

1 **Mechanisms of coherent re-arrangement for long-lived spin order**

2 Florin Teleanu^{1,2} and Paul R. Vasos^{1,2,3*}

4 ¹ Extreme Light Infrastructure - Nuclear Physics ELI-NP, Laser Gamma Experiments Department (LGED), "Horia Hulubei" 5 National Institute for Physics and Nuclear Engineering IFIN-HH, 30 Reactorului Street, RO-077125 Bucharest-Măgurele, Romania

6 ² Interdisciplinary School of Doctoral Studies, University of Bucharest.

7 ³ University of Bucharest, B-dul Regina Elisabeta, Bucharest, Romania.

8
9 *Correspondence to: paul.vasos@eli-np.ro

10
11 This article is dedicated to Geoffrey Bodenhausen for his 70th birthday.

13 **ABSTRACT**

14 Long-lived spin order-based approaches for magnetic resonance rely on the transition between two
15 magnetic environments of different symmetries, one governed by the magnetic field of the
16 spectrometer and the other where this strong magnetic field is inconsequential. Research on the
17 excitation of magnetic-symmetry transitions in nuclear spins is a scientific field that debuted in
18 Southampton in the years 2000. We advanced in this field carrying the baggage of pre-established
19 directions in NMR spectroscopy. We propose to reveal herein the part of discoveries that may have
20 been obscured by our choice to only look at them through the experience of such pre-established
21 directions, at the time. The methodological developments that emphasised herein are the
22 mechanisms of translation between the symmetric and non-symmetric environments with respect
23 to the main magnetic field B_0 . More specifically, we look again thoroughly at zero-quantum
24 rotations in the starting blocks of long-lived state populations, magnetisation transfers between
25 hyperpolarised heteronuclei and protons. These pulse sequences seed subsequent magnetic
26 mechanisms that contribute to further applications. For instance, we show how some of the
27 introduced coherence rotations were combined with classical pulse blocks to obtain 2D
28 correlations between protons and heteronuclei. We hope the pulse sequence building blocks
29 discussed herein open further perspectives for magnetic resonance experiments with long-lived
30 spin order.

32 **KEYWORDS**

33 Long-lived states/ Long-lived coherences/ NMR methods

34 **1. Introduction**

35 This paper is an opportunity to present several magnetic resonance concepts free of particular
36 application-specific introductions. This may allow to such concepts for what they are worth simply
37 as magnetisation transfer mechanisms and comment on their potential usefulness in further
38 experiments. We point out that all concepts presented herein were already addressed, albeit
39 concisely, in references(Ahuja et al., 2010; Sarkar et al., 2007, 2010; P. R. Vasos et al., 2009) or
40 in the supporting material of these papers.

41 Proposing that a presentation free of application-specific introductions may reveal magnetic
42 resonance progress to the fullest implies that the drive for traditional discipline-oriented
43 applications may have obscured part of the concepts in the original papers. A legitimate question
44 is whether these articles would have been accepted by the journal editors without the applications
45 in mind, or whether they would have been worth accepting. With hindsight, doubts raised by
46 editors whether our work in Lausanne and Paris brought actual progress for applications were far
47 more severe than any doubts regarding the soundness of the work itself. For instance, in the search
48 for new singlet-based excitation sequences (Marina Carravetta et al., 2004) on the route of
49 hyperpolarised magnetisation to long-lived spin states ; (LLS), we were never tormented by the
50 question '*is transport of hyperpolarisation really long-lived?*'(P. R. Vasos et al., 2009) (Pileio,
51 2020). However, '*is LLS-based polarisation storage in peptides better than the mere longitudinal
52 relaxation time constant of heteronuclei with which peptides are often isotopically enriched,
53 $T_1(^{15}N)$, $T_1(^{13}C)$?*' was a harrowing question. Equally present was the doubt: '*are long-lived states,
54 with their complicated excitation and sustaining mechanism, really a better way of measuring slow
55 diffusion, slow exchange constants than heteronuclei*(Ferrage et al., 2003) *such as ^{15}N ?*' or '*are
56 long-lived coherences (LLC's) actually a good route to improved spectral resolution in NMR?*'.

57 When we dedicated the first of a series of papers(Sarkar et al., 2007) to Anatole Abragam along
58 with a letter expressing our hopes that the discoveries may be useful for diffusion studies, he seized
59 the essence of our work in his answer (mainly addressed to Geoffrey Bodenhausen): '*nice to see
60 a way of skillfully sending spins to sleep in their soft bed*', '*envoyer les spins se reposer dans leur
61 lit douillet*'. The remark, thus rhythmed by alliteration, was as concise as it was exact, since the
62 singlet state we were searching for is magnetically inactive, i.e., the spins are '*sleeping*'. This
63 commentary alone may have replaced the introduction to our original paper.

65 **2. Zero-quantum rotation in the starting block of long-lived states**

66 The structure of singlet-triplet population differences, or long-lived states operators, Q_{LLS} :

67

68
$$Q_{LLS} = |S_0\rangle\langle S_0| - \frac{1}{3}(|T_{-1}\rangle\langle T_{-1}| + |T_0\rangle\langle T_0| + |T_1\rangle\langle T_1|) \quad (1)$$

69

70 was first discussed in formulae adapted to the zero-field magnetic structure for a two-spin system,
71 as first created(Marina Carravetta et al., 2004) in non-equivalent nuclei. While the preference of
72 writing highly-symmetrical long-lived states in spherical tensor operators is natural, we recurred
73 in Lausanne, however, to Cartesian operators (Sørensen et al., 1984) in the Liouvillian space:

74

75
$$Q_{LLS} = -N_{LLS}(I_xS_x + I_yS_y + I_zS_z) \quad (2)$$

76

77 with $N_{LLS} = 4/3$.

78 The form of this operator allowed us to understand the structure of coherences prone to evolution:

79

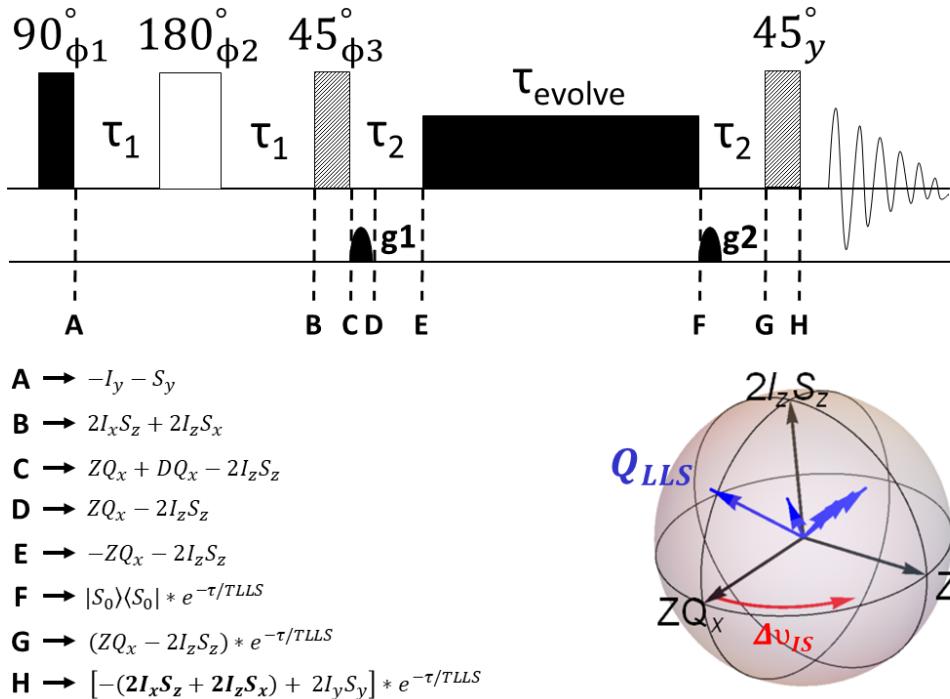
80
$$LLS = -\frac{4}{3}ZQ_x - \frac{2}{3}2I_zS_z \quad (3)$$

81

82 where $ZQ_x = \frac{1}{2}(2I_xS_x + 2I_yS_y)$ is a zero-quantum coherence.

