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Abstract. The evolution of nuclear spin magnetization during a radiofrequency pulse in the absence of relaxation or coupling

interactions can be described by three Euler angles. The Euler angles in turn can be obtained from the solution of a Riccati

differential equation; however, analytic solutions exist only for rectangular and chirp pulses. The Homotopy Analysis Method

is used to obtain new approximate solutions to the Riccati equation for shaped radiofrequency pulses in NMR spectroscopy.

The results of even relatively low orders of approximation are highly accurate and can be calculated very efficiently. The5

results are extended in a second application of the Homotopy Analysis Method to represent relaxation as a perturbation of the

magnetization trajectory calculated in the absence of relaxation. The Homotopy Analysis Method is powerful and flexible and

is likely to have other applications in magnetic resonance.

1 Introduction

Numerous aspects of NMR spectroscopy are formulated in terms of differential equations, few of which have closed-form10

analytical solutions. In an era characterized by ever-increasing computional capabilities, numerical solutions to such differential

equations are always possible and frequently are the preferred approach for applications, such as data analysis. However,

approximate solutions can provide useful formulas as well as insights difficult to discern from purely numerical results.

As one example, the net evolution of magnetization of an isolated spin during a radiofrequency pulse, i.e. in the absence

of relaxation and scalar or other coupling interactions, can be described by three rotations with Euler angles α(τp), β(τp),15

γ(τp), in which τp is the pulse length (Zhou et al., 1994; Siminovitch, 1997a, b). Shaped pulses, in which the amplitude (Rabi

frequency), phase, or radiofrequency are time-dependent, are widely applied in modern NMR spectroscopy and other magnetic

resonance techniques (Geen and Freeman, 1991; Emsley and Bodenhausen, 1992; Kupc̆e et al., 1995; Cavanagh et al., 2007).

The Euler angles for an arbitrary shaped pulse can be extracted from a numerical calculation in which the shaped pulse is

represented by a series of K short rectangular pulses with appropriate amplitudes and phases. Thus, the propagator for a20
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shaped pulse expressed in the Cartesian basis is given by (Siminovitch, 1995):

U = e−iγ(τp)Ize−iβ(τp)Ixe−iα(τp)Iz (1)

=

 e−i(α(τp)+γ(τp))/2 cos(β(τp)/2) −iei(α(τp)−γ(τp))/2 sin(β(τp)/2)

−ie−i(α(τp)−γ(τp))/2 sin(β(τp)/2) ei(α(τp)+γ(τp))/2 cos(β(τp)/2)

 (2)

=

K∏
k=1

Uk (3)

in which Ik are the Cartesian spin operators, the product is time-ordered from right to left, and the propagator for the kth25

rectangular pulse segment is:

Uk =

 cos(ωe∆tk/2)− icosθ sin(ωe∆tk/2) −ie−iφ sin(ωe∆tk/2)

−ieiφ sin(ωe∆tk/2) cos(ωe∆tk/2) + icosθ sin(ωe∆tk/2)

 (4)

In this expression, ω1k, φk and ∆tk are the radiofrequency field strength, phase angle, and duration of the kth pulse segment;

Ωk is the resonance offset in the rotating frame of reference during the kth pulse segment (and is constant if the offset is fixed);

ωe = (ω2
1k + Ω2

k)1/2 is the effective field; and θ = tan−1(ω1k/Ωk) is the tilt angle. Values of α(τp), β(τp), and γ(τp) then are30

obtained from the matrix elements of U.

Alternatively, the Euler angles can be determined from the solution of a Ricatti equation (Zhou et al., 1994):

df(t)

dt
=

1

2
ω+(t)f2(t) + iΩ(t)f(t) +

1

2
ω−(t) (5)

in which:

f(t) = tan

(
β(t)

2

)
eiγ(t) (6)35

ω±(t) = ωx(t)±iωy(t) and ωx(t) and ωy(t) are the Cartesian amplitude components of the radiofrequency field in the rotating

frame of reference. After solution of the Riccati equation, β(τp) and γ(τp) are obtained from the magnitude and argument of

f(τp) and the value of α(τp) is obtained by integration:

α(τp) =

τp∫
0

dt{ωx(t)sin[γ(t)]−ωy(t)cos[γ(t)]}/sin[β(t)] (7)

The Riccati equation can be transformed into a second-order differential equation:40

d2y(t)

dt2
−
[
dln [ω−(t)]

dt
+ iΩ(t)

]
dy(t)

dt
+

1

4
|ω(t)|2y(t) = 0 (8)

by use of the definition:

dln [y(t)]

dt
=−1

2
ω−(t)f(t) (9)
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A more compact form is obtained by defining:

ω̂−(t) = exp

i t∫
0

Ω(t′)dt′

ω−(t) (10)45

to yield:

d2y(t)

dt2
− dln [ω̂−(t)]

dt

dy(t)

dt
+

1

4
|ω̂(t)|2y(t) = 0 (11)

The Riccati differential equation only can be solved analytically for a single rectangular or chirp pulse. Approximate solutions

for arbitrary shaped pulses have been derived by perturbation theory for the limits of small, using Eq. (11), and large, using Eq.

