Reply to the authors’ rebuttal to reviewer #2

Regarding general matter (1), as referee #1 has pointed out as well, our study 1s indeed predictive and
conceptual in nature. In our paper, we want to acknowledge Geoffrey Bodenhausen’s contributions to
the field by discussing how CCR experiments developed in his group over the years can potentially be
used to investigate and characterize local (segmental) dynamics in (partially) disordered proteins.

Authors submitting altogether predictive manuscripts to established journals are typically
required to demonstrate applicability. It has been assumed that submissions to the Festschrift issue
of MR Discussions honoring Geoffrey Bodenhausen are also subject to this requirement.

Let us clarify: We do not claim nor intend to provide a thorough and general description of IDP
dynamics. While segmental motions are clearly present in IDPs (Rezaei-Ghaleh et al. 2018, Parigi et
al. 2014), 1t 1s obvious that the concept of diffusion anisotropy cannot be expected to rigorously apply.
Still, this somewhat elusive concept has been mvoked in previous studies even for proteins such as a-
Synuclein (Mantsyzov et al. 2014). This leads us to the central question of our study: If the segmental
motion of IDPs exhibited features/trends associated with anisotropic tumbling, how could we best
detect 1t? Can we define a sensitive and unambiguous experimental measure?

The first sentence is obvious and the objective of this work is appreciated. The issues at
stake include the definition of the “segment” as conceived by Mantsyzov et al.! (to which the
authors refer), and the physical relevance of the “measure”. C* and C’ belong to residue i — 1; N
and HN belong to residue i. Dy/D, are likely to differ for consecutive (i — 1) — i pairs. How will
then the ratios, D;/D,, between the parallel and perpendicular components of the global diffusion

tensor, D, of the “segment” be determined? The “measure” suggested is ill-defined — see the
original review report, and this report. On the most general level — in the Introduction the authors
indicate that time-correlation functions (TCFs) developed for folded proteins, which include
model-free-type TCFs, are not applicable to intrinsically disordered proteins (IDPs). Yet, they
suggest a TCF of this type. With regard to these matters have | suggested considering — or at least
discussing — coil libraries and molecular dynamics simulations, e.g., as in Mantsyzov et al.t

Complementing NII™ CCR, we show that C’C* CCR allows to probe the peptide plane quite literally
from a different angle. The isolated zero frequency components are straightforward to compare and
particularly sensitive for larger correlation times, allowing to probe the presence or lack(!) of
anisotropic dynamics in IDPs on the local scale of the peptide unit. To assess the combined
mformation content of the CCR rates, we build on the previously invoked and simplified model of a
tumbling symmetric top. The “dampening” effect of local motions is approximated as simply as
possible using a single exponential decay with equal weight for both NH and C’C®. We do not claim
this treatment 1s rigorous nor do we mmply that features of this MF-like anisotropic tumbling should be
expected for all protein systems. The experiments were conceptualized and designed to assess the
presence of features/trends associated with this simplified dynamic model.



As presented, the axial top includes a given (i — 1) — i pair. Its global tumbling is
represented by the first term of eq 10 of mr-2021-35. That equation is depicted below as eq 1. The
“dampening” effect of the local motions is given by the second term or eq 1.
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uand v are the cross-correlated interaction vectors. One has 73* = 7, + 757y = i + (4D, +
2 Dy). | regret my oversight in the original report, where I mistook (4 D+ 2D,) for (4D, +
I have the following reservations with regard to this equation.

(a) The expression for 731 is valid in the limit where ;. >> reff What is the justification
for the validity of this inequality for IDPs?
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In that limit the authors of mr-2021-35 maintain that (1 — $?) P,(u - v) = SZ2,. Thus,
mr-2021-35 predicts the following form for J, ,(®) in the limit of isotropic global

motion:

