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Abstract. Among the numerous contributions of Geoffrey Bodenhausen to NMR spectroscopy his developments in the field of

spin-relaxation methodology and theory will definitely have a long lasting impact. Starting with his seminal contributions to the

excitation of multiple-quantum coherences he and his group thoroughly investigated the intricate relaxation properties of these

“forbidden fruits” and developed experimental techniques to reveal the relevance of previously largely ignored cross-correlated

relaxation (CCR) effects, as “the essential is invisible to the eyes”. Here we consider CCR within the challenging context of5

intrinsically disordered proteins (IDPs) and emphasize its potential and relevance for the studies of structural dynamics of IDPs

in the future years to come. Conventionally, dynamics of globularly folded proteins are modeled and understood as deviations

from otherwise rigid structures tumbling in solution. However, with increasing protein flexibility, as observed for IDPs, this

apparent dichotomy between structure and dynamics becomes blurred. Although complex dynamics and ensemble averaging

might impair the extraction of mechanistic details even further, spin-relaxation uniquely encodes a protein’s structural memory.10

Due to significant methodological developments, such as high-dimensional non-uniform sampling techniques, spin-relaxation

in IDPs can now be monitored in unprecedented resolution. Not embedded within a rigid globular fold, conventional 15N spin

probes might not suffice to capture the inherently local nature of IDP dynamics. To better describe and understand possible

segmental motions of IDPs, we propose an experimental approach to detect the signature of anisotropic segmental dynamics

by quantifying cross-correlated spin relaxation of individual 15N1HN and 13C’13Cα spin pairs. By adapting Geoffrey Boden-15

hausen’s symmetrical reconversion principle to obtain zero frequency spectral density values we can define and demonstrate

more sensitive means to characterize anisotropic dynamics in IDPs.

1 Introduction

Geoffrey Bodenhausen’s 70th anniversary marks an ideal occasion to take a fresh look at some of his numerous contributions

to spin-relaxation methodology and theory. By considering his experiments within the challenging context of intrinsically20

disordered proteins (IDPs), we want to emphasize their potential and relevance in the future years to come. Arguably, this

rediscovery might require some collective effort, as current trends appear to point in the opposite direction. As Paul Schanda

put it recently: ’the popularity of detailed spin-relaxation measurements in liquids, en vogue 10 or 20 years ago, is declining;

[...] Even with lengthy measurements it is not easy to gain much more insight than "loops are more flexible than secondary

1



structures", which often does not answer mechanistic questions.’(Schanda, 2019, p. 3-4). While intentionally exaggerated,25

this statement does point to some of the inherent limitations of relaxation experiments. Owing to their convoluted nature,

spin-relaxation reports on protein dynamics only in ambiguous terms. A variety of stochastic processes can lead to time cor-

relation functions (TCFs) of identical shape and form(Richert and Blumen, 1994, p. 1-7). In addition, the TCF is not probed

directly, only its spectral density i.e. its Fourier transform is sampled at few select frequencies. Thus, with far more detailed

structural models at hand, protein dynamics are often understood as mere perturbations of otherwise rigid bodies tumbling30

in solution(Lipari and Szabo, 1982; Halle and Wennerström, 1981; Clore et al., 1990; Halle, 2009). Relaxation experiments

commonly employed to calculate protein structures, such as Nuclear Overhauser effects (NOEs) and paramagnetic relaxation

enhancements (PREs), are usually modeled without accounting for their dynamic nature(Iwahara et al., 2004; Clore and Iwa-

hara, 2009; Xue et al., 2009; Vögeli, 2014). In a sense, protein dynamics might appear separate from protein structure, at least

within the structure-function-paradigm.35

However, with increasing protein flexibility this apparent dichotomy becomes blurred as structure and dynamics can no

longer be considered independent of each other. While complex dynamics and ensemble averaging obfuscate mechanistic

details even further, the structural information content of relaxation parameters becomes increasingly apparent. In compari-

son to simple population averaged quantities, such as chemical shifts or scalar couplings, spin-relaxation uniquely encodes a

system’s structural memory, i.e. the temporal persistence of concerted motions and structural arrangements. Somewhat counter-40

intuitively, spin-relaxation experiments are among the prime sources of structural information available for disordered systems.

However, due to a general lack of analytical descriptions for IDP dynamics(Modig and Poulsen, 2008; Idiyatullin et al., 2001;

Bussell and Eliezer, 2001; Kadeřávek et al., 2014; Khan et al., 2015), this notion has been of somewhat academic nature until

the recent past. Continuous developments in molecular dynamics (MD) simulation protocols(Piana et al., 2015; Rauscher et al.,

2015; Robustelli et al., 2018; Zerze et al., 2019; Piana et al., 2020; Gopal et al., 2021; Shea et al., 2021) demonstrate how this45

gap can finally be bridged, allowing us to validate, refine and/or analyze dynamic ensemble representations of proteins in solu-

tion(Kämpf et al., 2018; Kümmerer et al., 2020; Salvi et al., 2016, 2017). With the necessary timescales becoming increasingly

accessible(Stone et al., 2007, 2010; Salomon-Ferrer et al., 2013; Eastman et al., 2017) and the spectral resolution provided

by high-dimensional NUS experiments to overcome the problem of spectral overlap(Grudziąż et al., 2018), spin-relaxation in

IDPs can be investigated in unprecedented fashion.50

This aspect alone suggests a systematic reassessment and evaluation of less commonly employed experiments. Far more

pressing, in our opinion, is the inherently local nature of spin-relaxation in IDPs. In contrast to folded proteins, spins in

IDPs are not embedded within a fixed molecular tumbling frame. Thus, a single 15N nucleus per residue as a dynamic probe

probe might not suffice to capture the underlying motions in adequate detail. While detecting and quantifying the presence of

anisotropy in IDP dynamics might seem like a rather academic endeavor, it represents an important stepping stone towards the55

structural interpretation of other experiments. As we recently demonstrated, an appropriate estimate for the average correlation

time is an important prerequisite for the angular evaluation of cross-correlated relaxation (CCR) of remote spins(Kauffmann

et al., 2021).
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More immediate in its structural implications would be the presence of diffusion anisotropy, which has been hypothesized

to be of substantial size even in highly disordered proteins such as α-Synuclein. Specifically, segmental tumbling of α-helical60

and extended chain conformations has been implied to lead to pronounced diffusion anisotropy effects for intraresidual and

sequential 1H-1H NOEs(Ying et al., 2014; Mantsyzov et al., 2014, 2015). At the same time, the 3D GAF model(Bremi and

Brüschweiler, 1997; Lienin et al., 1998) has been invoked to further rationalize the presence of anisotropic dynamics on

the local scale of the peptide plane. This model has recently been reframed by Salvi et al. to analyze MD-simulated 15N

relaxation of a partially disordered protein(Salvi et al., 2017). In essence, it was demonstrated that NHN -TCFs are well-65

described by the CαCα-TCFs of the same peptide plane as long as variations of the flanking dihedral angles and NHN -librations

are accounted for. Explicit corrections for possible effects of anisotropic segmental tumbling were not required. However,

noticeable deviations could be observed for the transverse 15N relaxation of the slowly moving residual α-helix. Marcellini et

al. have reported pronounced diffusion anisotropy within the α-helical region of an otherwise disordered construct. Flexible

residues were affected noticeably less. It was suggested this might be due to their average orientation in the molecular tumbling70

frame(Marcellini et al., 2020). The SRLS model of Meirovitch, Freed et al.(Tugarinov et al., 2001; Meirovitch et al., 2006)

also predicts pronounced anisotropy for α-helices and β-sheets. However, loops and terminal chain segments appear isotropic,

asserting that proteins with substantial internal mobility are best represented by an isotropic global diffusion tensor(Zerbetto

et al., 2011).

