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Reply to the authors’ rebuttal to reviewer #2 

 

 
Authors submitting altogether predictive manuscripts to established journals are typically 

required to demonstrate applicability. It has been assumed that submissions to the Festschrift issue 

of MR Discussions honoring Geoffrey Bodenhausen are also subject to this requirement.  

 

 

 
The first sentence is obvious and the objective of this work is appreciated. The issues at 

stake include the definition of the “segment” as conceived by Mantsyzov et al.1 (to which the 

authors refer), and the physical relevance of the “measure”. C and C’ belong to residue i  1; N 

and HN belong to residue i. 𝐷/𝐷 are likely to differ for consecutive (i  1)  i pairs.  How will 

then the ratios, 𝐷/𝐷, between the parallel and perpendicular components of the global diffusion 

tensor, D, of the “segment” be determined? The “measure” suggested is ill-defined – see the 

original review report, and this report. On the most general level – in the Introduction the authors 

indicate that time-correlation functions (TCFs) developed for folded proteins, which include 

model-free-type TCFs, are not applicable to intrinsically disordered proteins (IDPs). Yet, they 

suggest a TCF of this type. With regard to these matters have I suggested considering – or at least 

discussing – coil libraries and molecular dynamics simulations, e.g., as in Mantsyzov et al.1 
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As presented, the axial top includes a given (i  1)  i pair. Its global tumbling is 

represented by the first term of eq 10 of mr-2021-35. That equation is depicted below as eq 1. The 

“dampening” effect of the local motions is given by the second term or eq 1.  

 

 

𝐽𝑢,𝑣() = 𝑆2 ∑ 𝐴𝐾𝐾=0,1,2 (𝑢, 𝑣)
𝜏𝐾

1 + (𝜔𝜏𝐾)2 + (1 − 𝑆2) 𝑃2(𝑢 ∙ 𝑣) 
𝜏3

1 + (𝜔𝜏3)2    (1) 

 

 

u and v are the cross-correlated interaction vectors. One has 𝜏3
−1 = 𝜏𝑖𝑛𝑡

−1 + 𝜏𝑒𝑓𝑓
−1  = 𝜏𝑖𝑛𝑡

−1 + (4 𝐷 +

2 𝐷). I regret my oversight in the original report, where I mistook (4 𝐷 + 2 𝐷) for (4 𝐷 +

2 𝐷).  

I have the following reservations with regard to this equation.  

 

(a) The expression for 𝜏3
−1 is valid in the limit where 𝜏𝑖𝑛𝑡

−1  >> 𝜏𝑒𝑓𝑓
−1 . What is the justification 

for the validity of this inequality for IDPs?   

 

(b) In the limit of isotropic global motion one has  ∑ 𝐴𝐾𝐾=0,1,2 (𝑢, 𝑣)
𝜏𝐾

1 + (𝜔𝜏𝐾)2  
𝜏0

1 + (𝜔𝜏0)2. 

In that limit the authors of mr-2021-35 maintain that (1 − 𝑆2) 𝑃2(𝑢 ∙ 𝑣)  𝑆𝑢𝑣
2 . Thus, 

mr-2021-35 predicts the following form for 𝐽𝑢,𝑣() in the limit of isotropic global 

motion:   

 

 

𝐽𝑢,𝑣() = [𝑆2 𝜏0

1 + (𝜔𝜏0)2  +  𝑆𝑢𝑣
2  

𝜏𝑒

1 + (𝜔𝜏𝑒)2] =  [𝑆2 𝜏0

1 + (𝜔𝜏0)2  +  𝑆2 𝑃2(𝑢 ∙ 𝑣) 
𝜏𝑒

1 + (𝜔𝜏𝑒)2]  (2) 

 

 

where 𝜏𝑒
−1 = 𝜏𝑖𝑛𝑡

−1  + 6𝐷 and 𝑆𝑢𝑣
2  =  𝑆2 𝑃2(𝑢 ∙ 𝑣). Yet, in this limit one should have:2  

 

 

𝐽𝑢,𝑣() = 𝑃2(𝑢 ∙ 𝑣) [𝑆2 𝜏0

1 + (𝜔𝜏0)2
 + (1 −  𝑆2) 

𝜏𝑒

1 + (𝜔𝜏𝑒)2
]    (3) 

 

where [𝑆2 𝜏0

1 + (𝜔𝜏0)2
 + (1 − 𝑆2) 

𝜏𝑒

1 + (𝜔𝜏𝑒)2
] =  𝐽𝑢,𝑢() = 𝐽𝑣,𝑣()   

 

(c) The purpose of using the cross-correlation-related expression 

∑ 𝐴𝐾𝐾=0,1,2 (𝑢, 𝑣)
𝜏𝐾

1 + (𝜔𝜏𝐾)2 (eq A.15 of ref 2), instead of the auto-correlation-related 

expression ∑ 𝐴𝐾𝐾=0,1,2 (𝑢)
𝜏𝐾

1 + (𝜔𝜏𝐾)2 (eq A.14 of ref 2) is to allow the effective polar 
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angle,, in 𝑃2(𝑢 ∙ 𝑣) = 𝑃2(cos), to be relatively large, as it is for the CC’ spin 

system (fourth bullet item in mr-2021-35-AC2-supplement). Let us examine this 

matter. The section after eq A.15 of ref 2 states the following:  

 
The first two TCFs in this citation yield by Fourier-Laplace transformation the spectral 

densities 𝐽𝑢,𝑢() and 𝐽𝑣,𝑣() (in the notation of mr-2021-35). “The approach used in the text” refers 

to the spectral density:  