(b) Inthe limit of isotropic global motion one has Y.x—¢ 12 Ax (u, v)
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where ;1 = 7,1 + 6D, and S2, = S% P,(u - v). Yet, in this limit one should have:?
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(c) The purpose of using the cross-correlation-related expression
Yk=0124x (U, v) . ( (eq A.15 of ref 2), instead of the auto-correlation-related

eXPression Y —o 12 Ax (u)m (eq A.14 of ref 2) is to allow the effective polar
K
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angle, «, in P,(u-v) = P,(cos «), to be relatively large, as it is for the C*~C’ spin
system (fourth bullet item in mr-2021-35-AC2-supplement). Let us examine this
matter. The section after eq A.15 of ref 2 states the following:
in general (Pa(p(0)14(0)) = (Pa(ug(0)+145(1))) = (Po-
(1p(0)15(0)))Pa(cos B,). Thus, the approach used in the text
to treat anisotropic overall motion 1s far from rigorous, although
it 15 expected to be a reasonable approximation when 6, 1s
small.
The first two TCFs in this citation yield by Fourier-Laplace transformation the spectral
densities J, ,, () and J,, ,(o) (in the notation of mr-2021-35). “The approach used in the text” refers
to the spectral density:
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The polar angle, «, has to be small enough so that the auto-correlated spectral densities,
Juu(®) and J,,(w), are within a good approximation the same. Otherwise the expression in the
square brackets of eq 3, which represents the MF spectral density where J(w) = J,,(®) =
J»»(®), may not be used. Yet, eq 3 is the limit of eq 1 for isotropic global diffusion. For the same
reason — inherent equality between J,, ,,(») and J,, ,(®) — o has to be small in eq 1. As delineated
in my original review report, additional geometric simplifications are inherent in eq 3; they are
also inherent in eq 1.

Thus, using eq Al4 of ref 2 instead of eq A.15 of ref 2 does not remove the requirement
that the polar angle, o, be small.

e Eq.(2) (mr-2021-35) 1s very general. We cannot follow how 1t might be invalid. In fact, the
study of (Tjandra et al. 1996) highlighted as counter-argument features this very expression
already m Eq. (2) as well as in the appendix Eq. (A.1).

e The same holds true for the objected expression (3) (mr-2021-35). Eq. (3) is a very general
form of a TCF. It only implies that the decay can be modeled as a superposition of
exponential decays. All commonly employed analytical models and even MD-extracted TCFs
adhere to this general shape. We believe sufficient references have been provided.

¢ From (2) and (3) follows (4) (mr-2021-35). so we must disagree with the objections raised.
With the angle between u and v fixed. the same expression is also found in (Tjandra et al.
1996) between (A.1) and (A.2).

The sentence in my original report to which the authors refer follows the description of the
standard treatment of cross-correlated relaxation for isotropic global diffusion. It reads: “Equations
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2—4 do not comply with THIS standard NMR relaxation procedure.” The authors interpret “THIS”
as “THE”. 1 admit that “do not comply with” is bad phrasing; it should have been “do not
represent”. By the way, the upper limits in the summations of eqs 3 and 5 of mr-2021-35 should
be infinity.

* From (2) to (9) (mr-2021-35) we simply establish the effect of anisotropic diffusion on the
TCF which depends on the relative orientations of u and v. For H*H" intraresidual and
sequential NOEs. this model has been invoked to rationalize unexpected variations in o-

Synuclein (Mantsyzov et al. 2014, p. 1281-1282). However. as H*HY distances vary with ¢
and . the observed effects were ultimately considered to be dominated by distance variations
(p. 1286). C'C*CCR would not suffer from this ambiguity. which 1s why we propose it as an
alternative.

Please see above with regard to Mantsyzov et al.!

¢  We do not understand in what way Eqs. (6) and (7) (mr-2021-35) are confusing. Again. they
are taken from the highlighted study of (Tjandra et al. 1996). see Appendix (A.14). The
expression suggested by referee #2 malkes use of the auto-correlated expression (A.15). We
already commented on the possibility to approximate the entire cross-correlated TCF by an
auto-correlated TCF on page 6. As the angle between C’C® and oy is rather large. we prefer
to model Cen(t) according to (A.14). Referenced in the paper. a different representation has
been derived by (Deschamps & Bodenhausen. 2001). Can referee #2 clarify. is the validity of
Eqgs. (6) and (7) (mr-2021-35) being questioned or the combination with a fourth Lorentzian
m Eq. (10)?

The comment made here refers to the usage of eq A.14 instead of A.15, discussed in item
(c) above.

¢ From (2) to (9) (mr-2021-35) we sumply establish the effect of anisotropic diffusion on the
TCF which depends on the relative orientations of u and v. For H*HY intraresidual and
sequential NOEs. this model has been invoked to rationalize unexpected variations in o-

Synuclein (Mantsyzov et al. 2014, p. 1281-1282). However. as H*HY distances vary with ¢
and . the observed effects were ultimately considered to be dominated by distance variations
(p. 1286). C'C*CCR would not suffer from this ambiguity. which is why we propose it as an
alternative.