83

84 Under such a configuration, the system is immune to the scalar-coupling evolution and also to
85 chemical shift evolution, provided the chemical shift difference between the two spins is eclipsed
86 by ample radio-frequency radiation or by cycling the main field (Cavanagh et al., 1995).


87

88 Equation (1) proved to be one the most useful formulae in developing the general theory of long-
89 lived states by pointing out the very nature of their extended lifetime, the population imbalance
90 between states or manifolds of different symmetries with respect to spin permutations(Stevanato,
91 2015, 2020) which cannot be interconverted by relaxation mechanisms with certain symmetries.
92 The novelty of Equation (3) was that it strongly connected the singlet-states explorations to
93 research in the I. Solomon - consecrated (I,S) homonuclear and heteronuclear magnetisation
94 transfer(Solomon, 1955).

95 The first method of excitation for long-lived populations, developed by Levitt and
 96 collaborators(Marina Carravetta & Levitt, 2004), worked for a pair of spins I, S provided carefully-
 97 chosen delays dependent on the chemical shifts, ν_I and ν_S , were used, making a sweep through
 98 frequencies necessary to excite different pairs of coupled spins (I,S), (R,K)... in different
 99 experiments, just like 1D magnetic resonance spectroscopy necessitated a sweep of the main field
 100 through resonance conditions for different chemical environments before the introduction of
 101 Fourier transform(Ernst & Anderson, 1966; *Richard R. Ernst – Nobel Lecture.*, n.d.). The
 102 chemical-shift dependency of long-lived states rendered impossible any 2D investigations of
 103 phenomena involving two or more spin pairs or several chemical environments of spin pairs with
 104 encoded LLS, such as exchange or interaction dynamics, in the same experiment.

105

106 The first concept introduced in the Lausanne paper(Sarkar et al., 2007) was the broadband
 107 excitation of singlet states. The topic may have deserved, in retrospect, a paper on its own. Our
 108 way towards broadband LLS excitation passed through zero-quantum coherences, as explained
 109 below. The first attempts to excite Q_{LLS} in Lausanne (Figure 1) posed challenges regarding the
 110 evolution and relative orientation of zero-quantum coherences (ZQ_x, ZQ_y) and ZZ-magnetization
 111 ($2I_zS_z$).

113 Figure 1. Pulse sequence adapted from reference(Sarkar et al., 2007) showing the evolution of the density
 114 operator at different stages with an emphasis on its three projections ($ZQ_x, ZQ_y, 2I_zS_z$)between time points
 115 C and E (figure generated with SpinDynamica(Bengs & Levitt, 2018)). Here, $\tau_1 = 1/(4 \cdot J_{IS})$ and $\tau_2 =$
 116 $1/(2 \cdot \Delta\nu_{IS})$ where J_{IS} is the scalar coupling constant (Hz) between spins I and S, $\Delta\nu_{IS} = \nu_I - \nu_S$ is the
 117 chemical shift difference (Hz) between the two spins. The phase cycling is $\phi 1 = (x, -x)$, $\phi 2 = x$, $\phi 3 =$
 118 $2(y), 2(-y)$ and $\phi rec = (x, -x, -x, x)$.

119
 120 After the first 45° pulse, at point (C) in Figure 1, the density operator takes the following
 121 expression:

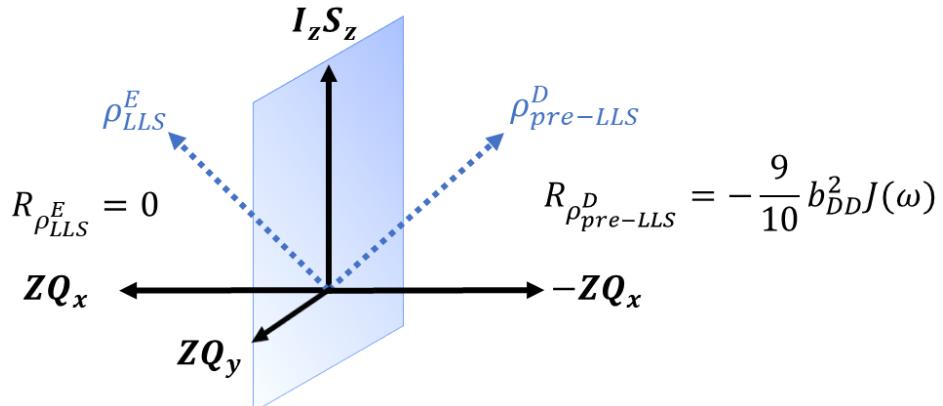
122
 123 $\rho_{pre-LLS}^C = 2I_xS_x - 2I_zS_z = ZQ_x + DQ_x - 2I_zS_z$ (4)

124
 125 At first, we expected to induce the presence of Q_{LLS} at point (C) in this sequence, due to the
 126 presence of projections on Q_{LLS} by both longitudinal two-spin order and $2I_xS_x$. However, we
 127 realized these two contributions exactly annihilate one another, leaving us at a loss on how to
 128 excite singlets in a broadband manner. We could have anticipated the mutual cancellation by
 129 expressing the operator at point (C) in the singlet-triplet basis, relevant upon application of a
 130 ‘sustaining’ radio-frequency (rf) field:

131 $\rho_{pre-LLS}^C = -\frac{1}{2}(|T_{-1}\rangle\langle T_{-1}| + |T_1\rangle\langle T_1| - 2|T_0\rangle\langle T_0| - |T_{-1}\rangle\langle T_1| - |T_1\rangle\langle T_{-1}|)$ (5)

132 indicating there was no singlet order to be found there.

