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Abstract. Chemical shift tensors in 13C solid-state NMR provide valuable localized information on the chemical bonding envi-

ronment in organic matter, and deviations from isotropic static-limit powder lineshapes sensitively encode dynamic-averaging

or orientation effects. Studies in 13C natural abundance require magic-angle spinning (MAS), where the analysis must thus

focus on spinning sidebands. We propose an alternative fitting procedure for spinning sidebands based upon a polynomial

expansion that is more efficient than the common numerical solution of the powder average. The approach plays out its advan-5

tages in the determination of CST principal values from spinning-sideband intensities and order parameters in non-isotropic

samples, which is here illustrated on the example of stretched glassy polycarbonate.

1 Introduction

The chemical-shift anisotropy (CSA) is one of the most useful interactions in solid-state NMR, as the principal values of its

tensor span a convenient frequency range for many relevant heteronuclei present in organic materials, such as 13C, 15N or 31P.10

Excluding effects of intermediate motions on the NMR timescale, deviations from the static-limit isotropic powder lineshapes,

characterized by the 3 principal values or the 3 commonly derived invariants (isotropic shift, anisotropy and asymmetry),

are immediately informative about the geometry of fast-limit motions (Kulik et al., 1994; Titman et al., 1994) as well as

orientation effects in non-isotropic samples (Maricq and Waugh, 1979; Hentschel et al., 1978). The latter are the main concern

of this contribution.15

The most complete information would be the extraction of the full orientation distribution function (ODF), which is best

achieved with the dedicated “DECODER” 2D experiment involving a mechanical sample flip (Schmidt-Rohr et al., 1992), or

with some compromises in special cases even from 1D spectra (Hempel and Schneider, 1982). Alternatively, the anisotropy

can be quantified by orientational moments, which are proportional to expansion coefficients of the orientation distribution in

terms of Legendre polynomials. For the evaluation of static powder lineshapes, two different schemes for the estimation of20

orientational moments were applied, (i) a decomposition of the spectra into elementary spectra belonging to different Legendre

polynomials (Hentschel et al., 1978), or (ii) the estimation of the orientational moments from the lineshape moments (Hempel

et al., 1999). All these low-resolution approaches suffer from spectral overlap, leaving selective isotope labeling, possibly also

1

https://doi.org/10.5194/mr-2021-39

DiscussionsO
pe

n 
A
cc

es
s

Preprint. Discussion started: 8 April 2021
c© Author(s) 2021. CC BY 4.0 License.



π/2

Spin
lock

Spin
lock

Decouple

Observe

t1 t2

Rotor
trigger

1H

13C

Figure 1. Pulse sequence for 2D syncMAS (Harbison et al., 1987). The direct dimension consists of the usual data acquisition time domain

after cross polarization, while the indirect dimension consists in an incrementation of the delay between a rotor trigger and the start of the

actual pulse sequence, covering a single rotor period Tr typically following t1 = iTr/2
n with i= 0 . . .2n (2n=16 in our case).

with 2H (Spiess, 1982) and harnessing its well-defined quadrupolar coupling, as a certainly non-routine and often unfeasible

alternative.25

Multiple sites even in natural abundance of 13C can of course be addressed in single experiments using fast magic-angle

spinning (MAS), but at the expense of removing the anisotropy effects from the spectra. One must then rely on recoupling

experiments such as CODEX (deAzevedo et al., 2000) or the more dedicated SUPER experiment (Liu et al., 2002), but these

are often subject to uncertainties related to scaling factors and line-broadening arising from experimental imperfections. In

this paper, we demonstrate that a somewhat “revisionist” approach of using lower spinning frequencies and the focus on a30

spinning sideband (SSB) manyfold can help to solve a given problem without strong requirements concerning the sample or

the spectrometer hardware. A simple comparison of sideband intensites of an isotropic vs. an oriented sample may be sufficient.

With some more effort in terms of experimental time, one can record a series of spectra with incremented triggered rotor phase,

resulting in the 2D “syncMAS” experiment (Harbison et al., 1987). which enables much better accuracy (see Fig. 1). A further

improvement in line separation is provided by the time-consuming 3D ORDER method (Titman et al., 1993), where spinning35

sidebands of different order a separated in different 2D planes of the 3D stack.

In any such experiment, precise knowledge of the CS tensor is required, which can again be deduced from MAS sidebands.

A famous analytical relation between tensor and SSB intensities was given by Herzfeld and Berger (1980). However, their

equation is far too complicated to be applied. Instead, computer programs involving numerical solutions of the powder average

integral are nowadays available and readily applicable. One can proceed along this line and obtain orientational moments40

in an anisotropic sample by numerical calculation of SSB subspectra. At this point, we argue that a more simple analytical

connection between SSB intensities and anisotropy parameters would be very helpful, for instance in the form of polynomials.

Then, well-etablished fitting procedures (such as Gauss-Newton, Levenberg-Marquardt and others) could be applied, also
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for the estimation of the uncertainties. The aims of this paper are as follows: (i) The introduction of an exact polynomial

representation of SSB intensities. This is tested by evaluating SSB in glycine, for which the CSA principle values are known45

from single-crystal measurements. (ii) The derivation of a sixth-order polynomial approximation of syncMAS NMR data. This

is demonstrated to be of great use in estimating the orientational moments in stretched glassy polycarbonate (PC). Our data

analysis approach offers more flexibility with regards to the inherent model assumptions, which cannot as easily be tested

or changed within the originally proposed data analysis scheme relying on pre-calculated subspectra (Harbison et al., 1987).

It goes without saying that our results are readily generalized for the case of dipole-dipole interactions (for heteronuclear or50

isolated homonuclear spin pairs), and also for first-order quadrupolar interactions (2H, 7Li).

2 Theoretical part

2.1 Definitions

2.1.1 CSA tensor parameters

In solid-state NMR, the anisotropic electronic shielding effect is written as a dimensionless tensor σ,55

Bloc = (1−σ)B0 , (1)

where B0 the external magnetic field and Bloc the local field at the position of the nucleus. The shielding effect is always

referenced to a known isotropic shift of a reference compound σref (1: unit tensor),

δ : = σ−σref · 1 . (2)

The tensor, henceforth referred to as CST (chemical-shift tensor), has only real eigenvalues and is uniquely defined by 6 inde-60

pendent quantities, where one commonly reports 3 eigenvalues and 3 Euler angles, the latter characterizing the orientation of

the principal-axes frame (PAF). For an isotropic static powder sample or a MAS sideband manifold the orientation information

is lost and one can only measure the 3 eigenvalues. We follow the common convention for the principal components: δ33 is the

eigenvalue which deviates most from the isotropic shift δiso := (δ11 + δ22 + δ33)/3, and δ22 deviates least. Alternatively, one

can also use only the invariants: isotropic shift δiso, anisotropy δ := δ33− δiso, and asymmetry parameter η := (δ22− δ11)/δ.65

With this we have two possiblities: δ33 < δiso ≤ δ22 ≤ δ11 and δ is positive, or δ33 > δiso ≥ δ22 ≥ δ11 and δ is negative. In either

case we fulfil the convention 0≤ η ≤ 1. For sake of simplicity we assume in the following that the spectrometer frequency is

set to the center of the powder pattern, i.e. δiso := 0.

We finally comment on an often neglected aspect: As there are 6 possibilities to assign the three eigenvalues to three principal

axes of the CST, there are 6 solutions for the pair {δ,η}. Exchange of the values for δ11 and δ22 simply changes the sign of η but70

cyclic permutation of the indices produces more complex changes. The resulting 6 value pairs all yield the identical static-limit

powder spectrum or SSB pattern. Only one of them fulfills 0≤ η ≤ 1, but some cases exist where it might be helpful to deviate

from this convention. One example is discussed below, where the CST of para-substituted phenylene carbons will be assigned
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in different ways to the PAF. For sake of simplicity, it will be advantageous to surrender the numbering order from above for

one of the carbons; the benefit will be a common frame for both carbons which simplifies the data evaluation appreciably.75

2.1.2 Angle conventions, transformations and orientational moments

The focus of the second part is on the description of orientational effects of molecular-scale structural units characterized by

a given distribution of orientations. Follwoing Harbison et al. (1987) and Schmidt-Rohr and Spiess (1994), we summarize the

relevant definitions. Starting with the common transformation from the PAF to the mlecular frame (which we will later identify

with a main-chain section of the polymer backbone), we need an additional frame that is related to the macroscopic sample80

deformation (“director frame”). The order of the required transformations is:

PAF→ molecular frame→ director frame→MAS rotor frame→ lab frame.