As shown above, eq 1 is not applicable to the spin system C*—C’.



¢ In addition. to assess the effect of isotropic local motions, we simply introduce an additional
exponential decay / Lorentzian. As we said in the manuscript “While the fast isotropic
motions could be modeled in more detail to better fit the shape of the TCF using e.g. the
extended MF approach(Clore et al.. 1990) or correlation time distributions(Hsu et al.. 2018).
we only intend to divide J(0). i.e. the TCF’s enclosed area. into contributions with and
without orientational biases.” (page 6). Eq. (10) (mr-2021-35) is a rough MF-like
approximation, (1-8%)13 is simply the contribution to J(0) attributed to isotropic motions.
While in principle arbitrary how this contribution is denoted. S* and Ty tend to provide a
better “feel” for many. Including additional and/or differently termed isotropic terms would
not change the behavior of Q. only thewr cumulative size is relevant.

The local-motional contribution of (1 — $2) ﬁ can be justified on the basis of the
theory of moments.® The local-motional contribution (1 — S2) P,(u - v) H(T#)z is used
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allegedly.

Our approximation can be justified from various angles which we have sketched in the paper.
While one can argue about the physical meaning of MF-type models. two different approaches
connecting Ty With 7o 71 T2 were highlighted. We agree that the word “coupling™ is a poor
choice. We were referring to how the factorization (which generally implies no dynamic
coupling) Crumb(t)Cine(t) 1s handled. Tt should be noted that already this product form is not
strictly applicable in case of anisotropic tumbling. (Kroenke et al. 1998) keep Ciump(t)
anisotropic. Eq. (1). which vields a 13 tq4and 15 and retains orientational biases even with $>=0.
We follow (Barbato et al. 1992). Eqs. (6a) and (6b) / (Tjandra et al. 1995). sec. Theory. who
approximate T3 assuming an effective isotropic Crmn(t). see below. Cinlt) decays from Pa(u-v)
towards S*y which for the approximated isotropic tumbling can be expressed as S%y =
SPs(u-v) (Ghose et al., 1998). Eq. (19). Appendix. or (Fischer et al. 1997). Eq. (29). which
vields the “second term of eq 3”.

The reservations expressed in the original report and here concern eq 10 of mr-2021-35.
All of the articles cited in the preceding paragraph feature physically well-defined TCFs.



The MF approach of (Halle 2009). which does not assume the factorization of Cump(t)Cint().
was highlighted as well. The auto-correlated expression for anisotropic diffusion is found in
Eq. (2.40). Treatment of cross-correlations are described in section D. Replacing 1 in Eq.
(2.40) with kg = Po(u-v). Eq. (2.59). and again approximating S, = Sy = S?Ps(u-v). the
expressions of (Tjandra et al. 1996). Eqs. (3). (4) and (6) are obtained. These correspond to
Halle’s Eq. (2.64) for isotropic internal mobility which relates the cross-correlated TCF to the
auto-correlated TCF as suggested by referee #2. The chosen exponential form of Ciy(t) and the
choice of 1T.# can be motivated as above. If the angular dependencies of Cum(t) are encoded by
Eqs. (6) and (7) (mr-2021-35) instead of Sy = S?P2(wv). Eq. (10) (mr-2021-35) 1s obtained.
The expression suggested by (Ghose et al.. 1998). Eq. (7). i1s very similar but lacks the
prefactor Po(u-v) for the internal TCF. which 1s problematic for large angles (e.g. between
C’C" and oyy). Regarding the necessity of various assumptions (including frame transformation
properties) as well as the general validity of different MF approaches. we find Halle’s remarks
in VLA worth highlighting.

Explicitly or implicitly all three MF models (A, B and C) considered by Halle* assume
statistical independence between the global and internal motions. One may not “choose” arbitrarily
an exponential form for Cint(t); one has to justify this (e.g., see ref 3). It is shown above why using
eqgs 6 and 7 does not render eq 1 applicable to arbitrary polar angle, o.. Equation 7 of Ghose et al.®
does not lack the factor P, (u - v); note the summation over | in it, and the evolution of this equation
into eq 9 of that article. Halle* voices supportive assessment of four specific MF formulae, none

claimed to apply to IDPs.