Arguably, this somewhat ambiguous body of evidence illustrates the inevitable difficulties that come with extending concepts75

of folded proteins to IDPs. In fact, many of the above observations might very well be case-dependent. In the present study,

we want to approach this question in a more agnostic manner. Are there experimental ways to better detect the signature of

anisotropic dynamics in IDPs? At what level of evidence could we evoke the mental image of extended chains and α-helical

segments tumbling in solution? The principal difficulty in characterizing these structural elements lies in their translational

periodicity. In an α-helix, NHN vectors are strongly aligned along the main axis, while in an extended chain, they are oriented80

perpendicularly. In order to detect possible orientational biases in their relaxation behavior, additional spin probes with different

orientations must be considered. While CαHα might be suitable for α-helices(Barnes et al., 2019), its orientation is too similar

to NHN in the extended chain conformation. Moreover, since it does not share a peptide plane with NHN , it varies as a

function of φ or ψ, same as the 1H-1H intraresidual and sequential NOEs. Spin probes within the same peptide plane and thus

less ambiguous orientations would certainly be preferable.85

For IDPs in particular, Kadeřávek et al. have shown that the NHN spectral density is best mapped by a combination of

transversal and longitudinal CCR rates(Kadeřávek et al., 2014) employing Geoffrey Bodenhausen’s symmetrical reconversion

principle(Pelupessy et al., 2003, 2007). Together with Bodenhausen and coworkers, this concept was later extended to measure

the zero frequency spectral density in a single experiment(Kadeřávek et al., 2015). By translating these concepts to the C’Cα

spin pair, we want to derive and demonstrate more sensitive means to detect anisotropic segmental dynamics in IDPs.90
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2 Theory

Our aim is to define an experimental measure for anisotropic segmental dynamics in IDPs. While the measure itself should be

general, the considered source of anisotropy will be rather specific. To assess the sensitivity of the proposed protocol, we resort

to the simplified image of extended chain and α-helical segments tumbling in solution as previously asserted by Manstyzov

et al.(Mantsyzov et al., 2014). Before considering experimental aspects, we start by defining the spectral density. Sampled95

at zero frequency and/or (combinations of) the involved Larmor frequencies, it constitutes the fundamental quantity of all

spin-relaxation experiments:

Ju,v(ω) =

∞∫
0

Cu,v(t)cos(ωt)dt (1)

with the time correlation function (TCF),

Cu,v(t) = 〈P2(u(0) ·v(t))〉 (2)100

where P2(x) = 1.5x2−0.5 is the second order Legendre polynomial, u and v represent either dipolar unit vectors or principal

components of chemical shift anisotropy (CSA) tensors. Note that our simplified definition of the TCF implicitly assumes that

time-dependent distance fluctuations factorize and can thus be absorbed into constant coefficients. This requirement will be

well-satisfied for the spins considered henceforth.

For most processes, the TCF can be described as a sum/distribution of exponential decays(Lipari and Szabo, 1982; Idiyatullin105

et al., 2001; Modig and Poulsen, 2008; Khan et al., 2015):

Cu,v(t) =

N∑
k=0

ake
−t/τk (3)

Evaluating at t= 0 yields a type of normalization condition,

N∑
k=0

ak = Cu,v(0) = 〈P2(u(0) ·v(0))〉 (4)

which equates to 1 for the familiar case of auto-correlation (u = v). For cross-correlation (u 6= v), Eq. (4) is bounded within110

[−0.5,1].

The spectral density of Eq. (3) is a sum of Lorentzians

Ju,v(ω) =

N∑
k=0

ak
τk

1 + (ωτk)2
(5)

Note that, depending on how the TCF and the spectral density are defined, Eq. (5) might come with additional coefficients such

as the familiar factor of 2
5 (Lipari and Szabo, 1982). We prefer the above definitions as they highlight Ju,v(ω) as a weighted115

average. At zero frequency all τk are weighted equally, i.e. J(0) encodes the average correlation time. With increased frequency
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Figure 1. The Lorentzian as a function of the correlation time τ and the (Larmor) frequency. The spectral density J(ω), which is modeled

as a linear combination of Lorentzians, can be pictured as a weighted average of all correlation times τ . Since J(0) weights all correlation

times equally, it represents the component most sensitive to correlation times > 1 ns. The magnetic field B0 is 18.8 T (800 MHz proton

Larmor frequency).

the impact of larger τk becomes less pronounced. This is illustrated in Fig. 1 for a selection of Larmor frequencies assuming a

magnetic field strength of 18.8 T (800 MHz proton Larmor frequency).

Detecting anisotropy amounts to quantifying orientational biases in the ak and τk. Similarly to Mantsyzov et al.(Mantsyzov

et al., 2014), we will attribute these biases to relative orientations in idealized extended chain and α-helical segments. These120

structural elements are well-described by an axially symmetric diffusion tensor, which yields the following expression for the

spectral density(Tjandra et al., 1996; Woessner, 1962):

Ju,v(ω) =

2∑
k=0

Ak(u,v)
τk

1 + (ωτk)2
(6)

where

a0 ≡A0(u,v) = P2(θu)P2(θv)125

a1 ≡A1(u,v) = 0.75sin(2θu)sin(2θv)cos(φu−φv) (7)

a2 ≡A2(u,v) = 0.75sin2(θu)sin2(θv)cos(2φu− 2φv)

and (θ,φ) denote the polar angles in the tumbling frame. The τk correspond to the inverted eigenvalues of the axially symmetric

diffusion tensor:

τk = (6D⊥+ k2(D‖−D⊥))−1 =D−1⊥ (6 + k2(
D‖

D⊥
− 1))−1 (8)130
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with k = 0,1,2. With u and v alone, Eq. (6) would not allow us to distinguish between size effects in τk (i.e. "segment length")

and orientational biases in Ak(u,v) (i.e. "secondary structure"). To quantify the anisotropy ( D‖
D⊥

) only, we consider another

interaction described by a second set of vectors (x,y) embedded with different orientations in the same tumbling frame and

focus our attention on J(0) for three reasons. First and foremost, J(0) is the component most sensitive to the τk ≥ 1 ns (cf.