For the purpose of symbolic treatment, two changes are made to simplify the resulting expressions as much as possible.

For the background of both arguments, we refer to Hentschel et al. (1978); Harbison et al. (1987); Henrichs (1987). First, the

orientation of a frame with respect to its preceding one is characterized by three Euler angles. Following this scheme, for the85

transformation from one of the frames above to the next, three single-angle rotations are required. It is well-known property of

sequential Euler rotations that the first single-angle rotation of a succeeding transformation is simply the continuation of the

third single-angle rotation of the preceding transformation, i.e. both rotations are performed around the same axis. Particularly

for symbolic treatment the result will be simplified substantially if both equal-axis rotations are combined to a single rotation

by the sum angle. This simplifies the problem to only two rotations per transformation between succeeding frames, which are90

(1) rotation around the z axis such that the y axis is parallel to the new y axis and both xz planes are parallel, and (2) rotation

around the y axis to reach the new frame. This results in a sequence of 4 double rotations alternating around z and y axes

instead of 4 triple transformations by the complete sets of Euler angles.

Second, the coordinate transformations are usually performed in Cartesian vector space, i.e., the 3x3 matrix of the CST is

multiplied bilinearly from left as well as from right with 3x3 matrices. Also here, a possibility for simplification is used which95

is in the spirit of using a spherical representation that relies on linear combination using Wigner matrix elements, but which

is defined in Cartesian space. We use symmetric matrices with 6 independent elements instead of 9 ones in the general case,

which do not require the full set of operations. Instead of the bilinear matrix operations, we rather use transformations in tensor

space (details are to be published under separate cover), in which the traceless part of the CST is represented by a 5-membered

column vector. The transformation matrices have the size 5x5, but have to be applied only once, from left. Matrices for z100

rotation and y rotation by angle ψ are denoted by Rz(ψ) and Ry(ψ), respectively.

The following angles are relevant:

– CST PAF to molecular frame: z rotation by ψ (azimuth) and y rotation by α (polar angle)

– molecular frame to director frame: z rotation by ε and y rotation by β

– director frame to rotor frame: z rotation by ϕ and y rotation by β2105
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– rotor frame to lab frame: z rotation by γ and y rotation by the magic angle ϑMA = arccos( 1√
3
)

With these definitions we can move to the specific features of the given problem. Following Roe (1970) we have an ODF

W (ε,cosβ,ϕ) of Euler angles. This function can be expanded in terms of Wigner matrices; the determination of the expansion

coefficients is the goal of our syncMAS experiments (see Fig. 1). For uniaxial deformation the ODF depends on the polar angle

β only, and not on the azimuth ϕ. In this case there is no preferred lateral orientation of the molecular units with respect to110

the plane spanned by the z axes of molecular frame and the director frame, which means that all ε have equal probability. It

is then sufficient to describe orientation effects by a 1D uniaxial function U(cosβ). It can be expanded in terms of Legendre

polynomials Pl(cosβ),

U (cosβ) =
∞∑

n=0

Cn Pn (cosβ) ; n ∈ N . (3)

The expansion coefficients are115

Cn =
1

2n+ 1
〈Pn〉 with 〈Pn〉 :=

1∫

0

Pn(cosβ) U(cosβ) dcosβ ; n ∈ {1, 2, ..} . (4)

According to Henrichs (1987) we denote the 〈Pn〉 as orientational moments. NMR methods are sensitive only to the symmetric

part of the ODF of the CSTs, U(cosβ); any non-zero skew-symmetric parts cannot be detected by evaluating CSA spectra;

hence all odd orientational moments vanish.

2.2 Calculation procedure120

The treatments of the 1D MAS and the 2D syncMAS experiments are largely equivalent, and we here summarize the sequence

of calculation steps.

1. Estimation of the angle Φ ("phase") between the instantaneous magnetization direction and the initial direction by time

integration of the instantaneous precession frequency ω(t);

Φ(t) =

t∫

0

ω(t′) dt′ (5)125

ω and therefore Φ will depend on the orientation of the CST with respect to B0, which depends periodically on time due

to MAS. The angles which describe the tensor orientation are chosen such that the time dependence is contained in one

angle termed rotor angle γ specifying the instantaneous rotor position.

For 1D MAS:

γ(t) = ωrt+ γ0 (6)130

For 2D syncMAS:

γ(t1, t2) = ωrt2 + γ0(t1) ; γ0(t1) = ωrt1 + γ00 (7)

5
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γ0 describes the rotor position at the end of signal excitation (= start of the data acquisition) of the current experiment;

γ00 describes the rotor position at the start of acquisition of the very first of the 2D slices. In case of 1D MAS, we

used the well-known equations from the literature for Φ(t), see the next section. For describing the 2D experiment, an135

equivalent analytical expression for the instantaneous precession frequency is easily derived and integrated.

2. Calculation of orientational averages of phase powers 〈Φn(t)〉or. In the particular case of an isotropic sample, this aver-

age is the powder average 〈Φn(t)〉powder.

3. Assembling the FID and estimation of the SSB intensities by Fourier analysis via

FID(t) =
〈
eiΦ(t)

〉
or

=
∞∑

n=0

in

n!
〈Φn(t)〉or (8)140

The periodicity of the MAS signal originates from the periodic modulation of the precession frequency. The integration

providing the phase generally gives the sum of a likewise periodic component and a linear component. If the angle

between rotation axis and B0 is exactly the magic angle arccos 1√
3

, and if the spectrometer frequency is set to the

isotropic average of the CS, the linear term vanishes and Φ is a purely periodic function. This further holds for the

orientation-averaged phase powers. Therefore, for physical reasons we expect periodic FIDs which can be written as145

Fourier series:

FID(t) =





∞∑
m=−∞

Im eimωrt for 1D MAS
∞∑

m=−∞

∞∑
k=−∞

Imk e
imωrt2 eikωrt1 for 2D syncMAS

(9)

After FT, the Im appear as intensities of the SSB in the 1D MAS spectrum and the Imk as intensities of the 2D SSB in

the 2D syncMAS spectrum.

2.3 Polynomials for 1D SSB intensities of an isotropic sample150

Step 1 (phase):

For this case we can neglect the intermediate transformations involving the molecular frame and the director frame, and use a

single transformtion from the CST PAF directly into the rotor frame using only the angles ψ (azimuth) and α (polar angle). In

the absence of thermal motion, the time dependence due to the motion of the tensor under MAS leads to (Schmidt-Rohr and

Spiess, 1994; Duer, 2002):155

Φ(t) =
ω0 δ

ωr

1
12

{
4
√

2 η sinαsin2ψ fc (t) + 2η cosαsin2ψ f2c (t)

−2
√

2(3− η cos2ψ)sin2α fs (t) +
[
3sin2α+

η

2
(3 + cos2α)cos2ψ

]
f2s (t)

}
(10)

with the abbreviations

fc (t) : =cos(ωrt+ γ0)− cosγ0 ; f2c (t) : = cos(2ωrt+ 2γ0)− cos2γ0 ;

fs (t) : =sin(ωrt+ γ0)− sinγ0 ; f2s (t) : = sin(2ωrt+ 2γ0)− sin2γ0 . (11)
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ω0 = 2πf0 with f0 being the Larmor frequency and ωr is the spinning rate in units of angular frequency.