133
 134 By applying the pulsed field gradient g_I , the double-quantum term dissipates, and the density
 135 operator becomes:


136
 137 $\rho_{pre-LLS}^D = (I_xS_x + I_yS_y) - 2I_zS_z = ZQ_x - 2I_zS_z$ (6)

138
 139 which possesses all the component of the long-lived state (Equation 1), but displays an opposite
 140 orientation of zero-quantum and ZZ components with equal projections on Q_{LLS} . Therefore, these
 141 projections cancel each other. To better understand this apparent conundrum, we can write the
 142 operator in the basis of singlet-triplet operators:

143

144 $\rho_{pre-LLS}^D = \frac{1}{2}(|T_0\rangle\langle T_0| - |S_0\rangle\langle S_0|) - \frac{1}{2}(|T_{-1}\rangle\langle T_{-1}| + |T_1\rangle\langle T_1| - |T_0\rangle\langle T_0| - |S_0\rangle\langle S_0|) =$
 145 $\frac{1}{2}(2|T_0\rangle\langle T_0| - |T_{-1}\rangle\langle T_{-1}| - |T_1\rangle\langle T_1|)$ (7)

146
 147 The next step was figuring out how to interchange the singlet and central triplet populations in
 148 order to get the expression for *LLS*, a task which is not immediately obvious in this form. To do
 149 that, a reconversion in the cartesian product basis proved fruitful: $|T_0\rangle\langle T_0| - |S_0\rangle\langle S_0| = I_xS_x +$
 150 $I_yS_y = ZQ_x$. After several weeks of calculations, a group seminar was dedicated to the otherwise
 151 well-known evolution of ZQ_x under a scalar coupling interaction(Cavanagh et al., 1995). The new
 152 aspect was that the rotation axis was this time also apparent in the density operator expression, so
 153 effectively one of the constituents of spin order was rotating around the other, thus changing the
 154 relative sign of the constituent product operators ZQ_x and $2I_zS_z$ and yielding the sought-after *LLS*
 155 (Figure 2). The atmosphere in the magnetic resonance laboratory in Lausanne should be credited
 156 for a substantial contribution to the birth of these concepts. However, as a side note, the physical
 157 exercises of magnetisation succeeded to captivate more attention on paperback than in the coffee-
 158 table setting around a group-meeting whiteboard.

159
 160 Figure 2. Position of coherence prior to and after zero-quantum rotation with auto-relaxation rate constant
 161 corresponding to the density operator given by the two linear combinations of ZQ_x and I_zS_z . Only the
 162 dipolar relaxation mechanism was considered for a pair of two spins where b_{DD} is the dipolar coupling
 163 constant and $J(\omega)$ is the spectral density

164
 165
 166
 167

168 The evolution of the ZQ_x during free precession is:

169

$$170 ZQ_x \xrightarrow{(2\pi\nu_I I_z + 2\pi\nu_S S_z)t} ZQ_x \cos 2\pi\Delta\nu_{IS}t + ZQ_y \sin 2\pi\Delta\nu_{IS}t \quad (8)$$

171

172 where ν_I is the Larmor frequency of spin I , ν_S is the Larmor frequency of spin S , $\Delta\nu_{IS} = \nu_I - \nu_S$ is
 173 the chemical shift difference (Hz) between the two spins and J_{IS} is the scalar coupling constant
 174 (Hz) between spins I and S . Thus, after an evolution period $\tau_2 = 1/(2\Delta\nu)$, the ZQ_x will change
 175 sign such that $\frac{1}{2}(|T_0\rangle\langle T_0| - |S_0\rangle\langle S_0|) \xrightarrow{(2\pi\nu_I I_z + 2\pi\nu_S S_z)t} \frac{1}{2}(|S_0\rangle\langle S_0| - |T_0\rangle\langle T_0|)$. During the evolution
 176 represented in the coherence clock in Figure 2, the right-side hand in the first quadrant is
 177 transformed into its symmetric image on the other side of the $(2I_z S_z, ZQ_y)$ plane. The initial
 178 $\rho_{pre-LLS}^D$ and its plane-symmetric image ρ_{LLS}^E have quite different relaxation rates triggered by
 179 different symmetry rules. The density operator evolves into:

180

$$181 \rho_{LLS}^E = |S_0\rangle\langle S_0| - \frac{1}{2}(|T_{-1}\rangle\langle T_{-1}| + |T_1\rangle\langle T_1|) \quad (9)$$

182

183 An note can be made on the time dependence of the relaxation rate constant for the case of free
 184 precession of the LLS. Given the evolution of zero-quantum coherences under the chemical shift
 185 difference, the density operator, starting from $ZQ_x + I_z S_z$, will have an oscillatory evolution
 186 between the two ZQ_x and ZQ_y as:

187

$$188 ZQ_x + I_z S_z \xrightarrow{(2\pi\nu_I I_z + 2\pi\nu_S S_z)t} ZQ_x \cos 2\pi\Delta\nu_{IS}t + ZQ_y \sin 2\pi\Delta\nu_{IS}t + I_z S_z \quad (10)$$

189

190 Considering a relaxation superoperator only for the dipolar interaction between two coupled spins:

191

$$192 \hat{\Gamma} = -\frac{6}{5}b_{DD}^2 \sum_{m=-2}^2 (-1)^m J(m * \omega) [T_{2,m} [T_{2,-m}]] \quad (11)$$

193

194 where b_{DD} is the dipolar coupling constant, $J(\omega)$ is the spectral density and $T_{2,m}$ are the spherical
 195 tensor spin operators of rank 2, the computed relaxation rate constant for the density operator
 196 $ZQ_x \cos 2\pi\Delta\nu_{IS}t + ZQ_y \sin 2\pi\Delta\nu_{IS}t + I_z S_z$ is

197
$$R(t) = -\frac{6}{5}b_{DD}^2((1 + \cos 2\pi\Delta\nu_{IS}t) \cdot J(0) + 3 \cdot J(\omega)) \cdot (\sin \frac{2\pi\Delta\nu_{IS}t}{2})^2 \quad (12)$$

198

199 Thus, only for $t = \frac{2n}{2\pi\Delta\nu_{IS}}$ the relaxation rate constant is null.

200

201 Juggling with operators in order to drive the spin system in its ‘soft bed’ we realized we should
 202 always look at Nature from various perspectives. We learned that if only one of the longitudinal
 203 two-spin order and zero-quantum components could be selected at time point (C) (Figure 1), Q_{LLS}
 204 would have been present already. For instance, ZZ-magnetization alone projects on the long-lived
 205 state, given that $2I_zS_z = \frac{1}{2}(|T_{-1}\rangle\langle T_{-1}| + |T_1\rangle\langle T_1| - |T_0\rangle\langle T_0| - |S_0\rangle\langle S_0|)$. Thus, during the
 206 sustaining period, only the singlet population will survive for a period much longer than
 207 longitudinal magnetization. In order to do so, we employed a Thrippleton-Keeler(Thrippleton &
 208 Keeler, 2003) filter to wipe out the troubling zero and double quantum coherences and obtained a
 209 singlet state with an amplitude two-times lower than using both zero-quantum and ZZ-
 210 magnetization. Other groups employed the so-called “pseudo singlet order”(Pileio, 2017) which is
 211 just $ZQ_x = \frac{1}{2}(|T_0\rangle\langle T_0| - |S_0\rangle\langle S_0|)$ as the source for long-lived state obtaining similar results.

