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Abstract. Among the numerous contributions of Geoffrey Bodenhausen to NMR spectroscopy his developments in the field of

spin-relaxation methodology and theory will definitely have a long lasting impact. Starting with his seminal contributions to the

excitation of multiple-quantum coherences he and his group thoroughly investigated the intricate relaxation properties of these

“forbidden fruits” and developed experimental techniques to reveal the relevance of previously largely ignored cross-correlated

relaxation (CCR) effects, as “the essential is invisible to the eyes”. Here we want to discuss CCR within the challenging context5

of intrinsically disordered proteins (IDPs) and emphasize its potential and relevance for the studies of structural dynamics of

IDPs in the future years to come. Conventionally, dynamics of globularly folded proteins are modeled and understood as

deviations from otherwise rigid structures tumbling in solution. However, with increasing protein flexibility, as observed for

IDPs, this apparent dichotomy between structure and dynamics becomes blurred. Although complex dynamics and ensemble

averaging might impair the extraction of mechanistic details even further, spin-relaxation uniquely encodes a protein’s structural10

memory, i.e. the temporal persistence of concerted motions and structural arrangements. Due to significant methodological

developments, such as high-dimensional non-uniform sampling techniques, spin-relaxation in IDPs can now be monitored

in unprecedented resolution. Not embedded within a rigid globular fold, conventional 15N spin probes might not suffice to

capture the inherently local nature of IDP dynamics. To better describe and understand possible segmental motions of IDPs,

we propose an experimental approach to detect the signature of diffusion anisotropy by quantifying cross-correlated spin15

relaxation of individual 15N1HN and 13C’13Cα spin pairs. By adapting Geoffrey Bodenhausen’s symmetrical reconversion

principle to obtain zero frequency spectral density values we can define and demonstrate more sensitive means to characterize

segmental anisotropic diffusion in IDPs.

1 Introduction

Geoffrey Bodenhausen’s 70th anniversary marks an ideal occasion to take a fresh look at some of his numerous contributions20

to spin-relaxation methodology and theory. By considering his experiments within the challenging context of intrinsically

disordered proteins (IDPs), we want to emphasize their potential and relevance in the future years to come. Arguably, this

rediscovery might require some collective effort, as current trends appear to point in the opposite direction. As Paul Schanda

put it recently: ’the popularity of detailed spin-relaxation measurements in liquids, en vogue 10 or 20 years ago, is declining;
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[...] Even with lengthy measurements it is not easy to gain much more insight than "loops are more flexible than secondary25

structures", which often does not answer mechanistic questions.’(Schanda, 2019, p. 3-4). While intentionally exaggerated, this

statement does point to some of the inherent limitations of relaxation experiments. Owing to their convoluted nature, spin-

relaxation reports on protein dynamics only in ambiguous terms. A variety of stochastic processes can lead to time correlation

functions (TCFs) of identical shape and form(Richert and Blumen, 1994, p. 1-7). In addition, the TCF is not probed directly,

only its spectral density i.e. its Fourier transform is sampled at few select frequencies. Thus, with far more detailed struc-30

tural models at hand, protein dynamics might appear to be little more than perturbations of otherwise rigid bodies tumbling

in solution(Lipari and Szabo, 1982; Halle and Wennerström, 1981; Clore et al., 1990; Halle, 2009). Relaxation experiments

commonly employed to calculate protein structures, such as Nuclear Overhauser effects (NOEs) and paramagnetic relaxation

enhancements (PREs), are usually modeled without accounting for their dynamic nature(Iwahara et al., 2004; Clore and Iwa-

hara, 2009; Xue et al., 2009; Vögeli, 2014). In a sense, protein dynamics appear separate from protein structure, at least within35

the structure-function-paradigm.

However, with increasing protein flexibility this apparent dichotomy becomes blurred as structure and dynamics can no

longer be considered independent of each other. While complex dynamics and ensemble averaging obfuscate mechanistic

details even further, the structural information content of relaxation parameters becomes increasingly apparent. In compari-

son to simple population averaged quantities, such as chemical shifts or scalar couplings, spin-relaxation uniquely encodes a40

system’s structural memory, i.e. the temporal persistence of concerted motions and structural arrangements. Somewhat counter-

intuitively, spin-relaxation experiments are among the prime sources of structural information available for disordered systems.