160

Step 2 (orientational averages of phase powers):

Steps 2 and 3 could be performed by inserting these expressions into equation (8) by symbolic software (here Mathematica)

for n≤ 14. These are the same expressions as listed below. However, a general expression was not found in this way. To obtain

such a general expression for Φn with n ∈N to obtain terms of arbitrarily high order, we factorize 〈Φn〉 into a term which

depends only on time and one which depends only on orientation. The separation of time and orientation dependence enables165

symbolic calculations. This can be achieved by replacing

fc (t) = cos(ωrt+ γ0)− cosγ0 → −2sinγ2 sin
ωrt

2
with γ2 :=

ωrt

2
+ γ0 (12)

and similarily for fs(t), f2c(t) and f2s(t).

The phase powers can be written as

Φn =
(
ω0 δ

ωr

)n(
Asin

ωrt

2
+B sinωrt

)n
(13)170

with

A : =−2
√

2
3

[
η sinγ2 sinα sin2ψ+

1
2

cosγ2 sin2α (3− η cos2ψ)
]

B : =
1
3

{
−η sin2γ2 cosα sin2ψ+

1
2

cos2γ2

[
η
(
1 + cos2α

)
cos2ψ+ 3sin2α

]}
(14)

γ2 describes the rotor position in the middle of the integration interval [0, t] in eq. (5). It can be regarded as an azimuthal angle

which can be used for a powder average. Therefore, A and B are effectively time-invariant. In combination with the binomial

law we can convert eqn. (13) to175

Φn =
(
ω0 δ

ωr

)n [n/2]∑

k=0

(
n

2k

)
A2kBn−2k sin2k ωrt

2
sinn−2kωrt . (15)

Here we made use of the fact that powder averages with odd powers of A vanish. [n/2] denotes the integer part of n/2.

We now have a sum of products in which orientation- and time-dependent terms are separated into separate factors. Thus,

powder average can be restricted to A2kBn−2k:

〈
A2kBn−2k

〉
ψ,α,γ2

=
1

8π2

2π∫

0

dγ2

π∫

0

dα sinα

2π∫

0

dψ A2kBn−2k (16)180

The following auxiliary formulae can be further be applied; for averaging over an azimuth ψ,

〈sinmψ cosnψ〉ψ =





(m−1)!!(n−1)!!
(m+n)!! if m and n are even

0 otherwise
(17)
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and for γ2, for averaging over a polar angle α.

〈cosnα sinmα〉cosα =
m!! (n− 1)!!
(m+n+ 1)!!

for even m and n . (18)

Both relations can be proven by complete induction; see the Supplement S1. The operation !! denotes the double factorial185

(n! = n!! · (n− 1)!!).

Insertion of the auxiliary formulae yields

〈
A2kBn−2k

〉
or

=
k∑

p=0

k∑

q=0

n−2k∑

r=0

k!
p!q! (k− p− q)!

(
n− 2k
r

)〈
apbqck−p−qdren−2k−r〉

× (p+ r− 1)!! (q+n− 2k− r− 1)!!
(p+ q+n− 2k)!!

· 1 + (−1)p+r

2
· 1 + (−1)q+n−2k−r

2
. (19)

We insert eqn. (19) into eqn. (13) and replace the trigonometric expressions by complex exponentials (again applying the

binomial law ):190

sin2k ωrt

2
sinn−2kωrt=

1
(2i)n

2k∑

a=0

n−2k∑

b=0

(
2k
a

) (
n− 2k
b

)
(−1)a+b

ei(n−k−a−2b)ωrt (20)

〈Φn〉 is described now by a very long expression which can be found in the Supplement S2.

Step 3 (assembling the FID and Fourier analysis):

After inserting 〈Φn〉 into eqn. (8) and comparing with eqn. (9) we obtain for the Fourier coefficients195

Im =
∞∑

n=m

n!
2n

(
ω0 δ

ωr

)n [n/2]∑

k=0

n−2k∑

b=0

(−1)n−k−m−b

(n− k−m− 2b)!(3k−n+m+ 2b)!(n− 2k− b)!b!

×
k∑

p=0

k∑

q=0

n−2k∑

r=0

k!
p!q! (k− p− q)!

(
n− 2k
r

)
24k+r+p

6n
(−1)r

× (p+ r− 1)!! (q+n− 2k− r− 1)!!
(p+ q+n− 2k)!!

· 1 + (−1)r−p

2
· 1 + (−1)q+n−2k−r

2

×
q∑

s=0

(k−q−p)∑

t=0

(n−2k−r)∑

u=0

(−1)q−s+u
(
q

s

)(
k− p− q

t

)(
n− 2k− r

u

)
· (2k)!! · (p+ r+ 2s+ 2t+ 2u− 1)!!

(2k+ p+ r+ 2s+ 2t+ 2u+ 1)!!
×

×
(p+2s+2t+u)∑

v=0

(n−2k−r−u)∑

w=0

(−1)v3n−2k+p−r+2s+2t−v−w
(
p+ 2s+ 2t+u

v

)(
n− 2k− r−u

w

)
ηv+w+2k−p−2s−2t+r

× (v+w− 1)!!(2k− p− 2s− 2t+ r− 1)!!
(v+w+ 2k− p− 2s− 2t+ r)!!

· 1 + (−1)v+w

2
· 1 + (−1)r−p

2
(21)

This is our first core result. Within the infinite limits, this is an exact expression for the intensity of the SSB of m-th order,

not an approximation. In practice, this equation can be used for generating terms of arbitrary order. Importantly, its numerical

8
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evaluation will be appreciably faster than a numerical powder average of eqn. (8). However, it cannot be applied immediately

because of its complex structure. However, using symbolic software it is easily possible to create polynomials for Im to reach200

arbitrary precision; a Mathematica notebook is given in the Supplement S3. Just for the purpose of illustration, we here provide

the expression for the centerband up to 12th order in ω0/ωr (abbreviations: K1 := 3 + η2 and K2 := 1− η2):

I0 = 1− K2
1

20

(
δω0

ωr

)2

+
227K2

1

181 440

(
δω0

ωr

)4

− 49 471K3
1 + 4 428K2

2

2 802 159 360

(
δω0

ωr

)6

+
K1

(
1 466 405K3

1 − 709 776K2
2

)

9 146 248 151 040

(
δω0

ωr

)8

− K2
1

(
286 311 167K3

1 − 494 915 400K2
2

)

281 521 518 089 011 200

(
δω0

ωr

)10

+
998 271 153 509K6

1 − 2 160K2
2

(
1 577 931 893K3

1 + 218 222 883K2
2

)

209 789 835 279 931 146 240 000

(
δω0

ωr

)12

(22)

Analogous formulae for all SSB up to fourth order are provided in the Supplement S4.

2.4 Properties of the polynomials205

We consider it useful to discuss a few properties of the polynomials. Terms with even powers of R are symmetric and thus

invariant with respect to change of the sign of the sideband order, while the odd-power terms are skew-symmetric. This can be

written as

I±m =
∞∑

n=0

bm;2nR
2n ± K2R ·

∞∑

n=0

bm;2n+1R
2n . (23)

This property can be used for constructing polynomials which might possess better convergence behavior, namely sums and210

differences,

Im + I−m =2
∞∑

n=0

bm;2nR
2n

Im− I−m =2K2R ·
∞∑

n=0

bm;2n+1R
2n . (24)

The meaning of this substitution is that the properties of anisotropy and asymmetry can be separated almost completely into

one of the combinations. A physical rationale is that the difference between the two SSB of first order is the larger, the more

asymmetric the static powder pattern is, i.e. for η = 1, hence K2 = 0 (symmetric static line!) we expect Im = I−m. The axially215

symmetric tensor (η = 0, i.e.K2 maximum) yields the most asymmetric shape, so the difference between these two SSB should

be large. Contrarily, the average (or sum) of both is expected to be the larger, the larger is the anisotropy δ.