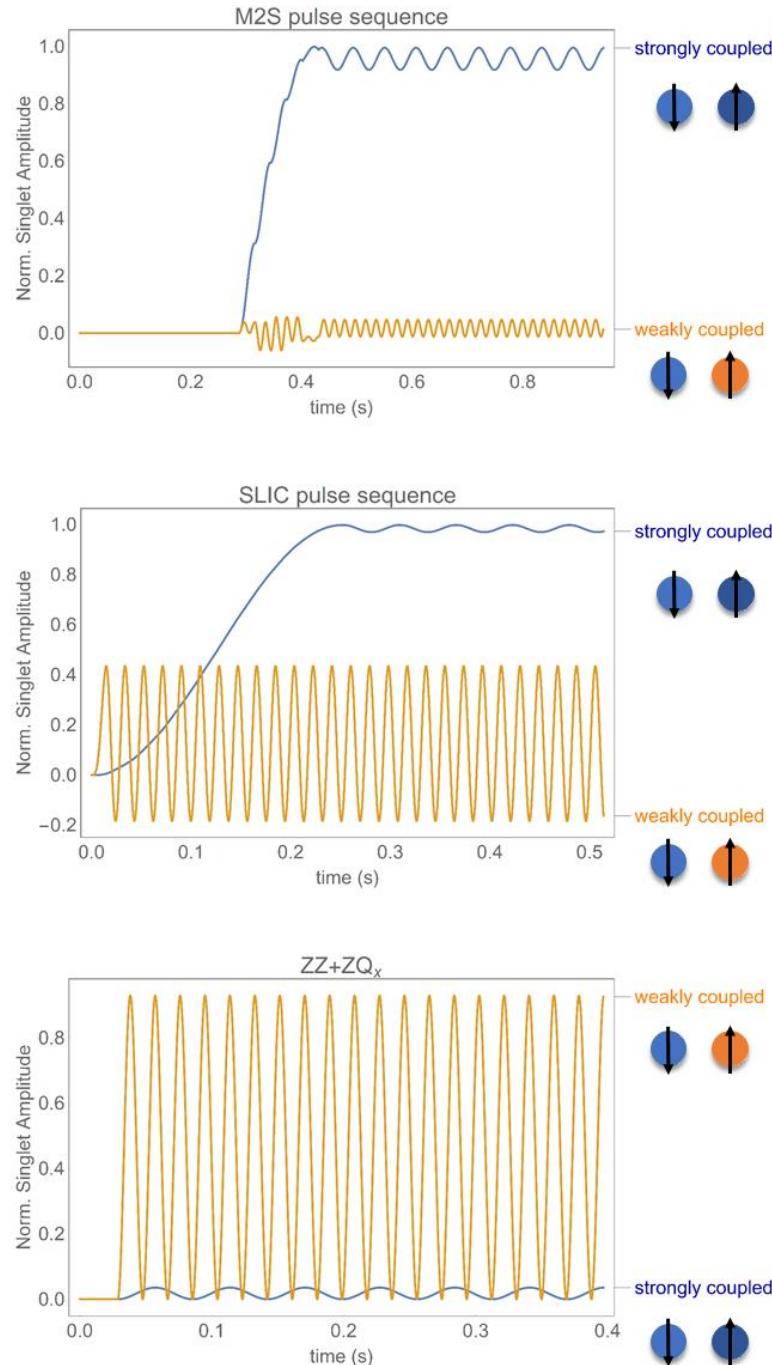
212

213 Though broadband excitation of singlet states would have deserved publication as a discovery in
 214 its own right, we were cautious to avoid publication of our research in slices of ‘salami
 215 science’(Sweedler, 2019). However, this advance proved relevant for the advancement of long-
 216 lived state order(Bengs et al., 2020; Pileio, 2017, 2020; Teleanu et al., 2021) and was more
 217 challenging to obtain than the 2D spectroscopy application for the study of singlet-state-based
 218 exchange we describe in the same paper(Sarkar et al., 2007) (SS-EXSY). In the tradition of finding
 219 low-key names for sequences such as ‘INEPT’(Morris & Freeman, 1979) or
 220 ‘INADEQUATE’(Bax et al., 1980), we could have named the zero-quantum rotation block of the
 221 pulse sequence in Figure 1 a ‘(ZZ-)ZEROTATION’.

222

223 As singlet-based applications ambition to store magnetisation for ever longer time periods, the
 224 most adapted systems to this purpose, quasi-equivalent spin pairs with J -couplings far
 225 outweighing the differences between the chemical shifts of the components, became increasingly

226 studied. Spin dynamics that shift the magnetisation of the two spins differentially to create the
227 singlet state are particularly challenging in such systems.


228 Pulse sequences of particular interest include the Magnetization-to-Singlet(Tayler & Levitt,
229 2011a) and Spin-Lock Induced Crossover(DeVience et al., 2013). These methods are suited for
230 strongly-coupled spins where the scalar coupling is larger than the chemical shift difference, while
231 the pulse sequence described in Figure 2, which we identify herein as “ZZ+ZQ_x” (Sarkar et al.,
232 2007), performs better in terms of long-lived states excitation in the weakly-coupled regime.
233 Several attempts to efficiently excite singlet order on broader domains of coupling regimes have
234 been recently devised(Bengs et al., 2020; Mamone et al., 2020). Figure 3 depicts numerical
235 simulations performed with SpinDynamica(Bengs & Levitt, 2018) for singlet population
236 excitation using the aforementioned pulse sequences for both weakly and strongly coupled regime
237 outlining the difference in excitation efficiency.

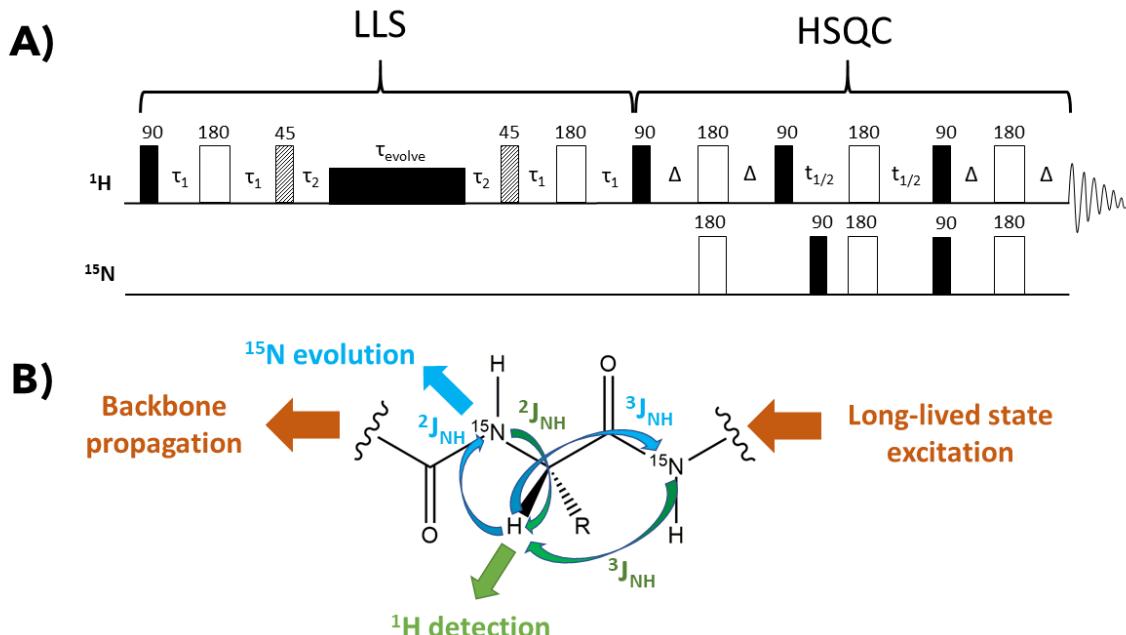
238

239 **3. Heteronuclei or proton long-lived states for conserving hyperpolarisation**

240 In order to maximise the magnetisation lifetime, heteronuclear longitudinal spin-order (mainly on
241 carbon-13) can be excited and used during evolution periods in both room-temperature(Bermel,
242 Bertini, Duma, et al., 2005; Richter et al., 2010) and hyperpolarised NMR. We strived to also
243 preserve hyperpolarization on a pair of hydrogens entwined in a long-lived state(P. R. Vasos et al.,
244 2009). Since the invention of dissolution-Dynamic Nuclear Polarisation (dissolution-
245 DNP)(Ardenkjær-Larsen et al., 2003; Balzan et al., 2016; Comment et al., 2008) and its
246 development in Lausanne by the team of A. Comment, S. Jannin, and J. van der Klink in the
247 Functional Imaging Laboratory at EPFL(Ardenkjær-Larsen et al., 2003; Balzan et al., 2016;
248 Comment et al., 2008), the topic was associated with our research due to its conjunction with long-
249 lived spin order(Ardenkjær-Larsen et al., 2003; Balzan et al., 2016; Comment et al., 2008).