However, due to a general lack of analytical descriptions for IDP dynamics(Modig and Poulsen, 2008; Idiyatullin et al., 2001;

Bussell and Eliezer, 2001; Kadeřávek et al., 2014; Khan et al., 2015), this notion has been of somewhat academic nature un-

til the recent past. Continuous developments in molecular dynamics (MD) simulation protocols(Piana et al., 2015; Rauscher45

et al., 2015; Robustelli et al., 2018; Zerze et al., 2019; Piana et al., 2020; Gopal et al., 2021; Shea et al., 2021) demonstrate

how this gap can finally be bridged, allowing us to validate, refine and/or analyze dynamic ensemble representations of pro-

teins(Kämpf et al., 2018; Kümmerer et al., 2020; Salvi et al., 2016, 2017). With the necessary timescales becoming increasingly

accessible(Stone et al., 2007, 2010; Salomon-Ferrer et al., 2013; Eastman et al., 2017) and the spectral resolution provided by

high-dimensional NUS experiments to overcome the problem of severe spectral overlap(Grudziąż et al., 2018), spin-relaxation50

in IDPs can be investigated in unprecedented fashion.

This aspect alone suggests a systematic reassessment and evaluation of less commonly employed experiments. Far more

pressing, in our opinion, is the inherently local nature of spin-relaxation in IDPs. In contrast to folded proteins, spins in

IDPs are not embedded within a fixed molecular tumbling frame. Thus, a single 15N nucleus per residue as a dynamic probe

probe might not suffice to capture the underlying motions in adequate detail. While detecting and quantifying the presence of55

anisotropy in IDP dynamics might seem like a rather academic endeavor, it represents an important stepping stone towards the

structural interpretation of other experiments. As we recently demonstrated, an appropriate estimate for the average correlation

time is an important prerequisite for the angular evaluation of cross-correlated relaxation (CCR) of remote spins(Kauffmann

et al., 2021).
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More immediate in its structural implications would be the presence of diffusion anisotropy, which has been hypothesized60

to be of substantial size even in highly disordered proteins such as α-Synuclein. Specifically, segmental tumbling of α-helical

and extended chain conformations has been implied to lead to pronounced diffusion anisotropy effects for intraresidual and

sequential 1H-1H NOEs(Ying et al., 2014; Mantsyzov et al., 2014, 2015). At the same time, the 3D GAF model(Bremi and

Brüschweiler, 1997; Lienin et al., 1998) has been invoked to further rationalize the presence of anisotropy on the local scale of

the peptide plane. This model has recently been reframed by Salvi et al. to analyze MD-simulated 15N relaxation of a partially65

disordered protein(Salvi et al., 2017). In essence, it was demonstrated that NHN -TCFs are well-described by the CαCα-TCFs

of the same peptide plane as long as variations of the flanking dihedral angles and NHN -librations are accounted for. Explicit

corrections for possible diffusion anisotropy effects were not required. However, noticeable deviations could be observed for

the transverse 15N relaxation of the slowly moving residual α-helix. Marcellini et al. have reported pronounced diffusion

anistropy within the α-helical region of an otherwise disordered construct. Flexible residues were affected noticeably less.70

It was suggested this might be due to their average orientation in the molecular tumbling frame(Marcellini et al., 2020). The

SRLS model of Meirovitch, Freed et al.(Tugarinov et al., 2001; Meirovitch et al., 2006) also predicts pronounced anisotropy for

α-helices and β-sheets. However, loops and terminal chain segments appear isotropic, asserting that proteins with substantial

internal mobility are best represented by an isotropic global diffusion tensor(Zerbetto et al., 2011).

Arguably, this somewhat ambiguous body of evidence illustrates the inevitable difficulties that come with extending models75

of folded proteins to IDPs. In fact, many of the above observations might very well be case-dependent. In the present study, we

want to approach this question in a more agnostic manner. Are there experimental way to better detect the signature of diffusion

anisotropy in IDPs? At what level of evidence could we evoke the mental image of extended chains and α-helical segments

tumbling in solution? The principal difficulty in characterizing these structural elements lies in their translational periodicity.