Specifically, to combine the SSB of first order, we define the quantities I+ = (I1 + I−1)/I0 and I− = (I1− I−1)/I0. By

polynomial division we obtain in decimal notation

I+ = 0.044 444 44 w2 + 0.000 723 104 0 w4 +
(
4.900 449× 10−6− 2.127 502× 10−5q2

)
w6

−
(
1.156 835× 10−7 + 4.384 854× 10−7q2

)
w8−

(
4.660 243× 10−9− 2.669 296× 10−9q2

)
w10

−
[
8.035 180× 10−11−

(
3.397 989× 10−10 + 3.261 380× 10−11q2

)
q2
]
w12 (25)220
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Figure 2. SSB combination I+ vs. w = (ω0δ/ωr)
√

3 + η2 for q = 1 and different degrees of approximation. The numbers in the legend are

the maximum powers of w considered.

and

I− =− 0.019 047 62 q w3
[
1 + 0.020 959 6 w2 + 0.000 181 331 w4

−
(
2.592 966× 10−6− 2.214 666× 10−6q2

)
w6−

(
1.296 641× 10−7− 2.065 980× 10−7q2

)
w8 +O[w]10

]
,

(26)

where the two independent variables have the meaning

w :=
ω0δ

ωr

√
K1 =

ω0δ

ωr

√
3 + η2 and q :=

K2

K
3/2
1

=
1− η2

(3 + η2)3/2
. (27)

The variable w represents the ratio between anisotropy and spinning speed together with an additional η-dependent factor. q225

represents the tensor asymmetry in a way that η = 0 → q = 1/
√

27 and η = 1 → q = 0. In this representation, the asymmetry

(η) dependence resides almost completely in the prefactor, while the terms in the rectangular brackets vary less than I+ if the

asymmetry varies between its extremes, to be addressed below.

We thus summarize the advantages of such an approach:

1. These combinations depend on the two dimensionless variables w and q, which enables an easy extraction of the tensor230

parameters (w expresses the ratio of anisotropy and spinning frequency including an η component).

2. Fitting a ratio removes the need for fitting an additional, anyways arbitrary amplitude.

3. The powers of R increase from term to term by 2 instead of 1 as in the case of single SSB, leading to less terms needed

for a sufficiently good approximation. I+ curves assuming η = 1 for different degrees of approximation are shown in

10
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Fig.2, and demonstrate the relevance of higher-order terms for a given value of w. We can conclude that the use of the235

first two terms only (w4) is a very good approximation up to w ≈ 4, while terms up to 12th order are required to cover

w ≤ 5.

4. For not too small ωr, w dominates in the coefficients over q. Particularly, up to the 5th power in w, the sums also of

the other SSB depend only on K1 and the differences depend linearly on q (the prefactor), i.e. even for the maximum

value w for which the 12th-order approximation is well justified (w ≈ 5), we get I+ = 1.518 for η = 0 and I+ = 1.530240

for η = 1, which makes a difference of only 0.8%.

Therefore, the two eqs. (24) provide a means to separate the dependencies on the two invariants. To stress this point, Fig. 3a

shows I+ vs. w for a range η values, normalized to its dependence for η = 1. The variation range, somewhat amplified by the

narrow plotted interval, is less than 1%, thus very small, which confirms item 3. In contrast, I− features a strong variation with

q as well as η. However, looking again at the normalized dependence of I− on w (where we now need to distinguish positive245

(a)

(b)

Figure 3. (a) I+ and (b) I− for different η, normalized to their values at η = 1 and η = 0, respectively, as a function of w. Note the smallness

of the differences between the I+ curves in (a) of different η; they are less than 1%. Remarkably in (b) is the almost independent ratio

between the I− of different η.
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and negative values) plotted in Fig. 3b, we prove that this dependence is almost completely governed by the prefactor. In other

words, η is very sensitively encoded in I− once w is rather precisely determined from I+

In summary, two different approaches lend themselves to the analysis of actual data with the aim of extracting δ and η:

(1) One can include as many as possible SSB, trying to fit K1 and K2 by a fit to the SSB intensities including a normalization

factor as fit parameter. The tensor invariants are readily obtained by solving the given system of 2 nonlinear equations.250

(2) One can consider only first-order sidebands, check the magnitude of I+, then decide which level of approximation has to

be used, then calculate w, then q, possibly iteratively until self-consistency.

2.5 Derivation of the 6th order polynomials for the 2D syncMAS sidebands

Step 1 (Phase):255

For this treatment, two additional frames are needed as compared to the 1D MAS case of an isotropic sample, see Section 2.1.2.

As outlined there, we assume uniaxial symmetry around the unique deformation axis (director). Note that the rotor should be

packed in such a way that the director is perpendicular to the spinning axis, i.e. β2 = 90°. We employ our tensor-based approach

to performing the rotation transformations, see also Section 2.1.2. Taking δL and δM as the column vectors representing the

CST in the lab frame and in its main frame, respectively, we arrive at the following series of transformations:260

δL = Ry(ϑMA) .Rz(γ) .Ry

(π
2

)
.Rz(ϕ) . Ry(β) .Rz(ε) .Ry(α) .Rz(ψ) . δM (28)

The instantaneous frequency can now be calculated:

ω = ω0 δ
1

3
√

2
{−2sin2γ ([cosβ (E1 cosε+E2 sinε)− sinβ (E3 cos2ε+E4 sin2ε)]cosϕ

+
[
cos2β (E2 cosε−E1 sinε) + 1

2 sin2β
(√

3E5−E4 cos2ε+E3 sin2ε
)]

sinϕ
)

+2
√

2cosγ
([

cos2β (E2 cosε−E1 sinε) + 1
2 sin2β

(√
3E5−E4 cos2ε+E3 sin2ε

)]
cosϕ

+ [−cosβ (E1 cosε+E2 sinε) + sinβ (E3 cos2ε+E4 sin2ε)] sinϕ)

−2
√

2sinγ ([sinβ (E1 cosε+E2 sinε) + cosβ (E3 cos2ε+E4 sin2ε)]cos2ϕ

+ 1
4

[
2sin2β (E2 cosε−E1 sinε) + (3 + cos2β)(E4 cos2ε−E3 sin2ε) + 2

√
3E5sin2β

]
sin2ϕ

)

+cos2γ
(

1
4

[
(3 + cos2β)(E4 cos2ε−E3 sin2ε) + 2sin2β (E2 cosε−E1 sinε) + 2

√
3E5sin2β

]
cos2ϕ

− [sinβ (E1 cosε+E2 sinε) + cosβ (E3 cos2ε+E4 sin2ε)] sin2ϕ

+
√

3
2 E5

(
3cos2β− 1

)
+ 3

2

[
sin2β (−E2 cosε+E1 sinε) + sin2β (E4 cos2ε−E3 sin2ε)

])}

(29)

We obtain the phase accumulated from the end of signal excitation (t= 0) to time t by time integration:

Φ =
δ ·ω0

ωr

[
(aD1 + bD2)cosϕ+ (bD1− aD2)sinϕ+ (cD3 + dD4)cos2ϕ+ (dD3− cD4)sin2ϕ+

√
3 f D4

]
(30)265
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This is again a sum of products of solely t-dependent and of solely orientation-dependent terms. The former are

D1 =−
√

2
3

sinωrt2 sin(ωrt2 + 2ωrt1 + 2γ00)

D2 =
2
3

[sin(ωrt2 +ωrt1 + γ00)− sin(ωrt1 + γ00)]

D3 =
2
3

[cos(ωrt2 +ωrt1 + γ00)− cos(ωrt1 + γ00)]

D4 =
1√
6

sinωrt2 cos(ωrt2 + 2ωrt1 + 2γ00) (31)