250

251


252 Figure 3. Numerical simulations using SpinDynamica outlining the efficiency of singlet polarisation for
 253 M2S, SLIC and ZZ+ZQ_x pulse sequences in a two-spin system (by projecting the density operator during
 254 the pulse sequence onto the singlet population). The weakly-coupled system is described by $\{\Delta\nu_{IS} =$
 255 $50 \text{ Hz}; J_{IS} = 17.4 \text{ Hz}\}$, while the strongly coupled system features $\{\Delta\nu_{IS} = 2.8 \text{ Hz}; J_{IS} = 17.4 \text{ Hz}\}$. For
 256 each scenario, only the coherent evolution was considered in simulations (no relaxation dampening of the
 257 amplitude of source operators or LLS is taken into account). The excitation period is followed by a free-
 258 precession evolution after the maximum amplitude for the singlet population was reached.

259 The preservation of hyperpolarised magnetisation obtained by dissolution-DNP in long-lived
260 states raised fewer challenges than the comparison of the LLS with heteronuclear lifetimes in terms
261 of performance as polarisation batteries. The hyperpolarised magnetisation in samples stemming
262 from a polarizer such as the one developed in Lausanne and the similar one installed as the first
263 dissolution-DNP system in France(Ardenkjær-Larsen et al., 2003; Balzan et al., 2016; Comment
264 et al., 2008) followed intently the rf pulses in our high-resolution magnets. Inhomogeneities due
265 to fast dissolution and injection could be tamed to run pulse sequences for LLS excitation and
266 decoding and observe the signal. To us, the main issue remained that the benefits of a procedure
267 consisting of Q_{LLS} excitation on protons compared to simply preserving hyperpolarised
268 magnetisation in heteronuclei had to be carefully considered. We scrutinised this issue in terms of
269 magnetisation lifetimes in the given conditions (room temperature, molecular size) as well as in
270 the case of extreme molecular sizes or crowding of the environment and came to the conclusion
271 that proton-based LLS were valuable for storing magnetisation even when the molecules contained
272 isotope-enriched heteronuclei like ^{15}N or ^{13}C . In this analysis, we were inspired by similar
273 comparisons between proton and heteronuclear magnetisation carried out for relaxation rates of
274 heteronuclei and protons in large or paramagnetic proteins(Bermel, Bertini, Felli, et al., 2005).
275 A particularity surely due in large part to the interest of the research field, more than to our
276 particular research skills, was that we hardly underwent any uphill sisyphean battles to publish
277 papers(Molinié & Bodenhausen, 2013; *The Myth of Sisyphus - Wikiwand*, n.d.). Journal editors
278 believed in these developments as sincerely as we did. The only significant delays in publication
279 were incurred, paradoxically, for a paper submitted directly to a specialized journal(Balzan et al.,
280 2017), since the paper was one of the first obtained with our freshly-installed DNP system in
281 France. The reason may have been that, since hyperpolarisation lifetimes showed we had a kinship
282 with time, we could afford to wait.

283 Potential applications of symmetry-adapted states as magnetisation reservoirs for various 2D
284 experiments led us to investigate the polarization transfer from long-lived state of protons towards
285 heteronuclei across proteins' backbones (Figure 4)(L. Fernandes et al., 2013; Laetitia Fernandes
286 et al., 2013). The particular relaxation rates of LLS reflect conformational exchange and act as
287 probes for unravelling protein's inner dynamics, while 2D correlations (e.g., ^1H - ^{15}N) help
288 disentangle complex spectra, which is acutely needed in the analysis of unfolded or intrinsically
289 disordered proteins. The field of 2D heteronuclear experiments using long-lived spin order (Figure

290 4) is likely to develop further. As the field advances, long-lived states-based explorations of inter-
 291 molecular(Bornet et al., 2011; Stavarache et al., 2017) and intra-molecular(Ahuja et al., 2007;
 292 Tayler et al., 2010) interactions become important, and so becomes spectral resolution for the study
 293 of systems of increasing complexity.

294
 295

296

297 Figure 4. A) Pulse sequence designed to generate a two-dimensional correlation spectrum between
 298 ¹H and ¹⁵N via scalar coupling of the type $^2J_{\text{NH}}$ and $^3J_{\text{NH}}$ starting from a proton long-lived state. B)
 299 Schematic representation of polarization transfer along protein's backbone which generates a two-
 300 dimensional correlation spectrum via the $^2J_{\text{NH}}$ and $^3J_{\text{NH}}$ coupling constants. Protons are excited via
 301 the first part of the pulse sequence from (A) into a long-lived state spin order. Figure adapted from
 302 reference(Laetitia Fernandes et al., 2013).

303

304 4. Long-lived coherences, eppur' si muove

305 Aware of the potential of long magnetisation lifetimes for line-narrowing in NMR, we strived to
 306 obtain some type of magnetisation akin to LLS to rotate. Long lifetimes of magnetisation had been
 307 traded for spectral resolution, e.g., for ¹H-¹⁵N pairs in cross-correlated relaxation experiments and

308 for ^{15}N heteronuclei for narrowing spectroscopic lines(Goldman, 1984; Pervushin et al., 1997; Paul
309 R. Vasos et al., 2006).

310 Our search for ‘moving’ long-lived configurations first involved complicated coherences in
311 alanine, serine, and other molecules with up to five coupled spins(Ahuja et al., 2009). When we
312 finally resorted to our favorite paired Gly aliphatic protons of AlaGly, the I_x - S_x configuration was
313 deduced from the diagonalized Liouvillian(M. Caravetta & Levitt, 2005). The next hurdle
314 appeared in fitting the exotic long-lived states with products of oscillating and decaying functions
315 and translating them to signals in 2D spectra via Fourier transform-adapted spectroscopy (prior
316 experience non-conventional heteronuclear 2D experiments(Bertini et al., 2004; P.R. Vasos et al.,
317 2005) helped at this point). The simple scheme involving a 180 deg pulser for creating a Q_{LLC}
318 observable in the indirect dimension of a 2D experiment, where:

319

320
$$Q_{LLC} = (I_x - S_x) \cos(2\pi J_{IS}t) + (2I_y S_z - 2I_z S_y) \sin(2\pi J_{IS}t) \quad (13)$$

321

322 was further refined by different approaches (Figure S1), of which the most advanced itches
323 coherences with spins pointing in opposite ways in molecules with almost-equivalent
324 nuclei(Sheberstov et al., 2019).