Fig. 1) commonly associated with tumbling motions(Kämpf et al., 2018). Secondly, the zero frequency does not depend on the135

type of nuclei involved. Lastly, J(0) allows us to define a convenient ratio,

Ju,v(0)

Jx,y(0)
=
D−1⊥

∑2
k=0Ak(u,v)(6 + k2(

D‖
D⊥
− 1))−1

D−1⊥
∑2
k=0Ak(x,y)(6 + k2(

D‖
D⊥
− 1))−1

=

∑2
k=0Ak(u,v)(6 + k2(

D‖
D⊥
− 1))−1∑2

k=0Ak(x,y)(6 + k2(
D‖
D⊥
− 1))−1

(9)

such that the explicit size dependency cancels out. In general, if (u,v) and (x,y) have fixed relative orientations and experience

the same dynamics, we obtain the isotropic edge case:

Ju,v(0)

Jx,y(0)
=
P2(u ·v)

P2(x ·y)
(10)140

Thus, the ratio (9) encodes a simple and intuitive relation: Isotropic motions tend towards the limit (10), while anisotropic

motions deviate from it. Importantly, the source of anisotropy is not essential. The invoked model of a tumbling symmetric top,

Eq. (6), does not need to apply in any strict sense, rather it is used to assess the sensitivity of the J(0) ratio (9) to its associated

features. Presuming that segmental arrangements are sufficiently stable, remnants of Eq. (6) might still be detectable even in

case of pronounced local mobility.145

In general, assessing the effects of internal motions on Eq. (6) is not straightforward. Even for folded proteins, the commonly

employed model-free (MF)(Lipari and Szabo, 1982) and extended MF(Clore et al., 1990) approaches are not strictly applicable

in case of anisotropic diffusion(Daragan and Mayo, 1999; Halle, 2009). For CCR in particular, the proposed adaptations

can become quite intricate(Vögeli, 2010). Geoffrey Bodenhausen and coworkers have investigated this topic in a series of

publications(Deschamps and Bodenhausen, 2001; Deschamps, 2002; Vugmeyster et al., 2004; Abergel and Bodenhausen,150

2004, 2005; Nodet et al., 2008). Given the toy nature of the considered model, we will assess the presence of fast, isotropic

motions as simply as possible by introducing a fourth Lorentzian:

Ju,v(ω) = S2
2∑
k=0

Ak(u,v)
τk

1 + (ωτk)2
+ (1−S2)P2(u ·v)

τ3
1 + (ωτ3)2

(11)

with τ−13 = τ−1int + 4D⊥+ 2D‖, where τint is the average correlation time of the fast internal motion. The generalized order

parameter S2 ∈ [0,1] acts as a weight balancing the contributions of slow anisotropic tumbling and fast isotropic motions. To155

account for the angular relation between u and v, a3 necessarily corresponds to P2(u ·v), which follows intuitively from

condition (4) assuming a fixed angle between u and v.

Of course, the additional Lorentzian can be rationalized in terms of established models. As shown in the Appendix, Eq. (11)

corresponds to a simplification of the MF-like extension proposed by Ghose et al.(Ghose et al., 1998), Eq. (A1), and generalized

by Vögeli and Yao(Vögeli and Yao, 2009; Vögeli, 2010). In this model, the generalized order parameters depend on k as well,160

i.e. the weighting between isotropic and anisotropic contributions can indeed vary between different k. Using a single order
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parameter is exact only if the molecule is fully rigid (S2 = 1) or if the dynamics are entirely isotropic ( D‖
D⊥

= 1 or S2 = 0). In

case of pronounced diffusion anisotropy and intermediate local mobility, Eq. (11) is only an approximate interpolation between

these edge cases. Still, it is worth noting that the use of a single order parameter is both a common heuristic to account for the

effects of local dynamics on experimental CCR rates(Vögeli and Yao, 2009) and an established approximation for sufficiently165

small angles between u and v(Tjandra et al., 1996; Kroenke et al., 1998). To keep the amount of parameters manageable,

possible differences in local dynamics for different k and/or between (u,v) and (x,y) are not reflected in Eq. (11). Systematic

differences in local peptide plane dynamics(Chang and Tjandra, 2005; Ferrage et al., 2006; Wang et al., 2006; Salvi et al., 2017)

will necessarily result in deviations from the isotropic case, Eq. (10). While local motions could be modeled in more detail to

better match the shape of the TCF using e.g. an extended MF approach(Clore et al., 1990), correlation time distributions(Hsu170

et al., 2018) or dynamic detectors(Smith et al., 2017, 2019), we only intend to divide J(0), i.e. the TCF’s enclosed area, into

contributions with and without orientational biases in an intuitive and simple manner. Attributed solely to the Ak, Eq. (7), we

now consider the effect of these biases from an experimental perspective.

3 Methods

We will assume the canonical peptide plane geometry of Corey and Pauling(Corey et al., 1953) as depicted in Fig. 2 including175

approximate principal components of the CSA tensors for 15N and 13C’ adapted from Geoffrey Bodenhausen and cowork-

ers(Cisnetti et al., 2004; Loth et al., 2005).

As demonstrated by Kadeřávek et al.(Kadeřávek et al., 2014), the spectral densities of IDPs are best mapped by combin-

ing the transversal (Γxy) and the longitudinal (Γz) CCR rates between the 15N CSA and the NHN dipole. Employing the

expressions of Bodenhausen and coworkers(Cisnetti et al., 2004), we have180

ΓN/NHxy = kN/NH∆N [4JNH,xx(0) + 3JNH,xx(ωN )] (12)

ΓN/NHz = kN/NH∆N [6JNH,xx(ωN )] (13)

kN/NH =
2

5

1

24π

µ0~γnγh
r3NH

B0γn

where µ0 is the vacuum permeability, ~ is the reduced Planck constant, γ is the gyromagnetic ratio, r is the distance between the

nuclei, B0 is the magnetic field strength and ∆N = (σxx−σyy) = (σxx−σzz) is the size difference of the 15N CSA principal185

components (in ppm). Mapping JNH,xx(0) amounts to the simple subtraction Γ
N/NH
xy − 0.5Γ

N/NH
z .

To complement these rates, we consider their counterparts for the 13C’ CSA and the C’Cα dipole.:

ΓC
′/C′Cα

xy = kC′/C′Cα [(σxx−σzz)(4JC′Cα,xx(0) + 3JC′Cα,xx(ωC)) + (σyy −σzz)(4JC′Cα,yy(0) + 3JC′Cα,yy(ωC))] (14)

ΓC
′/C′Cα

z = kC′/C′Cα [(σyy −σzz)6JC′Cαxx(ωC) + (σyy −σzz)6JC′Cαyy(ωC)] (15)

kC′/C′Cα =
2

5

1

24π

µ0~γ2c
r3C′Cα

B0γc190

with xx,yy,zz referring to the principal components of the fully anisotropic 13C’ CSA tensor. Again, high frequency contribu-

tions can be eliminated via the linear combination Γ
C′/C′Cα

xy − 0.5Γ
C′/C′Cα

z .
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Ci
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α
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σyy

α

α
σzz
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Figure 2. The peptide plane as defined by Corey and Pauling(Corey et al., 1953): Cα–C’ = 1.53 Å, C’–O = 1.24 Å, C’–N = 1.32 Å, N–

Cα = 1.47 Å. Cα-C’-O = 121°, Cα-C’-N = 114°, O-C’-N = 125°, C’-N-H = 123°, C’-N-Cα = 123°, H-N-Cα = 114°. N–H = 1.04 Å is

taken from Ottiger and Bax (Ottiger and Bax, 1998). The 15N and 13C’ CSA principal components are adapted from Bodenhausen and

coworkers(Cisnetti et al., 2004; Loth et al., 2005). 15N: ∆N ≈ σxx−σyy ≈ σxx−σzz = 170 ppm, α = 20°. 13C’: σxx = 249.4 ppm, σzz

= 87.9 ppm, α = 37°. σyy = 191.1 ppm is obtained from the average chemical shift of Ubiquitin (BMRB 17769)(Cornilescu et al., 1998))

following the suggested calibration(Cisnetti et al., 2004). The main axis z of the diffusion anisotropy tensor is assumed to lie in the peptide

plane. Its orientation is encoded by βCαC′ .