The latter can be separated further into factors which depend on the three angles ϕ, β and ε describing the orientation of the

molecular segments:

a : = cosβ (E1 cosε+E2 sinε)− sinβ (E3 cos2ε+E4 sin2ε)

b : = cos2β (E2 cosε−E1 sinε) +
1
2

sin2β
(√

3E5−E4 cos2ε+E3 sin2ε
)

c : = sinβ (E1 cosε+E2 sinε) + cosβ (E3 cos2ε+E4 sin2ε)

d : =
1
4

[
2sin2β (E2 cosε−E1 sinε) + (3 + cos2β)(E4 cos2ε−E3 sin2ε) + 2

√
3E5sin2β

]

f : =
√

3
2
E5

(
3cos2β− 1

)
+

3
2
[
sin2β (−E2 cosε+E1 sinε) + sin2β (E4 cos2ε−E3 sin2ε)

]
(32)270

Here, the Ei (i ∈ {1..5}) (“geometry factors”) contain all information about the orientation of the CST PAF in the molecular

frame:

E1 =− η√
2

sinα sin2ψ

E2 =
1

2
√

2
sin2α [3− η cos2ψ]

E3 =
η√
2

cosα sin2ψ

E4 =
1

2
√

2

[
η(1 + cos2α)cos2ψ+ 3sin2α

]

E5 =
√

3
2
√

2

[
(3cos2α− 1) + η sin2αcos2ψ

]
(33)

Step 2 (Orientational averaging, here up to n= 6)

Orientation averaging of the powers of Φ reads275

〈Φn〉or =
1

8π2

2π∫

0

dϕ

π∫

0

· U (β) sinβ dβ

2π∫

0

dε Φn(ϕ,β,ε) , (34)

which now includes the non-isotropic, symmetric ODF (assuming equal probability of all ε). The β dependence of Φn after ϕ

and ε integration consists of cos2β to powers ≤ 6, which can be written as linear combinations of the Legendre polynomials

Pn(cosβ) with even n≤ 12. Hence, the result of the powder averaging procedure will be a linear combination of the orien-

tational moments 〈P2〉, 〈P4〉, 〈P6〉, 〈P8〉, 〈P10〉 and 〈P12〉; see also eqn. (4). Due to the small values which are expected for280
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〈P10〉 and 〈P12〉, the coefficients assigned to these orientational moments are neglected in the following. The phase powers

contain powers and mixed products of the time-dependent terms D1..D4. Transforming again the trigonometric forms into

exponential ones we obtain linear combinations of eimωrt2eikωrt1 .

Step 3 (assembling the FID and Fourier analysis):

Summing up the phase powers to obtain the FID expression corresponding to eqn. (8) and separating the Imk following eqn.285

(9) gives the complex 2D SSB intensities. All coefficients with odd k actually vanish, which is the mathematical reflection of

the fact that MAS rotation by 180◦ provides an invariant situation when the director is perpendicular to the spinning axis, i.e.

β2 = 90°. In other words, a full rotation replicates each arrangement twice if the director is perpendicular to the rotor axis (for

other sample packing schemes, odd-order sidebands will appear, requiring somewhat more lengthy calculations).

Instead of the complex representation of the SSB intensities, we use the trigonometric representation because here the phase290

problems can be eliminated in a more efficient way. This will be discussed in detail in the application section. Fourier analysis

along t1 gives

Im(t1) =
4∑

k=0

[Cm;2k cos(2kωrt1 + γ00) +Sm;2k sin(2kωrt1 + γ00)] . (35)

The trigonometric SSB intensities Cmk and Smk can be transformed to the complex ones and vice versa as follows:

Im;2k + Im;−2k = Cm;2k(k > 0)295

Im0 = Cm0 ⇒ Im;±2k =
1
2

(Cm;2k ∓ iSm;2k) (k > 0) (36)

iIm;2k − iIm;−2k = Sm;2k

Both kinds of coefficients contain the same information, however, the trigonometric coefficients include less terms. This arises

from the ± sign which leads to a cancellation of some terms upon addition. This could have the advantage that the intervals

between powers are larger and the error in neglecting higher powers above a certain value might be reduced.300

The linear dependence of the SSB intensities on the orientational moments mentioned above has the consequence that also

Cmk and Smk are linear in the orientational moments:

Cmk =
∑

p

Cm,k,2p〈P2p〉 ; Smk =
∑

p

Sm,k,2p 〈P2p〉 (37)

Cm,k,2p and Sm,k,2p depend on δ, η and the two angles α and ψ (which are the spherical coordinates of the molecular vector

in the CST PAF, see above). Analytical expressions for them are listed for some low m and k in Supplement S5.305
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Figure 4. I+ vs. rotation period Tr for the COO resonance of glycine.

3 Applications of the polynomial approach

3.1 Tensor parameters from MAS SSB

Next, we describe a practical test of the polynomial expansion of SSB intensities to extract actual tensor parameters, and

illustrate an effective procedure to reach this aim. We use glycine as an example and focus on the normalized sum and difference

of the first-order SSB intensities relative to that of the centerband, I+ and I−, respectively. Fig. 4 shows the variation of I+310

with the rotor period Tr, i.e., the inverse of the variable spinning frequency. The largest value amounts to about 1.2. As shown

in Figs. 2, this corresponds to w < 4.5 hence the 12th order approximation can be applied without compromise in accuracy

from the theory side. With the given Larmor frequency of 100.6 MHz we obtain δ2(3 + η2) = (2.165± 0.01)× 10−8.

The corresponding I− values give q = (−6.1± 2)× 10−3. The apparently large relative uncertainty should be judged in

proportion to the possible range 0≤ q ≤ 1/27 = 37×10−3. The negative sign of q means that δ is negative, i.e. that eigenvalue315

having the largest deviation from δiso is at lower CS (upfield-shifted, towards the right end of the spectrum).

Results for both carbon resonances of glycine are compiled in Table 1. For COO the agreement with the literature values

is very satisfactory, in particular for η. The values for CH2 deviate more an a relative scale; possible reasons are (i) that the

spinning speed was optimized for investigation of COO, leading to small SSB intensities for CH2 with its much narrower

tensor, and (ii) that the dipolar coupling to 14N is not completely averaged by MAS because of the quadrupolar interaction, the320

contribution of which could be separated in the static single-crystal experiments of Griffin et al. (1975). The cross-polarization

time was 1 ms which appears sufficiently to avoid some bias of the isotropic powder average, especially in a proton-rich

enviroment.

15

https://doi.org/10.5194/mr-2021-39

DiscussionsO
pe

n 
A
cc

es
s

Preprint. Discussion started: 8 April 2021
c© Author(s) 2021. CC BY 4.0 License.



Table 1. CS tensor parameters of glycine obtained by the polynomial procedure and comparison with literature values (Griffin et al., 1975;

Haberkorn et al., 1981)

.

Group δ/ppm η

COO measured −74.1± 0.8 0.98± 0.02

literature value −70.65± 1 0.97

CH2 measured 23.46± 0.25 0.60± 0.03

literature value 20± 1 0.94

3.2 Segmental orientation from syncMAS

We now turn to a demonstration of our approach in analyzing syncMAS data to extract molecular orientations in a uniaxially325

oriented sample. We first address the chosen sample and the polymer-physical background shortly and present 13C spectra

together with the signal assignment in Section 3.2.1, and address the CST parameters in Section 3.2.2. The actual processing

and analyses of 2D syncMAS data are covered in the following sections, where Section 3.2.3 addresses phase distortions in the

2D experiment, Section 3.2.4 summarizes the result of Fourier analysis in the indirect dimension, Section 3.2.5 discusses the

ambiguities related to PAF vs. molecular-frame orientations, and Section 3.2.6 finally provides the orientational moments and330

a discusssion.

3.2.1 Background and 13C CP MAS spectra

To illustrate the use of our approach to estimate orientational order in a practically relevant case, we turn to a polycarbonate

(PC) sample (Makrolon GP clear 099 from Bayer) which was stretched in the glassy state to an elongation factor of 1.45. In

this process, the segments of the chains are expected to align. In an early application of 2D syncMAS to a similar sample335

polymer (Vogt et al., 1990), an order parameter 〈P2〉 of about 0.15 was reported for the methyl resonance at elongation. In

more detailed work focusing on static 2D experiments of 13C-labeled PC (Utz et al., 1999), a different deformation geometry

and a different angle convention for the director reference frame was used, rendering a comparison not straightforward. Here,

we do not elaborate on the polymer physics details and merely use this sample for a proof of principle of the method.