We feel Eq. (10) (mr-2021-35) adheres closely to conventional descriptions of MF-adjusted
diffusion anisotropy. Again. we are not claiming this is how an IDP will realistically behave.
Rather. what signature would the simplified image of anisotropic tumbling imply? And to
what extent could we still detect 1t if we include faster 1sotropic motions in a simplified
manner?

One cannot attain objectives with inadequate tools.

“Why should the effective correlation time for global motion be equal to 117" It appears
referee #2 is mistaken, 75y = (4D + 2Dy)™Y # (4Dy + 2D,)™ ! = 1,. As we referenced

(Barbato et al. 1992, Tjandra et al. 1995). it is calculated from the trace of the diffusion tensor
Tesf =60t =61/3 (D, +Dy+D,) = 61/3(D, + D, + D)t = (4D +2D) 7"

My apologies for this oversight (see above).



General matters.

(2) A cursory survey of the NMR-based studies of IDPs cited in mr-2021-35 shows that
methods examining local features point to a random-coil situation (e.g., see Mantsyzov et al. 2014).
CCR in ®N-'H and C’-*3C« is a local feature. Obtaining information on long-range “order”, in
particular “diffusion anisotropy”, requires empirical spectral densities comprising statistical
elements, to be used in combination with coil libraries and molecular dynamics simulations (e.qg.,

see Mantsyzov et al. 2014). These elements are absent in mr-2021-35 scheme.
(2) As stated before. the concept of anisotropic tumbling of g-helical and chain-like elements has been
invoked in that very same paper (Mantsyzov et al 2014). pages 1281-1282. It was speculated that the
local orientation of the spin pairs with respect to the C*C*® vector (in part) explains the variations of
intraresidual and sequential 'H*'H¥ NOEs.
This is a description of matters addressed in ref 1; it is not a response to comment 2. Please see

above for my suggestion in this regard.

(3) It is indicated that anisotropic “segmental” motion is targeted. How are these “segments”

defined? In other words, how is the second-rank diffusion tensor, D, defined?

(3) Following (Mantsyzov et al 2014). we assume that the peptide plane is embedded within the same
diffusion tensor. Its unique axis is assumed to lie in the peptide plane such that the sketched edge cases
(parallel/perpendicular) are covered. The details are described in the Methods section.

Please see above for related comments/discussion.

(4) 1t is pointed out that NMR relaxation analysis methods applicable to folded proteins are
not applicable to IDPs. The model-free (MF) spectral density, a variant of which is suggested here,
refers to protein and probe as rigid bodies moving in a statistically independent (decoupled)
manner. In IDPs the protein is not rigid and its motion is not decoupled from the motion of the
probe. The spectral density suggested here does not reflect these features; rather, it is similar in
character to the MF spectral density.

(4) As we mentioned before. we do not expect Eq. (10) (mr-2021-35) to apply in any strict sense. It is
indeed the spectral density for MF-like anisotropic tumbling of a (sufficiently) rigid symmetric top.
That being said. the general form of Eq. (10). i.e. a weighted sum of Lorentzians. can be expected to
describe the TCFs of virtually any protein system in isotropic solution.

| addressed these issued above. Only an infinite sum of Lorentzians describes any system
involved in rotational reorientation. Finite sums will be appropriate if they are solutions of
physical-relevant models.



(5) In the context of item (2) — please note that the “dynamics detectors” method (Smith et al.
Angew. Chem. Int. Ed. 2017 56. 13590), shown to actually surpass MF, comprises statistical
elements. Recently it was applied to proteins in solution (Smith et al. JCP 2019, 151, 034102).
The authors might want to check applicability to IDPs.

(5) We agree that fitting experimental relaxation parameters with only few Lorentzians has its

limitations. The number of parameters and consequential statistical uncertainties are problems in their
own right. In fact. Crawley and Palmer address this issue in this Festschrift (mr-2021-28). In our
study. we have referenced different possibilities ranging from correlation time distributions to spectral
density visnalizations. Again. we are interested in detecting effects of anisotropic dynamics in J(0).
We do not intend nor suggest to fit experimental relaxation parameters of IDPs using Eq. (10) (imr-
2021-35).

Comment no. 5 refers to the form of the spectral density, not the data-fitting process. One cannot
detect actual effects with inappropriate tools.
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Summary: Please provide a cross-correlated spectral density which forgoes the deficiencies
pointed out, and relate to the comments made.