325

326 When we sought for long-lived coherences in high fields, we were not aware yet that the
327 contemporary work on extremely low-frequency oscillations(Pileio et al., 2009) in low magnetic
328 fields developed at Southampton involved, practically, the same operators.

329

330 Just as in the case of LLS for hyperpolarisation safekeeping was compared to heteronuclear
331 storage, once LLC’s were developed comparisons with zero-quantum coherences came to mind.
332 For the case of two J -coupled, non-equivalent spins, I and S , the evolution of $\rho_1(0) = I_x - S_x$ and
333 $\rho_{ZQx}(0) = I_x S_x + I_y S_y$ during free-precession (without any radio-frequency ‘sustaining’ applied)
334 is given by:

335

336
$$\rho_1(t) = [(I_x - S_x) \cos(\pi J_{IS}t) + (2I_y S_z - 2I_z S_y) \sin(\pi J_{IS}t)] \cos\left(\frac{2\pi\Delta\nu_{IS}t}{2}\right) - [(I_y +$$


337
$$S_y) \cos(\pi J_{IS}t) - (2I_x S_z + 2I_z S_x) \sin(\pi J_{IS}t)] \sin\left(\frac{2\pi\Delta\nu_{IS}t}{2}\right) \quad (14)$$

338 $\rho_{ZQx}(t) = (I_x S_x + I_y S_y) \cos(2\pi\Delta\nu_{IS}t) + (I_y S_x - I_x S_y) \sin(2\pi\Delta\nu_{IS}t) = ZQx \cos(2\pi\Delta\nu_{IS}t) +$
 339 $ZQy \sin(2\pi\Delta\nu_{IS}t)$ (15)

340
 341 while in presence of rf fields with the carrier placed at the middle of their offsets ($v_1 = -\Delta\nu_{IS}/2$
 342 and $v_2 = \Delta\nu_{IS}/2$) and an amplitude $v_1 \gg \Delta\nu_{IS}$, the evolutions for the LLC and ZQ_x are:

343
 344 $\rho_{LLC}(t) = (I_x - S_x) \cos(2\pi J_{IS}t) + (I_y S_z - I_z S_y) \sin(2\pi J_{IS}t)$ (16)

345
 346 $\rho_{ZQx}(t) = I_x S_x + I_y S_y * \cos(2\pi v_1 t)^2 + I_z S_z * \sin(2\pi v_1 t)^2 + (I_y S_z +$
 347 $+ I_z S_y) \sin(2\pi v_1 t) \cos(2\pi v_1 t)$ (17)

348
 349
 350 Figure 5. Evolution of zero-quantum coherences during free precession with an oscillating frequency of
 351 $\Delta\nu_{IS}$ and evolution of long-lived coherences during sustaining period with an oscillating frequency equal
 352 to the scalar coupling constant J_{IS} .

353
 354 In the absence of sustaining rf fields, differences of single-quantum transverse coherences, the
 355 source of LLC's, evolve under the chemical shift difference and the scalar coupling, while ZQ's
 356 are immune to the latter(Cavanagh et al., 1995). In the second scenario, LLC's evolve only under
 357 the effect of J -coupling(Sarkar et al., 2010), oscillating between in-phase ($I_x - S_x$) and anti-phase
 358 ($2I_y S_z - 2I_z S_y$), with the coherence order equal to 1. Thus, the scalar coupling evolution sets
 359 LLC's aside from ZQ's (Figure 5).

360
 361 Broadband excitation of LLC's in molecules with broadly different J -couplings and chemical
 362 shifts is still a challenge, despite the progress. We explored part of the territory by exciting with a

363 series of selective 180 degrees pulses(Sarkar et al., 2011) and by sustaining with various pulse
364 trains(Sadet et al., 2014), but we can safely say that LLC's benefit from their simple and
365 parametric-free excitation scheme which consists of a selective π pulse and non-selective $\pi/2$ hard
366 pulse followed by spin-lock.

367

368

369 **Conclusions**

370 We present in detail and in perspective several challenging aspects of the mechanisms of zero-
371 quantum inversion with respect to longitudinal two-spin order in homonuclear spin systems.
372 Numerical simulations outlining the efficiency of different pulse sequences to create long-lived
373 states in different coupling regimes are discussed. The concepts are presented in order to find use
374 as building blocks in different applications.

375

376 **Author contribution**

377 FT and PV designed the study, FT performed the numerical simulations, FT and PV wrote the
378 paper.

379

380 **Competing interests**

381 The authors declare that they have no conflict of interest.

382

383 **Acknowledgement**

384 The authors thank Diana Serafin and Ioana Fidel for recent discussions in Bucharest, as well as
385 Riddhiman Sarkar, Karthik Gopalakrishnan, and Adonis Lupulescu for the discussions in
386 Lausanne. Financing was ensured by UEFISCDI PN-III-P4-ID-PCE-2020-2642, PN-III-P2-2.1-
387 PED-2019-4212 545PED/2020, the core project of the Romanian Ministry of Research, project
388 PN 1906 01 05/2019, the Extreme Light Infrastructure Nuclear Physics (ELI-NP) Phase II project
389 of the Romanian Government and the European Union through the European Regional
390 Development Fund and the Competitiveness Operational Programme (1/07.07.2016, ID 1334).

391

392 **Code availability**

393 The Mathematica notebook used for the simulations is provided as supplementary information.

394

395 **Bibliography**

396 Ahuja, P., Sarkar, R., Jannin, S., Vasos, P. R., & Bodenhausen, G. (2010). Proton hyperpolarisation
397 preserved in long-lived states. *Chemical Communications*, 46(43), 8192–8194.
398 <https://doi.org/10.1039/c0cc01953d>

399 Ahuja, P., Sarkar, R., Vasos, P. R., & Bodenhausen, G. (2007). Molecular properties determined from the
400 relaxation of long-lived spin states. *The Journal of Chemical Physics*, 127(13), 134112.
401 <https://doi.org/10.1063/1.2778429>

402 Ahuja, P., Sarkar, R., Vasos, P. R., & Bodenhausen, G. (2009). Long-lived States in Multiple-Spin Systems.
403 *ChemPhysChem*, 10(13), 2217–2220. <https://doi.org/10.1002/cphc.200900335>

404 Ardenkjær-Larsen, J. H., Fridlund, B., Gram, A., Hansson, G., Hansson, L., Lerche, M. H., Servin, R.,
405 Thaning, M., & Golman, K. (2003). Increase in signal-to-noise ratio of > 10,000 times in liquid-
406 state NMR. *Proceedings of the National Academy of Sciences*, 100(18), 10158–10163.
407 <https://doi.org/10.1073/pnas.1733835100>

408 Balzan, R., Fernandes, L., Comment, A., Pidial, L., Tavitian, B., & Vasos, P. R. (2016). Dissolution Dynamic
409 Nuclear Polarization Instrumentation for Real-time Enzymatic Reaction Rate Measurements by
410 NMR. *Jove-Journal of Visualized Experiments*, 108, e53548. <https://doi.org/10.3791/53548>

411 Balzan, R., Fernandes, L., Pidial, L., Comment, A., Tavitian, B., & Vasos, P. R. (2017). Pyruvate cellular
412 uptake and enzymatic conversion probed by dissolution DNP-NMR: The impact of overexpressed
413 membrane transporters. *Magnetic Resonance in Chemistry*, 55(6), 579–583.
414 <https://doi.org/10.1002/mrc.4553>