In an α-helix, NHN vectors are strongly aligned along the main axis, while in an extended chain, they are oriented perpendic-80

ularly. In order to detect orientational biases in the relaxation behavior, additional spin probes with different orientations must

be considered. While CαHα might be suitable for α-helices(Barnes et al., 2019), its orientation is too similar to NHN in the

extended chain conformation. Moreover, since it does not share a peptide plane with NHN it varies as a function of φ or ψ,

same as the 1H-1H intraresidual and sequential NOEs. Spin probes with less ambiguous orientations would certainly be prefer-

able. For IDPs in particular, Kadeřávek et al. have shown that the NHN spectral density is best mapped by a combination of85

transversal and longitudinal CCR rates(Kadeřávek et al., 2014) employing Geoffrey Bodenhausen’s symmetrical reconversion

principle(Pelupessy et al., 2003, 2007). Together with Bodenhausen and coworkers, this concept was later extended to measure

the zero frequency spectral density in a single experiment(Kadeřávek et al., 2015). By translating these concepts to the C’Cα

spin pair, we want to derive and demonstrate more sensitive means to detect segmental anisotropic diffusion in IDPs.

2 Theory90

Our aim is to define an experimental measure for anisotropic diffusion in IDPs. Specifically, we assume anisotropic tumbling

of extended chain and α-helical segments sufficiently persistent to result in observable spin-relaxation. Before considering

3

https://doi.org/10.5194/mr-2021-35

DiscussionsO
pe

n 
A
cc

es
s

Preprint. Discussion started: 8 April 2021
c© Author(s) 2021. CC BY 4.0 License.



specific experimental aspects, we start by defining the spectral density. Sampled at zero frequency and/or (combinations of)

the involved Larmor frequencies, it constitutes the fundamental quantity of all spin-relaxation experiments:

Ju,v(ω) =

∞∫

0

Cu,v(t)cos(ωt)dt (1)95

with the time correlation function (TCF),

Cu,v(t) = 〈P2(u(0) ·v(t))〉 (2)

where P2(x) = 1.5x2−0.5 is the second order Legendre polynomial, u and v represent either dipolar unit vectors or principal

components of chemical shift anisotropy (CSA) tensors. Note that our simplified definition of the TCF implicitly assumes that

time-dependent distance fluctuations factorize and can thus be absorbed into constant coefficients. This requirement will be100

well-satisfied for the spins considered henceforth.

For most processes, the TCF can be described as a sum/distribution of exponential decays(Lipari and Szabo, 1982; Idiyatullin

et al., 2001; Modig and Poulsen, 2008; Khan et al., 2015):

Cu,v(t) =
N∑

k=0

ake
−t/τk (3)

Evaluating at t= 0 yields a type of normalization condition,105

N∑

k=0

ak = Cu,v(0) = 〈P2(u(0) ·v(0))〉 (4)

which equates to 1 for the familiar case of auto-correlation (u = v). For cross-correlation (u 6= v), Eq. (4) is bounded within

[−0.5,1].

The spectral density of Eq. (3) is a sum of Lorentzians

Ju,v(ω) =
N∑

k=0

ak
τk

1 + (ωτk)2
(5)110

Note that, depending on how the TCF and the spectral density are defined, Eq. (5) might come with additional coefficients such

as the familiar factor of 2
5 (Lipari and Szabo, 1982). We prefer the above definitions as they highlight Ju,v(ω) as a weighted

average. At zero frequency all τk are weighted equally, i.e. J(0) encodes the average correlation time. With increased frequency

the impact of larger τk becomes less pronounced. This is illustrated in Fig. 1 for a selection of Larmor frequencies assuming a

magnetic field strength of 18.8 T (800 MHz proton Larmor frequency).115

Detecting anisotropy amounts to quantifying orientational biases reflected in the ak and τk. Here, we attribute these biases

to the relative orientation in extended chain and α-helical segments. These structural elements are well-described by an axially

symmetric diffusion tensor, which yields the following expression for the spectral density(Tjandra et al., 1996; Woessner,

1962):

Ju,v(ω) =
2∑

k=0

Ak(u,v)
τk

1 + (ωτk)2
(6)120
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Figure 1. The Lorentzian as a function of the correlation time τ and the (Larmor) frequency. The spectral density J(ω), which is modeled

as a linear combination of Lorentzians, can be pictured as a weighted average of all correlation times τ . Since J(0) weights all correlation

times equally, it represents the component most sensitive to correlation times > 1 ns. The magnetic field B0 is 18.8 T (800 MHz proton

Larmor frequency).

where

a0 ≡A0(u,v) = P2(θu)P2(θv)

a1 ≡A1(u,v) = 0.75sin(2θu)sin(2θv)cos(φu−φv) (7)

a2 ≡A2(u,v) = 0.75sin2(θu)sin2(θv)cos(2φu− 2φv)

and (θ,φ) denote the polar angles in the tumbling frame. The τk correspond to the inverted eigenvalues of the axially symmetric125

diffusion tensor:

τk = (6D⊥+ k2(D‖−D⊥))−1 =D−1
⊥ (6 + k2(

D‖
D⊥
− 1))−1 (8)

with k = 0,1,2. At this stage, Eq. (6) would not allow us to distinguish between size effects in τk (i.e. segment length) and

orientational biases in Ak(u,v) (i.e. secondary structure). To quantify D‖
D⊥

only, we consider another interaction described by

a second set of vectors (x,y) embedded with different orientations in the same tumbling frame and focus our attention on J(0)130

for two specific reasons. First and foremost, J(0) is the component most sensitive to the τk ≥ 1 ns (cf. Fig. 1) commonly

associated with tumbling motions(Kämpf et al., 2018). Secondly, J(0) allows us to define a convenient ratio,

Ju,v(0)
Jx,y(0)

=
D−1
⊥

∑2
k=0Ak(u,v)(6 + k2( D‖D⊥ − 1))−1

D−1
⊥

∑2
k=0Ak(x,y)(6 + k2( D‖D⊥ − 1))−1

=

∑2
k=0Ak(u,v)(6 + k2( D‖D⊥ − 1))−1

∑2
k=0Ak(x,y)(6 + k2( D‖D⊥ − 1))−1

(9)
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such that the explicit size dependency cancels out. Of course, Eq. (9) still builds on the simplified model of a rigid rotor.

However, presuming that chain- or helix-like structural arrangements are sufficiently stable, we might detect the remnants of135

Eq. (9) even in case of pronounced local dynamics.

Generally speaking, the effects of fast internal motions are not straightforward to model. The commonly employed model-

free (MF)(Lipari and Szabo, 1982) and extended MF(Clore et al., 1990) approaches are not strictly applicable in case of

anisotropic diffusion(Daragan and Mayo, 1999; Halle, 2009). For cross-correlated relaxation (CCR) in particular, the proposed

models become quite intricate(Vögeli, 2010). Geoffrey Bodenhausen and coworkers have investigated this topic in a series140

of publications(Deschamps and Bodenhausen, 2001; Deschamps, 2002; Vugmeyster et al., 2004; Abergel and Bodenhausen,

2004, 2005; Nodet et al., 2008). Here, we model the presence of fast and isotropic motions as simply as possible by introducing

a fourth Lorentzian:

Ju,v(ω) = S2
2∑

k=0

Ak(u,v)
τk

1 + (ωτk)2
+ (1−S2)P2(u ·v)

τ3
1 + (ωτ3)2

(10)

with τ−1
3 = τ−1

int + 4D⊥+ 2D‖, where τint is the average correlation time of the fast internal motion. The order parameter145

S2 ∈ [0,1] acts as a weight balancing the contributions of slow anisotropic tumbling and fast isotropic motions. To account for

the angular relation between u and v, a3 necessarily corresponds to P2(u ·v), which follows intuitively from condition (4)

assuming a fixed angle between u and v.

Of course, the additional Lorentzian can be rationalized in terms of existing models. Following Bax and coworkers(Barbato

et al., 1992; Tjandra et al., 1995), the factorization of global tumbling and internal motions assumed in the MF approach(Lipari150

and Szabo, 1982) is modeled by coupling the internal motions to an effective overall tumbling time τeff = (4D⊥+ 2D‖)−1

which yields τ−1
3 = τ−1

int + 4D⊥+ 2D‖. This approach contrasts the introduction of explicit cross-terms(Kroenke et al., 1998)

which retain their orientational biases even in the limit S2 = 0. In the MF approach of Halle(Halle and Wennerström, 1981),

which allows for the presence of diffusion anisotropy, local motions are modeled by simply adding a (1−S2)-weighted TCF

of further unspecified form(Halle, 2009). In this picture, we represent the internal motions by a mono-exponential decay with155

τ3 following from the considerations above. The familiar interval of S2 ∈ [0,1], which applies for auto-correlated TCFs only,

corresponds to the MF adaptation of Kroenke et al.(Kroenke et al., 1998). With an effective isotropic tumbling time τeff

coupling to the internal motions, the equivalence a3 =
∑2
k=0Ak(u ·v) = P2(u ·v) is obtained. The same expressions can be

derived from the common approximation for the CCR order parameter S2
uv = S2P2(u ·v)(Daragan and Mayo, 1996; Ghose

et al., 1998). Then, the decay of the internal TCF towards its asymptotic value S2
uv is encoded by the factor P2(u ·v)−S2

uv =160

(1−S2)P2(u ·v). In principle, this approximation can be extended to model the entire cross-correlated TCF(Tjandra et al.,

1996; Halle, 2009). With the angular dependencies available in explicit form, we see no reason to simplify any further.