While the measurement of transverse CCR is well-established, longitudinal CCR has been studied considerably less. In

part this is due to subtleties of the involved relaxation pathways which involve multi-exponential cross- and cross-correlated

relaxation effects. Another reason lies in technical limitations as longitudinal relaxation rates are generally smaller due to their195

Larmor frequency dependence. Notably, this effect is far less pronounced for the smaller correlation times present in IDPs (cf.

Figure 1). While 15N1HN relaxation is well understood and several sensitive NMR techniques have been proposed to measure

Γ
N/NH
xy and Γ

N/NH
z (Tjandra et al., 1996; Kroenke et al., 1998; Pelupessy et al., 2003, 2007; Kadeřávek et al., 2015), 13C’

relaxation is generally more problematic(Dayie and Wagner, 1997; Wang et al., 2006). Since we could not find any previous

attempts to measure the longitudinal CCR rate Γ
C′/C′Cα

z in the literature, we see fit to assess its general feasibility.200

Aside from the symmetrical reconversion principle of Bodenhausen and coworkers(Pelupessy et al., 2003, 2007), 13C’/13C’13Cα

CSA-DD CCR can be measured either by monitoring the relaxation asymmetry of the 13C’13Cα doublet or by means of a

’quantitative gamma’ experiment in which sum and difference of the 13C’ doublet relaxation are measured independently. In

contrast to previous approaches relying on two separate experiments (’reference’ and ’cross’)(Schwalbe et al., 2002), we deter-

mine Γ
C′/C′Cα

z by quantifying the different longitudinal relaxation in the 13C’13Cα doublet recorded in a non-constant-time205
13C’ evolution following the relaxation period. Transverse relaxation Γ

C′/C′Cα

xy is measured by more conventional quantifica-

tion of differential line broadening of the 13C’13Cα doublet recorded in constant-time mode.
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176.0

175.0
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N ppm = 125.0

Figure 3. Experimental results from the measurements of transverse (left) and longitudinal (right) 13C’/13C’13Cα CSA-DD CCR as described

in Sect. 3. Data were obtained using Ubiquitin, a small globular protein of 76 residues. The figure shows the spectral region for the peptide

plane spanning residues I61/Q62. The asymmetry of the 13Cα doublet is visible in the cross-sections taken at the positions indicated by

dashed lines. As expected, CCR effects are more pronounced in the case of transverse relaxation.

To obtain sufficient spectral resolution the CCR rates are measured directly from the intensity difference in a 13Cα-coupled

3D HNCO experiment; (i) in case of transversal CCR by quantification of differential line broadening of the 13C’13Cα doublet

during constant-time 13C’ evolution and (ii) for longitudinal CCR during real-time 13Cα coupled 13C’ evolution preceded by a210

longitudinal relaxation delay T during which 13C’/13C’13Cα CSA-DD CCR is active. This approach yields reliable longitudinal

CCR rates as long as the mixing time T is short compared to 13C’ T1 relaxation. Typical data obtained for the small globular

protein Ubiquitin are shown in Fig. 3

To suppress 13C’13Cα cross-relaxation a 13C’ is inverted in the middle of the relaxation delay T . Additional unwanted CCR

pathways involving the 13C’ CSA and 13C’1H/13C’15N dipoles are suppressed by 1H decoupling and 15N inversion. As the 2J-215

couplings to remote carbons (13C’13Cβ and 13C’i13Cαi+1) are not resolved, CCR effects can be expected to average out for short

and intermediate mixing times. While up to 20% in size of the 13C’13Cα CCR, the± 13C’13Cβ CCR components contribute to

the same line. The CCR rates are obtained from the 13C’13Cα doublet as log( IaIb )/2T . Details of the pulse sequence and NMR

parameters will be given elsewhere. Two exemplary 13C’13Cα doublets measured for I61/Q62 in human Ubiquitin are shown

in Fig. 3.220

With the general feasibility of the measurements demonstrated, we can now define a ratio Q analogous to Section 2, Eq. (9):

Q≡ Γ
C′/C′Cα

xy − 0.5Γ
C′/C′Cα

z

Γ
N/NH
xy − 0.5Γ

N/NH
z

=
4kC′/C′Cα [(σxx−σzz)JC′Cα,xx(0) + (σyy −σzz)JC′Cα,yy(0)]

4kN/NH∆NJNH,xx(0)
(16)

To assess the sensitivity of Q (16), it is evaluated according to Eqs. (7), (8),(11), (12-15) with τ−13 = τ−1int + 4D⊥+ 2D‖ =

τ−1int + τ−1eff under the following conditions: As specified in Fig. 2, all CSA tensors have fixed orientation and size. Following

Mantsyzov et al.(Mantsyzov et al., 2014), the main axis z of the axially symmetric diffusion tensor is assumed to lie in the225

peptide plane, hence Q is a function of the polar angles θ only, see Eq. (7). Defining the CαC’ orientation as 0° reference,
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the main axis is rotated from 0° to 180° towards the NHN vector assuming anisotropy values D‖
D⊥

of 1.5 and 2.5, effective

tumbling times τeff = (4D⊥+2D‖)
−1 of 1 and 2.5 ns, internal correlation times τint of 100 and 500 ps and order parameters

S2 between 0 an 1. The magnetic field strength B0 is the same for all rates and thus cancels out. The results are summarized in

Fig. 4.230

4 Results and Discussion

Experimental considerations necessarily result in compromises. The fully anisotropic 13C’ CSA not only leads to spectral

density contributions of two perpendicular components, it is also subject to considerable variations(Markwick et al., 2005;

Cisnetti et al., 2004; Loth et al., 2005). One might be tempted to avoid the uncertainties and complications that come with the
13C’ CSA by considering dipolar relaxation only. However, compared to the NHN spin pair, the small gyromagnetic ratios and235

long internucleic distances of other dipoles lead to far smaller and less sensitive rates(Carlomagno et al., 2000). In addition,

the J(0) components are generally neither dominant nor easily separated. The 13C’ CSA both provides effective means of

relaxation and allows for a straightforward extraction of J(0) components. With an approximate ratio (σxx−σzz)/(σyy −
σzz)≈ 1.5 and the beneficial orientation of the C ′Cα vector, the JC′Cα,xx(ω) contribution is generally far more pronounced:

For 30°≤ α≤ 44° the TCF amplitudes would be 0.48≤ P2(C ′Cα ·xx)≤ 0.79, 0.02≥ P2(C ′Cα · yy)≥−0.29 based on the240

geometry of Fig. 2.