In the earlier work (Vogt et al., 1990), only results for the methyl resonance were reported, and no compeding reason was340

given with regards to why the other resonances were not evaluated. This was probably due to the limited spinning speed and

a corresponding lack of resolution. Moreover, the data analysis approach employing a fit using precalculated subspectra to

extract the orientation degree (Harbison et al., 1987) implies fixed assumptions on the relation of the CST PAF and the director

frame, which were probably not available for the other resonances. One key advantage of our approach is its flexibility to

change the CSA principle values and the related angles at no additional expense in calculation efficiency.345
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(a)

(b)

Figure 5. 13C CP MAS spectra of an isotropic PC sample with (a) 11 kHz and (b) 5.5 kHz spinning; for the resonance assignment see

Williams et al. (1977). SSBs are marked by asterisks. The spectrum in (b) was taken with 20,000 scans.

As to experimental details (Djukic et al., 2020), we carefully avoided orientation effects from the injection molding procedure

of the specimen via machining off the surface layer, and using precise video control of the true strain. A cylindrical piece of

3 mm outer diameter was cut with a dissecting knife from the center of the stretched specimen and inserted into a 4 mm MAS

rotor such that the stretching direction was placed along the radius of the rotor. For the determination of the CSA principal

values, an unstretched sample was powdered in order to fully remove possible anisotropy from the molding process, and350

compressed into a rotor. The cross-polarization (CP) MAS spectrum at 11 kHz spinning is shown in Fig. 5a.

For syncMAS, resolved spectral lines with unique assignments are needed. This is the case for the aromatic CH groups

(C3 and C4 in Fig. 5a), but the carbonate (CO3, C1) and both quaternary aromatic carbons (Cq, C2 and C5) are almost fully

superimposed. Here only an approximate analysis of the combined signal is possible. As to the methyl group (CH3, C7), we
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Table 2. CST parameters of all 13C positions in PC. The data for C1 and C2 are from Robyr et al. (1998). Those for C3, C4, C5 and C7 were

obtained by the polynomial procedure. For C5, a decomposition procedure was applied (see text). Column C5’ contains CST data of C5 but

obtained by mutual exchange of x1 and x3 axes. In all cases the eigenvalues are calculated from δiso, δ and η.

Parameter C1 C2 C3 C4 C5 C5’ C7

δiso 147.1 148.3 120.5 127.7 149.3±1.5 149.3±1.5 31±2

δ/ppm 89 92 -93.7± 1 −103.8± 1 -106.4±3.6 78.5±1.4 −34± 5

η 0.39 0.54 0.367± 0.04 0.407± 0.025 0.47±0.08 1.73±1.5 0.5± 0.2

δ11/ppm 84.9 77.9 184.5± 2 200.6± 1.5 227.5±3.5 42.9 56.5±4.5

δ22/ppm 120.1 127.2 150.2± 1.9 158.4± 1.3 177.5±3.5 177.5 39.5±4.5

δ33/ppm 236.4 239.9 26.8± 1 23.8± 1 42.9±4.5 227.5 -3±5.5

have sufficient SSB intensity only when the spinning speed is rather low, then leading to potential overlap with the more355

numerous aromatic SSBs. This can be seen even in Fig. 5 of Vogt et al. (1990), which shows PC spectrum at a spinning speed

which is sufficient to have both CH3 and Cq SSB, however, the separation between the SSB seems insufficient for truly precise

analysis. In our hands, a spinning frequency of 5.5 kHz was the best compromise for a joint analysis, see Fig. 5b.

3.2.2 Tensor parameters in PC

The availability of precise CST components and their orientation of the resonances of PC is not optimal; only for the CO3 and360

one of the Cq (C2) data are available (Robyr et al., 1998; Utz et al., 1999). In Table 2 we summarize all CST data which were

used for the calculation of orientational moments below.

The orientation of the PAF in the molecular frame cannot be deduced from the methods discussed in this work. We assume

that the eigenvalues follow the usual assignment for aromatic carbons, i.e., the axis related to largest eigenvalue (lowest shield-

ing) is parallel to the C–H bond, the axis related to the intermediate eigenvalue is perpendicular to C–H and in the ring plane,365

and the axis related to the lowest eigenvalue (largest shielding) is perpendicular to the ring plane. Possible deviations from

these orientations are commonly reported to be in the range of a few degrees only and are thus neglected. The numbering of

the axes, however, depends on the sign of δ corresponding to the convention mentioned above: For δ < 0, x3 is related to the

lowest eigenvalue and x1 is related to the largest eigenvalue, i.e. x3 ⊥ ring and x1 ‖ C–H. For δ > 0, these axes have to be

exchanged, see Fig. 6.370

Unfortunately, the resonances of C1, C2, and C5 are not resolved but rather almost fully overlapped. These positions,

however, play an important role in the data analysis of the syncMAS experiments. If the CST of all three positions were known,

the syncMAS signals could be calculated as superposition of the three curves. For both C1 and C2, the CST eigenvalues are

known from experiments on selectively 13C-labeled samples: δ = 89 ppm, η = 0.39 for C1 and δ = 92 ppm, η = 0.54 for C2

(Utz et al., 1999). Hence, the missing CST of C5 (one of the Cq) can be estimated if the SSB pattern of the line at 150 ppm is375
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Figure 6. Orientation of the 13C CST PAFs in the benzene ring (C3,4 are C–H and C2,5 are the para-substituted Cq). The orientation of the

C5 PAF corresponds to the convention mentioned above; for the alternative orientation, x1 axis and x3 axis had to be exchanged.
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Figure 7. χ2 vs. anisotropy and asymmetry parameters of C5 for p = 0.5. The cross marks the minimum position; the solid line shows the

confidence region.

considered as linear combination of the SSB patterns of one C1, two C2 and two C5 per monomer unit:

Im =
p IC1

m + 2 IC2
m + 2 IC5

m

p+ 4
(38)

This equation permits the calculation of the SSB pattern of C5, where p describes the relative CP efficiency of 13CO3, which

is expected to be lower than that of C2 and C5 because of a larger distance of C1 to any protons as compared with C2 and C5

(thus, 0< p≤ 1). The summed square deviation χ2 between measured and best-fit SSB intensities has a minimum at p≈ 0.5.380

Fig. 7 shows a 2D χ2 map vs. anisotropy and asymmetry parameter using the so-estimated p= 0.5. With the polynomial

method we obtained for carbon position C5: δ = (-106.6 ± 4) ppm and η = 0.48 ± 0.08. These values depend only weakly on

p; the error intervals include this already.

Returning to the PAF orientations, see again Fig. 6, x3 denotes the most-shielded direction (along the ring normal) and x1

the least-shielded one (along the C–H bond). This numbering is in agreement with the definitions from Section 2.1.1 as long as385
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the anisotropy is positive. In the case of C5, however, δ < 0. This means that the most-shielded direction is now that direction

which belongs to that CST eigenvalue which deviates mostly from δiso. Following the definition from above, x1 and x3 had

to exchange their directions. For the evaluation of the syncMAS data, however, it would be advantageous if both C2 and C5

were placed is a common frame. Then, for roughly 4/5 of the intensity ot this valuable signal, we have reliable CST values

and orientations, and small uncertainties related to the CO3 resonance will not matter much. If the PAF of C2 is used also for390

C5, anisotropy and asymmetry parameter of C5 change to δ = (78.2 ± 1) ppm and η = 1.71 ± 0.15. We use these values in

the following. The unusual value of η is a consequence of the exchange of axes. One can of course easily check that the CST

invariants as well as the eigenvalues are not influenced.