While the fast isotropic motions could be modeled in more detail to better fit the shape of the TCF using e.g. the extended

MF approach(Clore et al., 1990) or correlation time distributions(Hsu et al., 2018), we only intend to divide J(0), i.e. the

TCF’s enclosed area, into contributions with and without orientational biases. More impactful is the assumption of equally165

weighted isotropic motions for (u,v) and (x,y). This simplification is introduced primarily to keep the amount of parameters

manageable. It assumes that order parameters of the same peptide plane should be reasonably comparable (Chang and Tjandra,
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Figure 2. The peptide plane as defined by Corey and Pauling(Corey et al., 1953): Cα–C’ = 1.53 Å, C’–O = 1.24 Å, C’–N = 1.32 Å, N–

Cα = 1.47 Å. Cα-C’-O = 121°, Cα-C’-N = 114°, O-C’-N = 125°, C’-N-H = 123°, C’-N-Cα = 123°, H-N-Cα = 114°. N–H = 1.04 Å is

taken from Ottiger and Bax (Ottiger and Bax, 1998). The 15N and 13C’ CSA principal components are adapted from Bodenhausen and

coworkers(Cisnetti et al., 2004; Loth et al., 2005). 15N: ∆N ≈ σxx−σyy ≈ σxx−σzz = 170 ppm, α = 20°. 13C’: σxx = 249.4 ppm, σzz

= 87.9 ppm, α = 37°. σyy = 191.1 ppm is obtained from the average chemical shift of Ubiquitin (BMRB 17769)(Cornilescu et al., 1998))

following the suggested calibration(Cisnetti et al., 2004). The main axis z of the diffusion anisotropy tensor is assumed to lie in the peptide

plane. Its orientation is encoded by βCαC′

.

2005; Ferrage et al., 2006; Wang et al., 2006; Salvi et al., 2017). Differences in local mobility between (u,v) and (x,y) will

necessarily result in systematic deviations from the implied isotropic baseline, with D‖ =D⊥ =D,

Ju,v(0)
Jx,y(0)

=
P2(u ·v)(S2(6D)−1 + (1−S2)τ3)
P2(x ·y)(S2(6D)−1 + (1−S2)τ3)

=
P2(u ·v)
P2(x ·y)

(11)170

From Eq. (11), it can be seen that the ratio (9) encodes a simple and intuitive balance: Isotropic motions tend towards the limit

(11), while anisotropic motions deviate from it. To explore the extent of this effect in the presumed case of segmental tumbling

of α-helices and extended chains, we need to consider the abstract notion of Ju,v(0) and Jx,y(0) from an experimental

perspective.

3 Methods175

We will assume the canonical peptide plane geometry of Corey and Pauling(Corey et al., 1953) as depicted in Fig. 2 including

approximate principal components of the CSA tensors for 15N and 13C’ adapted from Geoffrey Bodenhausen and cowork-

ers(Cisnetti et al., 2004; Loth et al., 2005).
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As demonstrated by Kadeřávek et al.(Kadeřávek et al., 2014), the spectral densities of IDPs are best mapped by combining

the transversal (Γxy) and the longitudinal (Γz) CCR rates between the 15N CSA and the NHN dipole. Employing the notation180

of Bodenhausen and coworkers(Cisnetti et al., 2004), we have

ΓN/NHxy = kN/NH∆N [4JNH,xx(0) + 3JNH,xx(ωN )] (12)

ΓN/NHz = kN/NH∆N [6JNH,xx(ωN )] (13)

kN/NH =
2
5

1
24π

µ0~γnγh
r3NH

B0γn

where µ0 is the vacuum permeability, ~ is the reduced Planck constant, γ is the gyromagnetic ratio, r is the distance between the185

nuclei, B0 is the magnetic field strength and ∆N = (σxx−σyy) = (σxx−σzz) is the size difference of the 15N CSA principal

components (in ppm). Mapping JNH,xx(0) amounts to the simple subtraction ΓN/NHxy − 0.5ΓN/NHz .