415 Bax, A., Freeman, R., & Kempsell, S. P. (1980). Natural abundance carbon-13-carbon-13 coupling
416 observed via double-quantum coherence. *Journal of the American Chemical Society*, 102(14),
417 4849–4851. <https://doi.org/10.1021/ja00534a056>

418 Bengs, C., & Levitt, M. H. (2018). SpinDynamica: Symbolic and numerical magnetic resonance in a
419 Mathematica environment. *Magnetic Resonance in Chemistry*, 56(6), 374–414.
420 <https://doi.org/10.1002/mrc.4642>

421 Bengs, C., Sabba, M., Jerschow, A., & Levitt, M. H. (2020). Generalised magnetisation-to-singlet-order
422 transfer in nuclear magnetic resonance. *Physical Chemistry Chemical Physics*, 22(17), 9703–
423 9712. <https://doi.org/10.1039/D0CP00935K>

424 Bermel, W., Bertini, I., Duma, L., Felli, I. C., Emsley, L., Pierattelli, R., & Vasos, P. R. (2005). Complete
425 assignment of heteronuclear protein resonances by protonless NMR spectroscopy. *Angewandte
426 Chemie - International Edition*, 44(20), 3089–3092.

427 Bermel, W., Bertini, I., Felli, I. C., Pierattelli, R., & Vasos, P. R. (2005). A selective experiment for the
428 sequential protein backbone assignment from 3D heteronuclear spectra. *Journal of Magnetic
429 Resonance*, 172(2), 324–328.

430 Bertini, I., Duma, L., Felli, I. C., Fey, M., Luchinat, C., Pierattelli, R., & Vasos, P. R. (2004). A heteronuclear
431 direct-detection NMR spectroscopy experiment for protein-backbone assignment. *Angewandte
432 Chemie - International Edition*, 43(17), 2257–2259.

433 Bornet, A., Jannin, S., Konter, J. A. (Ton), Hautle, P., van den Brandt, B., & Bodenhausen, G. (2011). Ultra
434 High-Resolution NMR: Sustained Induction Decays of Long-Lived Coherences. *Journal of the
435 American Chemical Society*, 133(39), 15644–15649. <https://doi.org/10.1021/ja2052792>

436 Caravetta, M., & Levitt, M. H. (2005). Theory of long-lived nuclear spin states in solution nuclear
437 magnetic resonance. I. Singlet states in low magnetic field. *Journal of Chemical Physics*, 122(21),
438 214505. <https://doi.org/10.1063/1.1893983>

439 Caravetta, Marina, Johannessen, O. G., & Levitt, M. H. (2004). Beyond the T1 Limit: Singlet Nuclear Spin
440 States in Low Magnetic Fields. *Physical Review Letters*, 92(15), 153003.
441 <https://doi.org/10.1103/PhysRevLett.92.153003>

442 Caravetta, Marina, & Levitt, M. H. (2004). Long-Lived Nuclear Spin States in High-Field Solution NMR.

443 *Journal of the American Chemical Society*, 126(20), 6228–6229.

444 <https://doi.org/10.1021/ja0490931>

445 Cavanagh, J., Fairbrother, W. J., III, A. G. P., & Skelton, N. J. (1995). *Protein NMR Spectroscopy: Principles*

446 *and Practice*. Elsevier.

447 Comment, A., van den Brandt, B., Uffmann, K., Kurdzesau, F., Jannin, S., Konter, J. A., Hautle, P.,

448 Wenckebach, W. T., Gruetter, R., & van der Klink, J. J. (2008). Principles of Operation of a DNP

449 Prepolarizer Coupled to a Rodent MRI Scanner. *Applied Magnetic Resonance*, 34(3), 313–319.

450 <https://doi.org/10.1007/s00723-008-0119-3>

451 DeVience, S. J., Walsworth, R. L., & Rosen, M. S. (2013). Preparation of Nuclear Spin Singlet States Using

452 Spin-Lock Induced Crossing. *Physical Review Letters*, 111(17), 173002.

453 <https://doi.org/10.1103/PhysRevLett.111.173002>

454 Ernst, R. R., & Anderson, W. A. (1966). Application of Fourier Transform Spectroscopy to Magnetic

455 Resonance. *Review of Scientific Instruments*, 37(1), 93–102. <https://doi.org/10.1063/1.1719961>

456 Fernandes, L., Guerniou, C., Marín-Montesinos, I., Pons, M., Kateb, F., & Vasos, P. R. (2013). Long-lived

457 states in an intrinsically disordered protein domain. *Magnetic Resonance in Chemistry*, 51(11),

458 729–733. <https://doi.org/10.1002/mrc.4008>

459 Fernandes, Laetitia, Sadet, A., Bolopion, A., Beaune, P., Kateb, F., & Vasos, P. R. (2013). Hauts champs,

460 pour la RMN des protéines désordonnées et la métabolomique de milieux complexes. *Spectra*

461 *Analyse*, 295.

462 Ferrage, F., Zoonens, M., Warschawski, D. E., Popot, J.-L., & Bodenhausen, G. (2003). Slow Diffusion of

463 Macromolecular Assemblies by a New Pulsed Field Gradient NMR Method. *Journal of the*

464 *American Chemical Society*, 125(9), 2541–2545. <https://doi.org/10.1021/ja0211407>

465 Goldman, M. (1984). Interference effects in the relaxation of a pair of unlike spin-12 nuclei. *Journal of*
466 *Magnetic Resonance (1969)*, 60(3), 437–452. [https://doi.org/10.1016/0022-2364\(84\)90055-6](https://doi.org/10.1016/0022-2364(84)90055-6)

467 Mamone, S., Rezaei-Ghaleh, N., Opazo, F., Griesinger, C., & Glöggler, S. (2020). Singlet-filtered NMR
468 spectroscopy. *Science Advances*, 6(8), eaaz1955. <https://doi.org/10.1126/sciadv.aaz1955>

469 Molinié, A., & Bodenhausen, G. (2013). On toxic effects of scientific journals. *Journal of Biosciences*,
470 38(2), 189–199. <https://doi.org/10.1007/s12038-013-9328-5>

471 Morris, G. A., & Freeman, R. (1979). Enhancement of nuclear magnetic resonance signals by polarization
472 transfer. *Journal of the American Chemical Society*, 101(3), 760–762.
473 <https://doi.org/10.1021/ja00497a058>

474 Pervushin, K., Riek, R., Wider, G., & Wüthrich, K. (1997). Attenuated T2 relaxation by mutual cancellation
475 of dipole–dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures
476 of very large biological macromolecules in solution. *Proceedings of the National Academy of*
477 *Sciences*, 94(23), 12366–12371. <https://doi.org/10.1073/pnas.94.23.12366>

478 Pileio, G. (2017). Singlet NMR methodology in two-spin-1/2 systems. *Progress in Nuclear Magnetic*
479 *Resonance Spectroscopy*, 98–99, 1–19. <https://doi.org/10.1016/j.pnmrs.2016.11.002>

480 Pileio, G. (2020). *Long-lived Nuclear Spin Order: Theory and Applications*. Royal Society of Chemistry.

481 Pileio, G., Caravetta, M., & Levitt, M. H. (2009). Extremely Low-Frequency Spectroscopy in Low-Field
482 Nuclear Magnetic Resonance. *Physical Review Letters*, 103(8), 083002.
483 <https://doi.org/10.1103/PhysRevLett.103.083002>

484 *Richard R. Ernst – Nobel Lecture*. NobelPrize.org. Nobel Media AB 2021. Sun. 14 Mar 2021. (n.d.).
485 NobelPrize.Org. Retrieved March 14, 2021, from
486 <https://www.nobelprize.org/prizes/chemistry/1991/ernst/lecture/>

487 Richter, C., Kovacs, H., Buck, J., Wacker, A., Fürtig, B., Bermel, W., & Schwalbe, H. (2010). ^{13}C -direct
488 detected NMR experiments for the sequential J-based resonance assignment of RNA

489 oligonucleotides. *Journal of Biomolecular NMR*, 47(4), 259–269.