3.2.3 Fourier transform and 2D phase distortion

The relevant practical problem that is only partially described in the leading reference (Harbison et al., 1987) is the linear395

phase distortion along the indirect frequency dimension ω1 arising from the unknown angle γ00 between the sample director

and the rotor position that triggers the start of the pulse sequence in the case of t1 = 0. This phase distortion superimposes with

the “normal” phase shifts arising from quadrature detection and the pre-acquisition delay. Utmost stability of the spectrometer

over the long-lasting experiment is required to resolved the related issues. This concerns in particular the signal excitation

(CP conditions). It is thus advisable to run a series of identical 2D syncMAS spectra and sum them up to reduce the effects400

of spectrometer drift along t1. In addition, one can check the stability via the following combination of SSB which is almost

independent of t1:

0.8819 · I2 + 1.0121 · I1 + I0 + 0.5609 · I−1 + 0.8761 · I−2 (39)

This quantity should be constant within 0.1% across the different t1 increments.

Referring to eqn. (35), the SSB intensities oscillate with t1. This is valid for the real as well as for the imaginary parts of the405

spectra. For the special case of the director being perpendicular to the rotor axis, the 2D FID can be written as

FID (t1, t2) =
∑

m,k

Imk exp[2kωr (t1− t0)] · exp[i(mωrt2) +ϕ(ω2] · R (t2) , (40)

where ϕ(ω2) is the phase distortion (constant, linear, ...) in the direct dimension, R (t2) denotes signal damping during acqui-

sition and t0 is the unknown delay corresponding to γ00. The term −2kωrt0 corresponds to a linear phase distortion along ω1.

Both distortions sum up to a total phase distortion of ϕ(ω2)− 2kωrt0. They were separated via a procedure described in the410

following.

Performing only an FT along direct dimension, we obtain spectra Sp(t1,ω2) with absorptive (A) and dispersive (D) spectral

components of the centerband and the SSBs, whose overall intensities oscillate along indirect dimension:

Sp(t1,ω2) = eiϕ(ω2)
∑
k

{A ·Cmk cos2kωr (t1− t0)−D ·Smk sin2kωr (t1− t0)

+ i [D ·Cmk cos2kωr (t1− t0) +A ·Smk sin2kωr (t1− t0)]}
(41)
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Figure 8. SSB oscillations along t1 of carbon C3.

This means that for a general value of t1 an apparent phase distortion is detected because of an inevitable mixing of sin and cos415

terms already without ϕ(ω2). Because of variations of the Cmk and Smk, we will thus have different phase distortions already

from signal to signal within each 1D spectrum! An exception is t1− t0 = n ·Tr/2, because here the sin terms vanish.

A simple if not simplistic and laborious solution is to phase each signal of each slice separately and thus evaluate its intensity

as a function of t1. This procedure is only possible for sufficiently resolved spectral peaks and when neighboring peaks do not

differ strongly in their phase. Results of such analyses are exemplarily shown in Fig. 8. The oscillations can then be fitted with420

a combination of sine and cosine dependencies to determine the prefactors of the different harmonics, but a close look at eqn.

(41) reveals that an extraction of the Cmk and Smk is nearly impossible, because the absorptive and dispersive components of

the spectra along ω2 have been mixed. Therefore, the shown oscillations merely give a qualitative impression of the orientation

degree in the sample, and a quantitative analysis is possibly only via a brute-force numerical approach.

A separation of both phase contributions is possible, provided that the t1 incrementation is equidistant with N values over425

one rotation period Tr (t1 = iTr/2n with i= 0 . . .2n; 2n=16 in our case). Upon summation of all spectra, only terms without

trigonometric functions survive:

G0 (ω2) =
N−1∑

n=0

Sp

(
nTr

N
,ω2

)
= eiϕ(ω2) (A+ i D)Cm0 . (42)

Eqn. (42) represents a 1D spectrum that is distorted solely by phase shifts along the direct dimension, hence, the appropriate

parameters needed for phase correction can be determined on this basis only. This spectrum is shown as the bottom trace of430

Fig. 9. Subsequently all individual spectra obtained by the first FT can be corrected by these parameters, and phase distortions

left in the spectra are only those arising from t0. It is important to stress that this sum is not identical to the spectrum of the

isotropic sample. Instead, it also depends on the orientational moments, see the corresponding equations in Supplement S5. The

21

https://doi.org/10.5194/mr-2021-39

DiscussionsO
pe

n 
A
cc

es
s

Preprint. Discussion started: 8 April 2021
c© Author(s) 2021. CC BY 4.0 License.



reason is that the summation is an azimuthal average over the rotor positions upon signal excitation; for an isotropic powder

average, some sample orientations would be needed which cannot be reached by this uniaxial sample rotation.435

3.2.4 Obtaining Cmk and Smk by Fourier analysis in the indirect dimension

Conventional 2D FT is possible after applying the phase correction from the sum spectrum to all ω2 slices along t1 (Harbison

et al., 1987). But then only two slices will be close to having only absorptive lineshapes, one of which can be taken as the t1 = 0

slice via a roll-over of the time axis. However, identifying this one may be ambiguous with limited data quality, and one may not

have a spectrum at exactly that condition. Only then would a purely first-order (frequency-dependent) phase correction along440

ω1 provide absorptive spectral lines. Still then, an additional ambiguity with regards to the sign of the higher-order sidebands

arises, requiring the testing of different possibilities. In our hands, an alternative approach proved more feasible.

We suggest performing Fourier analysis separately for the real and imaginary parts of the result of the first FT along t2.

Under the given conditions, only even-numbered Fourier coefficients do not vanish. The ω2-dependent Fourier coefficients of

order 2k (k ∈ N) of the intermediate spectra are445

Gre,2k (ω2) = 1
π

2π∫
0

Re{S(t1,ω2)} exp{2ikωrt1} d(ωrt1) = [A(ω2)Cmk − i D(ω2)Smk]e2ikωrt0

Gim,2k (ω2) = 1
π

2π∫
0

Im{S(t1,ω2)} exp{2ikωrt1} d(ωrt1) = [D(ω2)Cmk + i A(ω2)Smk]e2ikωrt0 .

(43)

The new set of spectra Gre;im,2k (ω2) can be phased now; the correction angle of −2kωrt0 for Gre,2k (ω2) is constant with

respect to ω2, so one can apply the usual criterion of an as-absorptive-as-possible spectrum. The real part of a corrected

spectrum contains the Cmk as prefactors of A(ω2). Phasing of Gim,2k (ω2) by the same angle yields an absorptive signal in the

G0 (t1-sum)

Gre;2

Gim;2

Gre/im;4

Figure 9. Spectra along ω2 (in ppm) encoding the t1 Fourier coefficients as indicated. The lowest spectrum ist the sum of all slices in t1.
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imaginary part with Smk as prefactors. This is demonstrated for the higher Fourier coefficient spectra for k = 0, 2 and 4 shown450

in Fig. 9. As already noted by Harbison et al. (1987), appearance of significant intensities in the spectra of order k implies the

relevance of orientational moments of similar order.

The peak intensities (integrals, heights) in these spectra can be identified with our exact solution for the sideband intensities,

specifically, they can be used to estimate the Cmk and Smk:

Cmk
C00

=
Re{Gre,2k (δiso + mωr)}

Re{G0 (δiso)} ;
Smk
C00

=
Im{Gim,2k (δiso + mωr)}

Re{G0 (δiso)} . (44)455

The best values are those for 2k = 2 (Cm0 have better S/N, but for the estimation of the orientational moments their difference to

the isotropic SSB intensities have to be used, which are rather small). The possibility to extract higher orientational moments

from the Cmk and Smk by fitting depends on their accuracy and the availability of higher sideband orders. The full set of

Fourier coefficients extracted from our syncMAS experiment on oriented PC is provided in Supplement S6.