Fig. 4 shows the ratio Q (16) for different choices of τeff , τint, S2, D‖
D⊥

as a function of the diffusion tensor orientation. The

main axis is assumed to lie in the peptide plane with the orientation denoted relative to C ′Cα in terms of the angle βC′Cα , see

Fig. 2. Comparing all panels (a)-(f) at once, it can be seen that the isotropic (S2 = 0) baseline at around 0.3 is independent of

the specific correlation times τeff and τint, see Eq. (10). The same value is obtained for D‖
D⊥

= 1, which is easily assessed from245

the convergence behavior for different anisotropy values in (c),(f) and (a),(b),(d),(e). How strongly Q reports on the asserted

presence of diffusion anisotropy depends on the S2-mediated weight difference between the orientation dependent Akτk (7)

and the isotropic τeff . Both higher overall tumbling τeff and smaller isotropic motions τint yield a more sensitive Q for

increasingly smaller order parameters S2, see panels (a),(b),(d),(e). Of course, this interpolation is only approximate and can

become more intricate if the local motions are considered in more detail. In this simplified case, the particular choice of τint250

and S2 is to some extent arbitrary as Akτk, τint and S2 merely weight the isotropic and anisotropic contributions to the TCF’s

enclosed area J(0). Still, the range τeff ≥ 1 ns > τint was chosen based on timescales recently reported for MD simulations

of IDPs(Kämpf et al., 2018).

Besides the obvious influence of D‖
D⊥

itself, Q strongly depends on the orientation of the diffusion tensor. The orientations

of the NHN and the CαCα vectors are highlighted in all panels (a)-(f). In an extended chain, CαCα is approximately parallel255

to the main axis while NHN stands perpendicular to it or vice versa for an α-helix. Both orientations correspond well to the

minimum and maximum of Q. The range of Q depends on the size of the anisotropy D‖
D⊥

. For a value of 2.5, as was previously

asserted for α-Synuclein(Mantsyzov et al., 2014, 2015), the effect on Q can be quite substantial, panels (a),(b),(d),(e). For D‖
D⊥

= 1.5, it is far less pronounced, panels (c),(f).
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Figure 4. The ratio Q, Eq. (16), as a function of the diffusion tensor orientation denoted by βCαC′ , Fig. 2. Dashed lines indicate the

orientation of the NHN and the CαCα vector. All rates are calculated according to Eqs. (7), (8),(11), (12-15) with τ−1
3 = τ−1

int + τ−1
eff . Order

parameters from 0 and 1 are color-coded. Panels (a)-(f) show Q for different choices of τeff ,τint and
D‖
D⊥

. The magnetic field strength B0 is

the same for all rates.

We conclude that, if the concept of anisotropic tumbling of segmental α-helices and extended chains is reasonably applicable260

and sufficiently pronounced, Q would allow to detect its signature. Actual quantification of D‖
D⊥

is of course obstructed by the

limited validity of the asserted dynamic model. While the presence of relaxation-active tumbling motions does imply a certain

degree of local rigidity, the structural heterogeneity of IDPs certainly challenges many of the simplifying assumptions made.

Still, the ratioQmight give an indication of how relevant these concepts are for different protein systems, e.g. a partially folded

region(Salvi et al., 2017; Marcellini et al., 2020) or a highly disordered segment(Mantsyzov et al., 2014). While particularly265

sensitive to large correlation times, Q will report on all sources of anisotropy present in J(0). Differences in local mobility,

CSA tensor variations, overall structural flexibility and experimental uncertainties will certainly shift and blur the ratio expected

for isotropic motions. Still, if we assume a set of consecutive residues to experience shared anisotropic diffusion, the sizes of

J(0) should reflect the presence of slower tumbling motions andQ should exhibit a systematic and sequence-persistent pattern.

If Q adheres closely to the isotropic expectation, Eq. (10), it would appear that peptide plane dynamics in IDPs are isotropic270

and well-probed by conventional 15N relaxation alone. If Q and the sizes of J(0) imply systematic and correlated deviations
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from the isotropic case, Eq. (10), it would hint towards different inherent mobilities in the peptide plane such as the 3D GAF-

type(Bremi and Brüschweiler, 1997) dynamics predicted by Salvi et al.(Salvi et al., 2017). Indeed, the sensitivity of Q along

the CαCα direction illustrates the potential of C’/C’Cα CCR in investigating this type of motion.

Thus, while introduced and assessed in terms of diffusion anisotropy, we expect the combination of transversal and longitu-275

dinal C ′/CαC ′ CCR rates to prove informative even outside this limited scope. For the locally dominated dynamics of IDPs in

particular, differences and similarities to the NHN spectral density can provide valuable structural insights even without invok-

ing specific dynamic models. As the previously highlighted studies demonstrate, MD simulations can be expected to play a key

role in rationalizing possible sources of anisotropy for different protein systems ranging from "fully disordered"(Mantsyzov

et al., 2014) to partially structured(Salvi et al., 2017; Marcellini et al., 2020). In addition, the spectral densities can also be280

evaluated directly. While the proposed experiments do not allow to map JC′Cα,xx and JC′Cα,yy individually, the contributions

of different Larmor frequencies are fully separated. Graphical representations in particular can provide model-independent

intuition about the timescales at play(Idiyatullin et al., 2001; Křížová et al., 2004; Kadeřávek et al., 2014). Expressions such

as J(0)− J(ω)(Idiyatullin et al., 2001), intended to suppress the contribution of faster timescales (cf. Fig. 1), are available as

well. More extensive analysis could be realized using general frameworks such as correlation time distributions(Khan et al.,285

2015; Hsu et al., 2018) or dynamic detectors(Smith et al., 2017, 2019).

5 Conclusions

On the occasion of Geoffrey Bodenhausen’s 70th anniversary, we built on his extensive body of work to conceptualize ex-

perimental means for the investigation of anisotropic segmental dynamics in IDPs. Spectral density mapping protocols based

on transversal and longitudinal CCR of NHN were translated to the CαC’ spin pair of the same peptide plane. By isolating290

and comparing the zero frequency contributions we derived an intuitive experimental measure for the presence of anisotropic

dynamics in IDPs. Building on the simplified image of a symmetric top, we show that pronounced anisotropic tumbling of

extended chain and α-helical segments should be readily detectable. But even outside the context of this simplistic model, con-

tributions of different frequencies can be separated and assessed similarly to spectral density mapping protocols. Interestingly,

the required measurement of longitudinal C’/CαC’ CCR has not been investigated before. Hence, a simple proof of concept for295

a possible measurement scheme was provided. To further substantiate and explore the presented concepts in an experimental

setting, a systematic evaluation of different pulse sequences is currently under preparation in our lab.