490 <https://doi.org/10.1007/s10858-010-9429-5>

491 Sadet, A., Fernandes, L., Kateb, F., Balzan, R., & Vasos, P. R. (2014). Long-lived coherences: Improved

492 dispersion in the frequency domain using continuous-wave and reduced-power windowed

493 sustaining irradiation. *The Journal of Chemical Physics*, 141(5), 054203.

494 <https://doi.org/10.1063/1.4891565>

495 Sarkar, R., Ahuja, P., Vasos, P. R., & Bodenhausen, G. (2010). Long-Lived Coherences for Homogeneous

496 Line Narrowing in Spectroscopy. *Physical Review Letters*, 104(5), 053001.

497 <https://doi.org/10.1103/PhysRevLett.104.053001>

498 Sarkar, R., Ahuja, P., Vasos, P. R., Bornet, A., Wagnières, O., & Bodenhausen, G. (2011). Long-lived

499 coherences for line-narrowing in high-field NMR. *Progress in Nuclear Magnetic Resonance*

500 *Spectroscopy*, 59(1), 83–90. <https://doi.org/10.1016/j.pnmrs.2010.10.002>

501 Sarkar, R., Vasos, P. R., & Bodenhausen, G. (2007). Singlet-State Exchange NMR Spectroscopy for the

502 Study of Very Slow Dynamic Processes. *Journal of the American Chemical Society*, 129(2), 328–

503 334. <https://doi.org/10.1021/ja0647396>

504 Sheberstov, K. F., Kiryutin, A. S., Bengs, C., Hill-Cousins, J. T., Brown, L. J., Brown, R. C. D., Pileio, G.,

505 Levitt, M. H., Yurkovskaya, A. V., & Ivanov, K. L. (2019). Excitation of singlet–triplet coherences in

506 pairs of nearly-equivalent spins. *Physical Chemistry Chemical Physics*, 21(11), 6087–6100.

507 <https://doi.org/10.1039/C9CP00451C>

508 Singh, M., & Kurur, N. D. (2015). An improved method for the measurement of lifetimes of long-lived

509 coherences in NMR. *RSC Advances*, 5(11), 8236–8238. <https://doi.org/10.1039/C4RA10535D>

510 Solomon, I. (1955). Relaxation Processes in a System of Two Spins. *Physical Review*, 99(2), 559–565.

511 <https://doi.org/10.1103/PhysRev.99.559>

512 Sørensen, O. W., Eich, G. W., Levitt, M. H., Bodenhausen, G., & Ernst, R. R. (1984). Product operator
513 formalism for the description of NMR pulse experiments. *Progress in Nuclear Magnetic
514 Resonance Spectroscopy*, 16, 163–192. [https://doi.org/10.1016/0079-6565\(84\)80005-9](https://doi.org/10.1016/0079-6565(84)80005-9)

515 Stavarache, C., Hanganu, A., Paun, A., Paraschivescu, C., Matache, M., & Vasos, P. R. (2017). Long-lived
516 states detect interactions between small molecules and diamagnetic metal ions. *Journal of
517 Magnetic Resonance*, 284, 15–19.

518 Stevanato, G. (2015). *Long-lived states in multi-spin systems* [PhD Thesis, University of Southampton].
519 <https://eprints.soton.ac.uk/387347/>

520 Stevanato, G. (2020). Chapter 2:Symmetry and Long-lived Spin Order. In *Long-lived Nuclear Spin Order*
521 (pp. 33–63). <https://doi.org/10.1039/9781788019972-00033>

522 Sweedler, J. V. (2019). Salami Publications and Duplicate Submissions: Put Them on Your List of Things to
523 Avoid. *Analytical Chemistry*, 91(5), 3177–3178. <https://doi.org/10.1021/acs.analchem.9b00904>

524 Tayler, M. C. D., & Levitt, M. H. (2011a). Singlet nuclear magnetic resonance of nearly-equivalent spins.
525 *Physical Chemistry Chemical Physics*, 13(13), 5556–5560. <https://doi.org/10.1039/C0CP02293D>

526 Tayler, M. C. D., & Levitt, M. H. (2011b). Singlet nuclear magnetic resonance of nearly-equivalent spins.
527 *Physical Chemistry Chemical Physics*, 13(13), 5556–5560. <https://doi.org/10.1039/C0CP02293D>

528 Tayler, M. C. D., Marie, S., Ganesan, A., & Levitt, M. H. (2010). Determination of Molecular Torsion
529 Angles Using Nuclear Singlet Relaxation. *Journal of the American Chemical Society*, 132(24),
530 8225–8227. <https://doi.org/10.1021/ja1012917>

531 Teleanu, F., Sadet, A., & Vasos, P. R. (2021). Symmetry versus entropy: Long-lived states and coherences.
532 *Progress in Nuclear Magnetic Resonance Spectroscopy*, 122, 63–75.
533 <https://doi.org/10.1016/j.pnmrs.2020.12.002>

534 *The Myth of Sisyphus—Wikiwand*. (n.d.). Retrieved March 25, 2021, from
535 https://www.wikiwand.com/en/The_Myth_of_Sisyphus

536 Thrippleton, M. J., & Keeler, J. (2003). Elimination of Zero-Quantum Interference in Two-Dimensional
537 NMR Spectra. *Angewandte Chemie International Edition*, 42(33), 3938–3941.
538 <https://doi.org/10.1002/anie.200351947>

539 Vasos, P. R., Comment, A., Sarkar, R., Ahuja, P., Jannin, S., Ansermet, J.-P., Konter, J. A., Hautle, P.,
540 Brandt, B. van den, & Bodenhausen, G. (2009). Long-lived states to sustain hyperpolarized
541 magnetization. *Proceedings of the National Academy of Sciences*, 106(44), 18469–18473.
542 <https://doi.org/10.1073/pnas.0908123106>

543 Vasos, Paul R., Hall, J. B., Kuemmerle, R., & Fushman, D. (2006). Measurement of N-15 relaxation in
544 deuterated amide groups in proteins using direct nitrogen detection. *JOURNAL OF
545 BIOMOLECULAR NMR*, 36(1), 27–36. <https://doi.org/10.1007/s10858-006-9063-4>

546 Vasos, P.R., Hall, J. B., & Fushman, D. (2005). Spin-state selection for increased confidence in cross-
547 correlation rates measurements. *Journal of Biomolecular NMR*, 31(2), 149–154.

548

549