independent trigonometric functions. Yet, 

the quantities 𝐴𝐾(𝑢, 𝑣) in eq 7 of mr-2021-35 feature as coordinates “(θ, ), which denote the 
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polar angles in the tumbling frame”; this implies time-dependence of angles alien to the essence 

of 𝐴𝐾(u).  

Based on eqs 29, shown above to be problematic, the authors obtain the spectral density:  

 

𝐽𝑢,𝑣() = 𝑆2 ∑ 𝐴𝐾𝐾=0,1,2 (𝑢, 𝑣)
𝜏𝐾

1 + (𝜔𝜏𝐾)2
 + (1 − 𝑆2) ∑ 𝐴𝐾𝐾=0,1,2 (𝑢, 𝑣) 

𝜏3

1 + (𝜔𝜏3)2
 (3) 

   

where 𝜏3
−1 = 𝜏𝑖𝑛𝑡

−1 + 4 𝐷 + 2 𝐷. The correlation time, 𝜏𝑖𝑛𝑡 , is considered to be the average 

correlation time for internal motion. The correlation time 𝜏𝑒𝑓𝑓 = (4 𝐷 + 2 𝐷)
−1 is considered to 

be the effective correlation time for global tumbling. The two principal values, 𝐷 and 𝐷, of the 

second-rank diffusion tensor correspond to the three eigenvalues of the symmetric top, given by 

𝜏𝐾
−1 = 6 𝐷+ 𝐾2(𝐷 −  𝐷),  K = 0, 1, 2. This yields 𝜏0

−1 = 6 𝐷, 𝜏1
−1 = 𝐷 + 5 𝐷, and 𝜏2

−1 = 4𝐷 

+ 2 𝐷. Why should the effective correlation time for global motion be equal to 𝜏2
−1? In what sense 

does the expression 𝜏𝑖𝑛𝑡
−1 + 4 𝐷 + 2 𝐷 represent  as indicated  dynamical coupling, which 

means concerted time-evolution of the global and local motional degrees of freedom? What 

physical framework could possibly justify the second term of eq 3?  