While detecting and quantifying the presence of anisotropy in IDP dynamics might seem like a humble academic endeavor,

we believe it to be an important step not only towards a better understanding of this important protein family but also towards

immediate applications in biological and biomedical research as well as drug design. We thus take particular delight from the300

fact that Geoffrey Bodenhausen’s l’art pour l’art pulse sequence design is also a telling testimony for the unforeseeable impact

of non-utilitarian basic research driven and inspired by scholarly thinking.
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Appendix A

Following Ghose et al.(Ghose et al., 1998, Eq. 3, p. 488), the spectral density of an anisotropically tumbling dynamic molecule

can be approximated as:305

Ju,v(ω) =

2∑
k=0

[
S2
kτk

1 + (ωτk)2
+

(Ak(u,v)−S2
k)τ3

1 + (ωτ3)2

]
(A1)

Following the notation of (Vögeli and Yao, 2009), the order parameter is defined as

S2
k ≡ 〈Ak(u,v)〉, (A2)

i.e. as the value Ak decays to due to fast local motions. As noted by Vögeli and Yao(Vögeli and Yao, 2009), Eq. (A1) can

be written in the form of an auto-correlated TCF by setting Ak as a prefactor:310

Ju,v(ω) =

2∑
k=0

Ak(u,v)

[
S′2k τk

1 + (ωτk)2
+

(1−S′2k )τ3
1 + (ωτ3)2

]
(A3)

The order parameters are then defined as ratios:

S′2k ≡
〈Ak(u,v)〉
Ak(u,v)

(A4)

While these generalized order parameters do not adhere to the definitions of Lipari and Szabo(Lipari and Szabo, 1982), they

still equate to 1 in case of a fully rigid molecule. It can be seen from Eq. (A3) that the inclusion of local motions requires one315

order parameter for each Ak in order to balance the isotropic and anisotropic contributions. The simplified spectral density

proposed in the main text, Eq. (11), corresponds to the approximation that all Ak decay about the same relative amount (as in

the edge case of isotropic tumbling). Without the index k for the order parameter, S2 = S′20 = S′21 = S′22 , Eq. (A3) simplifies

to Eq. (11):

Ju,v(ω) =

2∑
k=0

Ak(u,v)

[
S2τk

1 + (ωτk)2
+

(1−S2)τ3
1 + (ωτ3)2

]
= S2

2∑
k=0

Ak(u,v)
τk

1 + (ωτk)2
+ (1−S2)P2(u ·v)

τ3
1 + (ωτ3)2

(A5)320

Eq. (A5) is similar to the approximation proposed by Ghose et al.(Ghose et al., 1998, Eq. 7, p. 488) but includes the prefactor

P2(u ·v) for the internal TCF, preserving the isotropic limit ( D‖
D⊥

= 1, τiso = τ0 = τ1 = τ2) as:

Ju,v(ω) = P2(u ·v)

[
S2τiso

1 + (ωτiso)2
+

(1−S2)τ3
1 + (ωτ3)2

]
(A6)

In this case, S2 again corresponds to the familiar auto-correlated order parameter of Lipari and Szabo(Lipari and Szabo,

1982), the auto- and cross-correlated TCF are related by the simple factor P2(u ·v). For sufficiently small angles between u325

and v, this relation can be extended to approximate anisotropic tumbling in accordance with the MF rationale of Lipari and
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Szabo(Tjandra et al., 1996; Kroenke et al., 1998). As noted by Halle in his foundational study on the MF formalism(Halle,

2009), this approach can also be contextualized within the MF framework of Halle and Wennerström(Halle and Wennerström,

1981).
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Křížová, H., Žídek, L., Stone, M. J., Novotny, M. V., and Sklenář, V.: Temperature-dependent spectral density analysis applied to monitoring

backbone dynamics of major urinary protein-I complexed with the pheromone 2-sec-butyl-4,5-dihydrothiazole*, Journal of Biomolecular

NMR, 28, 369–384, https://doi.org/10.1023/B:JNMR.0000015404.61574.65, 2004.

Kroenke, C. D., Loria, J. P., Lee, L. K., Rance, M., and Palmer, A. G.: Longitudinal and Transverse 1H-15N Dipolar/15N Chemical Shift

Anisotropy Relaxation Interference: Unambiguous Determination of Rotational Diffusion Tensors and Chemical Exchange Effects in415

Biological Macromolecules, Journal of the American Chemical Society, 120, 7905–7915, https://doi.org/10.1021/ja980832l, 1998.

Kümmerer, F., Orioli, S., Harding-Larsen, D., Hoffmann, F., Gavrilov, Y., Teilum, K., and Lindorff-Larsen, K.: Fitting side-chain NMR

relaxation data using molecular simulations, bioRxiv, https://doi.org/10.1101/2020.08.18.256024, 2020.

Kämpf, K., Izmailov, S. A., Rabdano, S. O., Groves, A. T., Podkorytov, I. S., and Skrynnikov, N. R.: What Drives 15N Spin Re-

laxation in Disordered Proteins? Combined NMR/MD Study of the H4 Histone Tail, Biophysical Journal, 115, 2348 – 2367,420

https://doi.org/https://doi.org/10.1016/j.bpj.2018.11.017, 2018.

Lienin, S. F., Bremi, T., Brutscher, B., Brüschweiler, R., and Ernst, R. R.: Anisotropic Intramolecular Backbone Dynamics of Ubiqui-

tin Characterized by NMR Relaxation and MD Computer Simulation, Journal of the American Chemical Society, 120, 9870–9879,

https://doi.org/10.1021/ja9810179, 1998.

Lipari, G. and Szabo, A.: Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 1. Theory425

and range of validity, Journal of the American Chemical Society, 104, 4546–4559, https://doi.org/10.1021/ja00381a009, 1982.

Loth, K., Pelupessy, P., and Bodenhausen, G.: Chemical Shift Anisotropy Tensors of Carbonyl, Nitrogen, and Amide Proton Nuclei in

Proteins through Cross-Correlated Relaxation in NMR Spectroscopy, Journal of the American Chemical Society, 127, 6062–6068,

https://doi.org/10.1021/ja042863o, pMID: 15839707, 2005.

Mantsyzov, A. B., Maltsev, A. S., Ying, J., Shen, Y., Hummer, G., and Bax, A.: A maximum entropy approach to the study of430

residue-specific backbone angle distributions in α-synuclein, an intrinsically disordered protein, Protein Science, 23, 1275–1290,

https://doi.org/https://doi.org/10.1002/pro.2511, 2014.

Mantsyzov, A. B., Shen, Y., Lee, J. H., Hummer, G., and Bax, A.: MERA: a webserver for evaluating backbone torsion angle distributions in

dynamic and disordered proteins from NMR data, Journal of Biomolecular NMR, 63, 85–95, https://doi.org/10.1007/s10858-015-9971-2,

2015.435

Marcellini, M., Nguyen, M.-H., Martin, M., Hologne, M., and Walker, O.: Accurate Prediction of Protein NMR Spin Relaxation by Means of

Polarizable Force Fields. Application to Strongly Anisotropic Rotational Diffusion, The Journal of Physical Chemistry B, 124, 5103–5112,

https://doi.org/10.1021/acs.jpcb.0c01922, pMID: 32501695, 2020.