To complement these rates, we consider their counterparts for the 13C’ CSA and the C’Cα dipole.:

ΓC
′/C′Cα

xy = kC′/C′Cα [(σxx−σzz)(4JC′Cα,xx(0) + 3JC′Cα,xx(ωC)) + (σyy −σzz)(4JC′Cα,yy(0) + 3JC′Cα,yy(ωC))] (14)

ΓC
′/C′Cα

z = kC′/C′Cα [(σyy −σzz)6JC′Cαxx(ωC) + (σyy −σzz)6JC′Cαyy(ωC)] (15)190

kC′/C′Cα =
2
5

1
24π

µ0~γ2
c

r3C′Cα
B0γc

with xx,yy,zz referring to the principal components of the fully anisotropic 13C’ CSA tensor. Again, high frequency contribu-

tions can be eliminated via the linear combination ΓC
′/C′Cα

xy − 0.5ΓC
′/C′Cα

z .

While the measurement of transverse CCR is well-established, longitudinal CCR has been studied considerably less. In

part this is due to subtleties of the involved relaxation pathways which involve multi-exponential cross- and cross-correlated195

relaxation effects. Another reason lies in technical limitations as longitudinal relaxation rates are generally smaller due to their

Larmor frequency dependence. Notably, this effect is far less pronounced for the smaller correlation times present in IDPs (cf.

Figure 1). While 15N1HN relaxation is well understood and several sensitive NMR techniques have been proposed to measure

ΓN/NHxy and ΓN/NHz (Tjandra et al., 1996; Kroenke et al., 1998; Pelupessy et al., 2003, 2007; Kadeřávek et al., 2015), 13C’

relaxation is generally more problematic(Dayie and Wagner, 1997; Wang et al., 2006). Since we could not find any previous200

attempts to measure the longitudinal CCR rate ΓC
′/C′Cα

z in the literature, we see fit to assess its general feasibility.

Aside from the symmetrical reconversion principle of Bodenhausen and coworkers(Pelupessy et al., 2003, 2007), 13C’/13C’13Cα

CSA-DD CCR can be measured either by monitoring the relaxation asymmetry of the 13C’13Cα doublet or by means of a

’quantitative gamma’ experiment in which sum and difference of the 13C’ doublet relaxation are measured independently. In

contrast to previous approaches relying on two separate experiments (’reference’ and ’cross’)(Schwalbe et al., 2002), we deter-205

mine ΓC
′/C′Cα

z by quantifying the different longitudinal relaxation in the 13C’13Cα doublet recorded in a non-constant-time

C’ evolution following the relaxation period. Transverse relaxation ΓC
′/C′Cα

xy is measured by more conventional quantification

of differential line broadening of the 13C’13Cα doublet recorded in constant-time mode.

To obtain sufficient spectral resolution the CCR rates are measured directly from the intensity difference in a 13Cα-coupled

3D HNCO experiment; (i) in case of transversal CCR by quantification of differential line broadening of the 13C’13Cα doublet210
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N ppm = 125.0

Figure 3. Experimental results from the measurements of transverse (A), left) and longitudinal (B), right) CSA-DD cross-correlated relax-

ation as described in Sect. 3. Data were obtained using Ubiquitin, a small globular protein of 76 residues. The figure shows the spectral region

for the peptide plane spanning residues I61/Q62. The asymmetry of the 13Cα doublet is visible in the cross-sections taken at the positions

indicated by dashed lines. As expected, CCR effects are more pronounced in the case of transverse relaxation.

during constant-time 13C’ evolution and (ii) for longitudinal CCR during real-time 13Cα coupled 13C’ evolution preceded by a

longitudinal relaxation delay T during which 13C’/13C’13Cα CSA-DD CCR is active. This approach yields reliable longitudinal

CCR rates as long as the mixing time T is short compared to 13C’ T1 relaxation. Typical data obtained for the small globular

protein Ubiquitin are shown in Fig. 3

To suppress 13C’13Cα cross-relaxation a 13C’ is inverted in the middle of the relaxation delay T . Additional unwanted CCR215

pathways involving the 13C’ CSA and 13C’1H/13C’15N dipoles are suppressed by 1H decoupling and 15N inversion. The CCR

rates are obtained from the 13C’13Cα doublet as log( IaIb )/2T . Details of the pulse sequence and NMR parameters will be given

elsewhere. Two exemplary 13C’13Cα doublets measured for I61/Q62 in human Ubiquitin are shown in Fig. 3.