3.2.5 Segment vector and CS tensor orientation460

The theoretical considerations above are based on the assumption that all structural elements and therefore also all CST PAFs

have a uniaxial distribution around the axis of the director frame; we used an isotropic average for the angle ε. Therefore,

we have to be careful with regards to its definition on the segmental (monomer) level. Vogt et al. (1990) define the direction

of the segment vector as being perpendicular to the H3C-C-CH3 plane. This will be used here only for the description of

the orientation of this moiety, i.e., for the analysis of the results measured for the CH3 resonance. For the other parts of the465

monomer this is of little benefit, because the intramolecular angles between this direction and other bonds are not known with

sufficient accuracy.

Instead, for the other groups we use the connection line of the two ester oxygens of the carbonate group (C1). For the

chemical environment of this position, reliable structural data were published by Utz et al. (1999). These authors indeed

detected a distribution of tilt and torsion angles, so we used the averages for our purpose. These agree well with the results of470

SAXS experiments on crystalline diphenyl carbonate (King and Bryant, 1993). We considered also the latter results because

they can be assumed to deviate only little from PC in the vicinity of the CO3 group. From the data of both papers we estimated

values for the relevant bond angles. For our data evaluation we used following values. The ring is tilted by 17.6◦ against the

segmental vector (defining the “ring long axis”, i.e., the connection line of the para-substituted carbons); the torsional angle

around this axis is 53.2◦.475

3.2.6 Orientational moments

Following eqn. (37), the multilinear dependence of the oscillation coefficients on the orientational moments is used for

a multilinear regression procedure. All used experimental data are collected in the vector Y, the orientational moments

〈P2〉, 〈P4〉, 〈P6〉, 〈P8〉 form the vector P and the coefficients Cm,k,2p and Sm,k,2p are elements of a matrix X with as many

columns as orientational moments included, and rows determined by the available data. Eqn. (37) then reads480

Y = X.P . (45)
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Table 3. Orientational moments of PC stretched by a factor of 1.45 as obtained from our analyses and indicators of fitting quality.

Position 〈P2〉 〈P4〉 10∆I2 χ2

C1 + C2 + C5 0.234±0.04 -0.187±0.12 1.0×10−5 4.5×10−5

C3 0.21±0.05 – 1.2×10−5 8.9×10−5

C4 0.27±0.1 – 1.2×10−5 11.1×10−5

C7: ψ=0 0.22±0.08 -0.76±0.4 1.8×10−5 2.5×10−5

C7: ψ=90° 0.100±0.024 -0.065±0.01 1.8×10−5 1.4×10−5

The target quantity for optimization, i.e., the minimized sum square deviation (χ2) is given by

Pmin := argmin
P∈RN

[Y−X.P]2 =
[
XT.X

]−1
.XT.Y . (46)

In order to avoid the situation that a good fit is achieved by a too large number of physically irrelevant fitting parameters, we

proceeded as follows. In the first step, only 〈P2〉 was used. If the variance of this result χ2 = [Y−X.P]2 was exceeding the485

sum of squared experimental uncertainties (∆Y)2, 〈P4〉 was added to the result vector P, and so on. The results can be found

in Table 3. The confidence intervals are determined as the variation of P which doubles the variance. The second to last column

in Table 3 is the noise-related sum squared uncertainty of 10 SSB intensities considered. Only for the C1+C2+C5 combined

signal does χ2 from the best fit exceed this value significantly. This may be an indication of our incomplete knowledge on the

geometric parameters of the involved resonances.490

The Imk or alternatively the Cmk and Smk suffer from the ambiguity that the addition of Tr/2 to t0 and sign inversion of all

Imk, Smk and Cmk with odd k lead to the same FID. This is related to the unknown linear phase correction along ω1. Within

this experiment, there is no possibility to distinguish between the two situations. This means that one has to do two final fits,

one with all Cmk and Smk inverted for odd k. If one of these two cases leads to a physically implausible result, then this can

be used to identify the incorrect alternative. We have chosen the possibility which yields a positive orientational moment 〈P2〉495

for the C1+C2+C5 combined signal.

The results for the protonated carbons have a somewhat larger uncertainty. This might arise from their sensitivity to small

changes of the angle of rotation of rings around their long axis. Even though the angle was varied during data evaluation, χ2

remained at a level which is appreciably higher than the noise-related uncertainty. Moreover, 〈P4〉 variations lead to a rather

small increase of χ2; hence, these values are not shown in Table 3.500

We observe a rather gratifying correspondence of the results obtained for the aromatic resonances, including the ones that

overlap with the C1 (the CO3 group). For an interpretation of these results, we remind that these orientation degrees correspond

to a hypothetical segmental long axis, with respect to which we have positioned the CST PAFs (see the preceding subsection).

This axis is defined to be the connection vector of the ester oxygens of the CO3 group. Our values for are 〈P2〉 on averge even

somewhat higher than the value of about 0.15 published by Vogt et al. (1990), but a detailed comparison is difficult because505
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of the potential methodological issues of this work (see also below), and because of the different director frames used. In all,

we note that our result is of the same order of magnitude, thus providing good confirmation of our efficient and (we hope)

transparent approach to the data analysis. A notable and robust result is the comparably large and negative value of 〈P4〉 for

two of our resonances. Our approach thus allows us to extract more information than achieved previously.

The state of the art concerning orientation effects in strained glassy PC was presented by Utz et al. (1999), as they have ex-510

tracted the full ODF expanded in terms of up to 20 expansion coefficients from dedicated 13C static 2D experiments combined

with isotope labeling. As already noted, a direct comparison with their results is difficult because of the different deformation

geometry and the different angle conventions (essentially a rotation by 90◦). Details will be deferred to a future publication.

We can merely note that if we just consider a factor of −2 applied to their data to account for the 90◦ rotation of the reference

frame, their results for the second- and fourth-order expansion coefficients are of the same sign and magnitude as our 〈P2〉 and515

〈P4〉. As shown in their ODF, the negative 〈P4〉 may be related to a population of main-chain segments oriented almost per-

pendicular to the stretching axis. Further systematic studies, enabled by our more efficient approach applicable to non-labeled

samples, are planned.

For the CH3 group we note a rather large uncertainty, which arises naturally from the comparably small SSB intensities;

only 〈P2〉 could be estimated with sufficient accuracy. It is not possible to use a smaller spinning speed because of inevitable520

superpositions with SSBs of other resonances. The accuracy of the oscillation coefficients must be high; otherwise, the un-

certainties of the orientational moments become unacceptable. We wonder at this point how spectra like the ones published

by Vogt et al. (1990) could be analyzed at all. A precise evaluation would require a rather involved algorithm performing the

separation of the many overlapping, differently phased signals, but no comments along this line can be taken from that paper.

One straightforward ambiguity relates to the unknown orientations of the δ11 and δ22 eigenvalues, one of which points along525

the segmental direction. Results for both options are provided. In all, smaller and more ambiguous CH3-based values suggest

that the segment vector definition used here is more convenient than the one using the normal of the dimethyl plane; the latter

seems to exhibit more disorder.

4 Conclusions

In summary, we could show that our polynomial approximation of MAS spinning sideband intensities provides an efficient530

approach to extracting chemical-shift tensor elements, with an accuracy that can match dedicated single-crystal experiments or

the measurement of static powder lineshapes in single-site isotope-labeled compounds. It is stressed that the approach provides

in principle arbitrary accuracy and no specific numerical procedures (such as finite-step integrations). We have provided so far

unreported tensor parameters for selected aromatic 13C resonances of polycarbonate.

The approach is particularly suited for the determination of orientation degrees in anisotropic samples from spinning side-535

bands taken from 2D syncMAS spectra. Here, a number of so far underestimated fundamental problems was addressed, on

the one hand related to phase distortions inherent to the syncMAS method, and on the other hand related to the tensor orienta-

tions in the studied sample, i.e., stretched polycarbonate. Based on our polynomial approximation considering terms up to the
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6th power in δω0/ωr, we could confirm the results from previous studies of chain orientation in this polymer, but could also

provide a critical perspective and the need for further studies, possibly using isotope-labeled samples to confirm some of the540

necessary assumptions.
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