Markwick, P. R. L., Sprangers, R., and Sattler, M.: Local Structure and Anisotropic Backbone Dynamics from Cross-Correlated NMR

Relaxation in Proteins, Angewandte Chemie International Edition, 44, 3232–3237, https://doi.org/https://doi.org/10.1002/anie.200462495,440

2005.

Meirovitch, E., Shapiro, Y. E., Polimeno, A., and Freed, J. H.: Protein Dynamics from NMR: The Slowly Relaxing Local Structure Analysis

Compared with Model-Free Analysis, The Journal of Physical Chemistry A, 110, 8366–8396, https://doi.org/10.1021/jp056975t, pMID:

16821820, 2006.

17

https://doi.org/https://doi.org/10.1016/j.bpj.2015.06.069
https://doi.org/10.1023/B:JNMR.0000015404.61574.65
https://doi.org/10.1021/ja980832l
https://doi.org/10.1101/2020.08.18.256024
https://doi.org/https://doi.org/10.1016/j.bpj.2018.11.017
https://doi.org/10.1021/ja9810179
https://doi.org/10.1021/ja00381a009
https://doi.org/10.1021/ja042863o
https://doi.org/https://doi.org/10.1002/pro.2511
https://doi.org/10.1007/s10858-015-9971-2
https://doi.org/10.1021/acs.jpcb.0c01922
https://doi.org/https://doi.org/10.1002/anie.200462495
https://doi.org/10.1021/jp056975t


Modig, K. and Poulsen, F. M.: Model-independent interpretation of NMR relaxation data for unfolded proteins: the acid-denatured state of445

ACBP, Journal of Biomolecular NMR, 42, 163–177, https://doi.org/10.1007/s10858-008-9280-0, 2008.

Nodet, G., Abergel, D., and Bodenhausen, G.: Predicting NMR Relaxation Rates in Anisotropically Tumbling Proteins through Networks of

Coupled Rotators, ChemPhysChem, 9, 625–633, https://doi.org/10.1002/cphc.200700732, 2008.

Ottiger, M. and Bax, A.: Determination of Relative N-HN, N-C‘, Cα-C‘, and Cα-Hα Effective Bond Lengths in a Protein by NMR in a Dilute

Liquid Crystalline Phase, Journal of the American Chemical Society, 120, 12 334–12 341, https://doi.org/10.1021/ja9826791, 1998.450

Pelupessy, P., Espallargas, G. M., and Bodenhausen, G.: Symmetrical reconversion: measuring cross-correlation rates with enhanced accu-

racy, Journal of Magnetic Resonance, 161, 258 – 264, https://doi.org/https://doi.org/10.1016/S1090-7807(02)00190-8, 2003.

Pelupessy, P., Ferrage, F., and Bodenhausen, G.: Accurate Measurement of Longitudinal Cross-Relaxation Rates in Nuclear Magnetic Reso-

nance, Journal of Chemical Physics, 126, 134 508, 1–10, https://doi.org/10.1063/1.2715583, 2007.

Piana, S., Donchev, A. G., Robustelli, P., and Shaw, D. E.: Water Dispersion Interactions Strongly Influence Simulated Structural Properties of455

Disordered Protein States, The Journal of Physical Chemistry B, 119, 5113–5123, https://doi.org/10.1021/jp508971m, pMID: 25764013,

2015.

Piana, S., Robustelli, P., Tan, D., Chen, S., and Shaw, D. E.: Development of a Force Field for the Simulation of Single-Chain Proteins

and Protein–Protein Complexes, Journal of Chemical Theory and Computation, 16, 2494–2507, https://doi.org/10.1021/acs.jctc.9b00251,

pMID: 31914313, 2020.460

Rauscher, S., Gapsys, V., Gajda, M. J., Zweckstetter, M., de Groot, B. L., and Grubmüller, H.: Structural Ensembles of Intrinsically Dis-

ordered Proteins Depend Strongly on Force Field: A Comparison to Experiment, Journal of Chemical Theory and Computation, 11,

5513–5524, https://doi.org/10.1021/acs.jctc.5b00736, pMID: 26574339, 2015.

Richert, R. and Blumen, A., eds.: Disorder Effects on Relaxational Processes, Springer Berlin Heidelberg, https://doi.org/10.1007/978-3-

642-78576-4, 1994.465

Robustelli, P., Piana, S., and Shaw, D. E.: Developing a molecular dynamics force field for both folded and disordered protein states,

Proceedings of the National Academy of Sciences, 115, E4758–E4766, https://doi.org/10.1073/pnas.1800690115, 2018.

Salomon-Ferrer, R., Götz, A. W., Poole, D., Le Grand, S., and Walker, R. C.: Routine Microsecond Molecular Dynamics Simulations

with AMBER on GPUs. 2. Explicit Solvent Particle Mesh Ewald, Journal of Chemical Theory and Computation, 9, 3878–3888,

https://doi.org/10.1021/ct400314y, pMID: 26592383, 2013.470

Salvi, N., Abyzov, A., and Blackledge, M.: Multi-Timescale Dynamics in Intrinsically Disordered Proteins from NMR Relaxation and Molec-

ular Simulation, The Journal of Physical Chemistry Letters, 7, 2483–2489, https://doi.org/10.1021/acs.jpclett.6b00885, pMID: 27300592,

2016.

Salvi, N., Abyzov, A., and Blackledge, M.: Analytical Description of NMR Relaxation Highlights Correlated Dynamics in Intrinsically Dis-

ordered Proteins, Angewandte Chemie International Edition, 56, 14 020–14 024, https://doi.org/https://doi.org/10.1002/anie.201706740,475

2017.

Schanda, P.: Relaxing with liquids and solids – A perspective on biomolecular dynamics, Journal of Magnetic Resonance, 306, 180 – 186,

https://doi.org/https://doi.org/10.1016/j.jmr.2019.07.025, 2019.

Schwalbe, H., Carlomagno, T., Hennig, M., Junker, J., Reif, B., Richter, C., and Griesinger, C.: [2] - Cross-Correlated Relax-

ation for Measurement of Angles between Tensorial Interactions, in: Nuclear Magnetic Resonance of Biological Macromolecules480

Part A, edited by James, T. L., Dötsch, V., and Schmitz, U., vol. 338 of Methods in Enzymology, pp. 35–81, Academic Press,

https://doi.org/https://doi.org/10.1016/S0076-6879(02)38215-6, 2002.