With the general feasibility of the measurements demonstrated, we can now define a ratio Q analogous to Section 2, Eq. (9):

Q≡ ΓC
′/C′Cα

xy − 0.5ΓC
′/C′Cα

z

ΓN/NHxy − 0.5ΓN/NHz

=
4kC′/C′Cα [(σxx−σzz)JC′Cα,xx(0) + (σyy −σzz)JC′Cα,yy(0)]

4kN/NH∆NJNH,xx(0)
(16)220

To assess the sensitivity of Q (16), it is evaluated according to Eqs. (7), (8),(10), (12-15) with τ−1
3 = τ−1

int + 4D⊥+ 2D‖ =

τ−1
int + τ−1

eff under the following conditions: As specified in Fig. 2, all CSA tensors have fixed orientation and size. The main

axis z of the axially symmetric diffusion tensor is assumed to lie in the peptide plane, hence Q is a function of the polar angles

θ only, see Eq. (7). Defining the CαC’ orientation as 0° reference, the main axis is rotated from 0° to 180° towards the NHN

vector assuming anisotropy values D‖
D⊥

of 1.5 and 2.5, effective tumbling times τeff = (4D⊥+2D‖)−1 of 1 and 2.5 ns, internal225

correlation times τint of 100 and 500 ps and order parameters S2 between 0 an 1. The magnetic field strength B0 is the same

for all rates and thus cancels out. The results are summarized in Fig. 4.
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4 Results and Discussion

Experimental considerations necessarily result in compromises. The fully anisotropic 13C’ CSA not only leads to spectral

density contributions of two perpendicular components, it is also subject to considerable variations(Markwick et al., 2005;230

Cisnetti et al., 2004; Loth et al., 2005). One might be tempted to avoid the uncertainties and complications that come with the
13C’ CSA by considering dipolar relaxation only. However, compared to the NHN spin pair, the small gyromagnetic ratios and

long internucleic distances of other dipoles lead to far smaller and less sensitive rates(Carlomagno et al., 2000). In addition,

the J(0) components are generally neither dominant nor easily separated. The 13C’ CSA both provides effective means of

relaxation and allows for a straightforward extraction of J(0) components. With an approximate ratio (σxx−σzz)/(σyy −235

σzz)≈ 1.5 and the beneficial orientation of the C ′Cα vector, the JC′Cα,xx(ω) contribution is generally far more pronounced:

For 30°≤ α≤ 44° the TCF amplitudes would be 0.48≤ P2(C ′Cα ·xx)≤ 0.79, 0.02≥ P2(C ′Cα · yy)≥−0.29 based on the

geometry of Fig. 2.

Fig. 4 shows the ratio Q (16) for different choices of τeff , τint, S2, D‖D⊥ as a function of the diffusion tensor orientation. The

main axis is assumed to lie in the peptide plane with the orientation denoted relative to C ′Cα in terms of the angle βC′Cα , see240

Fig. 2. Comparing all panels (a)-(f) at once, it can be seen that the isotropic (S2 = 0) baseline at around 0.3 is independent of

the correlation times τeff and τint as derived in Eq. (11). The same value is obtained for D‖
D⊥

= 1, which is easily assessed from

the convergence behavior for different anisotropy values in (c),(f) and (a),(b),(d),(e). How strongly Q reports on the asserted

presence of diffusion anisotropy depends on the S2-mediated weight difference between the orientation dependent Akτk (7)

and the isotropic τeff . Both higher overall tumbling τeff and smaller isotropic motions τint yield a more sensitive Q for245

increasingly smaller order parameters S2, see panels (a),(b),(d),(e). Note that the particular choice of τint and S2 is to some

extent arbitrary as Akτk, τint and S2 merely represent the isotropic and anisotropic contributions to the TCF’s enclosed area

J(0). Still, τeff ≥ 1 ns > τint was chosen based on timescales recently reported for IDPs(Kämpf et al., 2018).

Besides the obvious influence of D‖
D⊥

itself, Q strongly depends on the orientation of the diffusion tensor. Highlighted in all

panels (a)-(f) are the orientations of the NHN and the CαCα vectors. In an extended chain, CαCα is approximately parallel250

to the main axis while NHN stands perpendicular to it or vice versa for an α-helix. Both orientations correspond well to the

minimum and maximum of Q. The range of Q depends on the size of the anisotropy D‖
D⊥

. For a value of 2.5, as was previously

asserted for α-Synuclein(Mantsyzov et al., 2014, 2015), the effect on Q can be quite substantial, panels (a),(b),(d),(e). For D‖
D⊥

= 1.5, it is far less pronounced, panels (c),(f).