 

 

𝐽𝑢,𝑣() = 𝑃2(𝑢 ∙ 𝑣) [𝑆2 ∑ 𝐴𝐾𝐾=0,1,2 (𝑢)
𝜏𝐾

1 + (𝜔𝜏𝐾)2  + (1 −  𝑆2) 
𝜏𝑒

1 + (𝜔𝜏𝑒)2]  (4) 

 

 

The polar angle, , has to be small enough so that the auto-correlated spectral densities, 

𝐽𝑢,𝑢() and 𝐽𝑣,𝑣(), are within a good approximation the same. Otherwise the expression in the 

square brackets of eq 3, which represents the  MF spectral density where 𝐽(𝜔) =  𝐽𝑢,𝑢() =

𝐽𝑣,𝑣(),  may not be used. Yet, eq 3 is the limit of eq 1 for isotropic global diffusion. For the same 

reason – inherent equality between 𝐽𝑢,𝑢() and 𝐽𝑣,𝑣() –  has to be small in eq 1. As delineated 

in my original review report, additional geometric simplifications are inherent in eq 3; they are 

also inherent in eq 1.  

Thus, using eq A14 of ref 2 instead of eq A.15 of ref 2 does not remove the requirement 

that the polar angle, , be small.  

 

  

 

 

 
The sentence in my original report to which the authors refer follows the description of the 

standard treatment of cross-correlated relaxation for isotropic global diffusion. It reads: “Equations 
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24 do not comply with THIS standard NMR relaxation procedure.” The authors interpret “THIS” 

as “THE”.  I admit that “do not comply with” is bad phrasing; it should have been “do not 

represent”. By the way, the upper limits in the summations of eqs 3 and 5 of mr-2021-35 should 

be infinity.   

 

 

 

 
Please see above with regard to Mantsyzov et al.1  

 

 
The comment made here refers to the usage of eq A.14 instead of A.15, discussed in item 

(c) above.   

 

 

 

 

As shown above, eq 1 is not applicable to the spin system CC’.  
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The local-motional contribution of (1 −  𝑆2) 
𝜏𝑒

1 + (𝜔𝜏𝑒)2 can be justified on the basis of the 

theory of moments.3 The local-motional contribution (1 − 𝑆2) 𝑃2(𝑢 ∙ 𝑣) 
𝜏3

1 + (𝜔𝜏3)2 is used 

allegedly.  

 

 

 
The reservations expressed in the original report and here concern eq 10 of mr-2021-35. 

All of the articles cited in the preceding paragraph feature physically well-defined TCFs.   
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Explicitly or implicitly all three MF models (A, B and C) considered by Halle4 assume 

statistical independence between the global and internal motions. One may not “choose” arbitrarily 

an exponential form for Cint(t); one has to justify this (e.g., see ref 3). It is shown above why using 

eqs 6 and 7 does not render eq 1 applicable to arbitrary polar angle, . Equation 7 of Ghose et al.5 

does not lack the factor 𝑃2(𝑢 ∙ 𝑣); note the summation over l in it, and the evolution of this equation 

into eq 9 of that article. Halle4 voices supportive assessment of four specific MF formulae, none 

claimed to apply to IDPs.  

 

 

 
One cannot attain objectives with inadequate tools.  

 

 

 

 
My apologies for this oversight (see above).    
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General matters.  

(2) A cursory survey of the NMR-based studies of IDPs cited in mr-2021-35 shows that 

methods examining local features point to a random-coil situation (e.g., see Mantsyzov et al. 2014). 

CCR in 15N1H and 13C’13C is a local feature. Obtaining information on long-range “order”, in 

particular “diffusion anisotropy”, requires empirical spectral densities comprising statistical 

elements, to be used in combination with coil libraries and molecular dynamics simulations (e.g., 

see Mantsyzov et al. 2014). These elements are absent in mr-2021-35 scheme.  

 
This is a description of matters addressed in ref 1; it is not a response to comment 2. Please see 

above for my suggestion in this regard.    

 

 

(3) It is indicated that anisotropic “segmental” motion is targeted. How are these “segments” 

defined? In other words, how is the second-rank diffusion tensor, D, defined?  

 
Please see above for related comments/discussion.  

 

 

(4) It is pointed out that NMR relaxation analysis methods applicable to folded proteins are 

not applicable to IDPs. The model-free (MF) spectral density, a variant of which is suggested here, 

refers to protein and probe as rigid bodies moving in a statistically independent (decoupled) 

manner. In IDPs the protein is not rigid and its motion is not decoupled from the motion of the 

probe. The spectral density suggested here does not reflect these features; rather, it is similar in 

character to the MF spectral density.  

 
I addressed these issued above. Only an infinite sum of Lorentzians describes any system 

involved in rotational reorientation. Finite sums will be appropriate if they are solutions of 

physical-relevant models.  
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(5) In the context of item (2) – please note that the “dynamics detectors” method (Smith et al. 

Angew. Chem. Int. Ed. 2017 56. 13590), shown to actually surpass MF, comprises statistical 

elements. Recently it was applied to proteins in solution (Smith et al. JCP 2019, 151, 034102). 

The authors might want to check applicability to IDPs.  

 
Comment no. 5 refers to the form of the spectral density, not the data-fitting process. One cannot 

detect actual effects with inappropriate tools.   
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Summary: Please provide a cross-correlated spectral density which forgoes the deficiencies 

pointed out, and relate to the comments made.  

 