18

https://doi.org/10.1007/s10858-008-9280-0
https://doi.org/10.1002/cphc.200700732
https://doi.org/10.1021/ja9826791
https://doi.org/https://doi.org/10.1016/S1090-7807(02)00190-8
https://doi.org/10.1063/1.2715583
https://doi.org/10.1021/jp508971m
https://doi.org/10.1021/acs.jctc.9b00251
https://doi.org/10.1021/acs.jctc.5b00736
https://doi.org/10.1007/978-3-642-78576-4
https://doi.org/10.1007/978-3-642-78576-4
https://doi.org/10.1007/978-3-642-78576-4
https://doi.org/10.1073/pnas.1800690115
https://doi.org/10.1021/ct400314y
https://doi.org/10.1021/acs.jpclett.6b00885
https://doi.org/https://doi.org/10.1002/anie.201706740
https://doi.org/https://doi.org/10.1016/j.jmr.2019.07.025
https://doi.org/https://doi.org/10.1016/S0076-6879(02)38215-6


Shea, J.-E., Best, R. B., and Mittal, J.: Physics-based computational and theoretical approaches to intrinsically disordered proteins, Current

Opinion in Structural Biology, 67, 219–225, https://doi.org/https://doi.org/10.1016/j.sbi.2020.12.012, 2021.

Smith, A. A., Ernst, M., and Meier, B. H.: Because the Light is Better Here: Correlation-Time Analysis by NMR Spectroscopy, Angewandte485

Chemie International Edition, 56, 13 590–13 595, https://doi.org/https://doi.org/10.1002/anie.201707316, 2017.

Smith, A. A., Ernst, M., Meier, B. H., and Ferrage, F.: Reducing bias in the analysis of solution-state NMR data with dynamics detectors,

The Journal of Chemical Physics, 151, 034 102, https://doi.org/10.1063/1.5111081, 2019.

Stone, J. E., Phillips, J. C., Freddolino, P. L., Hardy, D. J., Trabuco, L. G., and Schulten, K.: Accelerating molecular modeling applications

with graphics processors, Journal of Computational Chemistry, 28, 2618–2640, https://doi.org/https://doi.org/10.1002/jcc.20829, 2007.490

Stone, J. E., Hardy, D. J., Ufimtsev, I. S., and Schulten, K.: GPU-accelerated molecular modeling coming of age, Journal of Molecular

Graphics and Modelling, 29, 116–125, https://doi.org/https://doi.org/10.1016/j.jmgm.2010.06.010, 2010.

Tjandra, N., Szabo, A., and Bax, A.: Protein Backbone Dynamics and 15N Chemical Shift Anisotropy from Quantitative Measurement of

Relaxation Interference Effects, Journal of the American Chemical Society, 118, 6986–6991, https://doi.org/10.1021/ja960510m, 1996.

Tugarinov, V., Liang, Z., Shapiro, Y. E., Freed, J. H., and Meirovitch, E.: A Structural Mode-Coupling Approach to 15N NMR Relaxation in495

Proteins, Journal of the American Chemical Society, 123, 3055–3063, https://doi.org/10.1021/ja003803v, pMID: 11457016, 2001.

Vögeli, B.: Comprehensive description of NMR cross-correlated relaxation under anisotropic molecular tumbling and correlated local dy-

namics on all time scales, The Journal of Chemical Physics, 133, 014 501, https://doi.org/10.1063/1.3454734, 2010.

Vugmeyster, L., Pelupessy, P., Vugmeister, B. E., Abergel, D., and Bodenhausen, G.: Cross-correlated relaxation in NMR

of macromolecules in the presence of fast and slow internal dynamics, Comptes Rendus Physique, 5, 377 – 386,500

https://doi.org/https://doi.org/10.1016/j.crhy.2004.02.004, highly polarized nuclear spin systems and dipolar interactions in NMR, 2004.

Vögeli, B.: The nuclear Overhauser effect from a quantitative perspective, Progress in Nuclear Magnetic Resonance Spectroscopy, 78, 1–46,

https://doi.org/https://doi.org/10.1016/j.pnmrs.2013.11.001, 2014.

Vögeli, B. and Yao, L.: Correlated Dynamics between Protein HN and HC Bonds Observed by NMR Cross Relaxation, Journal of the

American Chemical Society, 131, 3668–3678, https://doi.org/10.1021/ja808616v, pMID: 19235934, 2009.505

Wang, T., Weaver, D. S., Cai, S., and Zuiderweg, E. R. P.: Quantifying Lipari–Szabo modelfree parameters from 13CO NMR relaxation

experiments, Journal of Biomolecular NMR, 36, 79–102, https://doi.org/10.1007/s10858-006-9047-4, 2006.

Woessner, D. E.: Spin Relaxation Processes in a Two-Proton System Undergoing Anisotropic Reorientation, The Journal of Chemical

Physics, 36, 1–4, https://doi.org/10.1063/1.1732274, 1962.

Xue, Y., Podkorytov, I. S., Rao, D. K., Benjamin, N., Sun, H., and Skrynnikov, N. R.: Paramagnetic relaxation enhancements in unfolded510

proteins: Theory and application to drkN SH3 domain, Protein Science, 18, 1401–1424, https://doi.org/https://doi.org/10.1002/pro.153,

2009.

Ying, J., Roche, J., and Bax, A.: Homonuclear decoupling for enhancing resolution and sensitivity in NOE and RDC measurements of

peptides and proteins, Journal of Magnetic Resonance, 241, 97 – 102, https://doi.org/https://doi.org/10.1016/j.jmr.2013.11.006, a special

“JMR Perspectives” issue: Foresights in Biomolecular Solution-State NMR Spectroscopy – From Spin Gymnastics to Structure and515

Dynamics, 2014.

Zerbetto, M., Buck, M., Meirovitch, E., and Polimeno, A.: Integrated Computational Approach to the Analysis of NMR Relaxation in

Proteins: Application to ps-ns Main Chain 15N-1H and Global Dynamics of the Rho GTPase Binding Domain of Plexin-B1, The Journal

of Physical Chemistry B, 115, 376–388, https://doi.org/10.1021/jp108633v, pMID: 21142011, 2011.

19

https://doi.org/https://doi.org/10.1016/j.sbi.2020.12.012
https://doi.org/https://doi.org/10.1002/anie.201707316
https://doi.org/10.1063/1.5111081
https://doi.org/https://doi.org/10.1002/jcc.20829
https://doi.org/https://doi.org/10.1016/j.jmgm.2010.06.010
https://doi.org/10.1021/ja960510m
https://doi.org/10.1021/ja003803v
https://doi.org/10.1063/1.3454734
https://doi.org/https://doi.org/10.1016/j.crhy.2004.02.004
https://doi.org/https://doi.org/10.1016/j.pnmrs.2013.11.001
https://doi.org/10.1021/ja808616v
https://doi.org/10.1007/s10858-006-9047-4
https://doi.org/10.1063/1.1732274
https://doi.org/https://doi.org/10.1002/pro.153
https://doi.org/https://doi.org/10.1016/j.jmr.2013.11.006
https://doi.org/10.1021/jp108633v


Zerze, G. H., Zheng, W., Best, R. B., and Mittal, J.: Evolution of All-Atom Protein Force Fields to Improve Local and Global Properties, The520

Journal of Physical Chemistry Letters, 10, 2227–2234, https://doi.org/10.1021/acs.jpclett.9b00850, 2019.

20

https://doi.org/10.1021/acs.jpclett.9b00850