We conclude that, if the concept of anisotropic diffusion of segmental α-helices and extended chains is reasonably applicable255

and sufficiently pronounced, Q would allow to unambiguously detect its signature. Actual quantification of D‖
D⊥

would of

course be obstructed by many unknown variables and experimental uncertainties as well as the limited validity of the asserted

dynamic model. While the presence of relaxation-active tumbling motions do imply a certain degree of local rigidity, the

structural heterogeneity of IDPs certainly challenges many of the commonly made assumptions. Still, the ratio Q might give

an indication of how reasonable these concepts are for a given protein system. While particularly sensitive to large correlation260

times, Q will report on all sources of anisotropy present in J(0). Differences in local mobility, CSA tensor variations, overall
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Figure 4. The ratio Q, Eq. (16), as a function of the diffusion tensor orientation denoted by βCαC′ , Fig. 2. Dashed lines indicate the

orientation of the NHN and the CαCα vector. All rates are calculated according to Eqs. (7), (8),(10), (12-15) with τ−1
3 = τ−1

int + τ−1
eff . Order

parameters from 0 and 1 are color-coded. Panels (a)-(f) show Q for different choices of τeff ,τint and
D‖
D⊥

. The magnetic field strength B0 is

the same for all rates.

structural flexibility and experimental uncertainties will certainly shift and blur the ratio expected for isotropic motions. Still,

if we assume a set of consecutive residues to experience shared anisotropic diffusion, Q should exhibit a systematic and

sequence-persistent pattern.

In addition, the spectral densities can always be evaluated directly. While the proposed experiments do not allow to map265

JC′Cα,xx and JC′Cα,yy individually, the contributions of different Larmor frequencies are fully separated. Graphical represen-

tations in particular can provide model-independent intuition about the timescales at play(Idiyatullin et al., 2001; Křížová et al.,

2004; Kadeřávek et al., 2014). Expressions such as J(0)−J(ω)(Idiyatullin et al., 2001), intended to suppress the contribution

of faster timescales (cf. Fig. 1), are available as well. While introduced and justified primarily in terms of diffusion anisotropy,

we expect the combination of transversal and longitudinal C ′/CαC ′ CCR rates to prove informative even outside the scope270

considered here. For the locally dominated dynamics of IDPs in particular, differences and similarities to the NHN spectral

density can provide valuable structural insights even without invoking specific dynamic models(Kämpf et al., 2018).

11

https://doi.org/10.5194/mr-2021-35

DiscussionsO
pe

n 
A
cc

es
s

Preprint. Discussion started: 8 April 2021
c© Author(s) 2021. CC BY 4.0 License.



5 Conclusions

On the occasion of Geoffrey Bodenhausen’s 70th anniversary, we built on his extensive body of work to conceptualize ex-

perimental means for the investigation of segmental anisotropic tumbling in IDPs. Spectral density mapping protocols based275

on transversal and longitudinal CCR of NHN were translated to the CαC’ spin pair of the same peptide plane. By isolating

and comparing the zero frequency contributions we derived an intuitive experimental measure for the presence of anisotropic

dynamics. Provided that model-free assumptions are applicable, we show that pronounced anisotropic tumbling of extended

chain and α-helical segments should be readily detectable. But even outside the context of conventional dynamic models, con-

tributions of different frequencies can be separated and assessed similarly to spectral density mapping protocols. Interestingly,280

the required measurement of longitudinal C’/CαC’ CCR has not been investigated before. Hence, a simple proof of concept for

a possible measurement scheme was provided. To further substantiate and explore the presented concepts in an experimental

setting, a systematic evaluation of different pulse sequences is currently under preparation in our lab.

While detecting and quantifying the presence of anisotropy in IDP dynamics might seem like a humble academic endeavor,

we believe this to be an important step not only towards a better understanding of this important protein family but also285

towards immediate applications in biological and biomedical research as well as drug design. We thus take particular delight

from the fact that Geoffrey’s l’art pour l’art pulse sequence design is also a telling testimony for the unforeseeable impact of

non-utilitarian basic research driven and inspired by scholarly thinking.
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