(5), resonance offsets (Li et al., 2014); however, perturbation theory is unwieldly to apply to high order, and obviously depends50

on the perturbation parameters being small, in some respect.

The Homotopy Analysis Method (HAM) is a fairly recent development, first reported in 1992 (Liao, 1992), for approx-

imating solutions to differential equations, particularly non-linear ones. HAM does not depend on small parameters, unlike

perturbation theory, and has proven powerful in a number of applications outside of NMR spectroscopy (Liao, 2012). The

present paper illustrates HAM by application to the solutions of Eqs. (5) and (11) and subsequently in an extension to the55

Bloch equations, including relaxation.

2 Theory

In topology, a pair of functions defining different topological spaces are said to be homotopic if the shape defined by one func-

tion can be continuously transformed (deformed in the lexicon of topology) into the shape defined by the other. Analogously,

the essence of HAM is to map a function of interest, here y(t) (or f(t)), to a second function, Φ(t;q), which has a known60

solution and is a function of both t and an embedding parameter q ∈ [0,1].

This relationship is established by constructing the homotopy (Liao, 2012):

H [Φ(t;q) : q] = (1− q)L [Φ(t;q)− y0(t)]− qc0H(t)N [Φ(t;q)] (12)

in which L[ ] is a linear (differential) operator and N [ ] is an (non-linear differential) operator satisfying,

L [0] = 0 (13)65

N [y(t)] = 0 (14)

y0(t) is an initial approximation for the desired solution y(t), c0 6= 0 is a convergence control parameter and H(t) 6= 0 is an

auxiliary function (vide infra). From the homotopy equation, when q = 0,

H [Φ(t;0) : 0] = L [Φ(t;0)− y0(t)] (15)

Therefore, whenH [Φ(t;0) : 0] = 0, Eq. (13) requires Φ(t,0) = y0(t). Similarly, when q = 1,70

H [Φ(t;1) : 1] =−c0H(t)N [Φ(t,1)] (16)
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Therefore, whenH [Φ(t;1) : 1] = 0, Eq. (14) requires Φ(t,1) = y(t). Stated more succinctly, as q increases from 0→ 1, Φ(t;q)

deforms from the initial approximation y0(t) to the exact solution y(t). To proceed, the Maclaurin series for Φ(t;q) is assumed

to exist; conditions concerning convergence of the series are discussed by Liao (Liao, 2012):

Φ(t;q) =

∞∑
n=0

yn(t)qn (17)75

in which

yn(t) =
1

n!

dnΦ(t;q)

dqn

∣∣∣∣∣
q=0

(18)

Equation (17) has the desired properties Φ(t;0) = y0(t) and

Φ(t;1) = y(t) =

∞∑
n=0

yn(t) (19)

HAM then consists of successively determining yn(t), beginning with the initial approximation y0(t), until y(t) is approx-80

imated to desired accuracy. The choices of L[ ], y0(t), c0, and H(t) provide considerable flexibility in finding approximate

solutions to differential equations. For simplicity in the following, the auxiliary function H(t) = 1.

The iterative algorithm in HAM is illustrated by application to the second-order differential form of the Riccati equation. In

the first example, the non-linear operator is obtained from Eq. (11):

N [g(t)] =
d2g(t)

dt2
− dln [ω̂−(t)]

dt

dg(t)

dt
+

1

4
|ω̂(t)|2 (20)85

in which g(t) is an arbitrary function. The linear operator is chosen to be:

L [g(t)] =
d2g(t)

dt2
− dln [ω̂−(t)]

dt

dg(t)

dt
(21)

and the initial approximation is y0(t) = 1.

From the relationships of Eqs. (13) and (14) embedded in the initial homotopy, Eq. (12), the zeroth-order deformation

equation is defined as (Liao, 2012):90

(1− q)L [Φ(t;q)− y0(t)] = qc0N [Φ(t;q)] (22)

The derivative of Eq. (22) with respect to q yields the first-order deformation equation:

−L [Φ(t;q)− y0(t)] + (1− q)L
[
dΦ(t;q)

dq

]
= c0N [Φ(t;q)] + qc0

d

dq
N [Φ(t;q)] (23)

The limit q→ 0 gives:

−L [Φ(t,0)− y0(t)] +L
[
dΦ(t;q)

dq

∣∣∣
q=0

]
= c0N [Φ(t,0)]95

L [y1(t)] = c0N [y0(t)] (24)
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in which the second line is obtained using Φ(t,0) = y0(t) and Eq. (18). Substituting for N [ ], L[ ], and y0(t) yields

d2y1(t)

dt2
− dln [ω̂−(t)]

dt

dy1(t)

dt
= c0

(
d2y0(t)

dt2
− dln [ω̂−(t)]

dt

dy0(t)

dt
+

1

4
|ω̂(t)|2y0(t)

)
=
c0
4
|ω̂(t)|2 (25)

in which the second line is obtained using dy0(t)/dt= 0. This differential equation does not contain a term proportional to100

y1(t). Hence, the homogenous equation (setting the right-hand side to 0) can be solved by two successive integrations and the

inhomogeneous solution obtained by the technique of variation of parameters (Arfken et al., 2013). The solution is:

y1(t) =
c0
4

t∫
0

ω̂−(t′)

t′∫
0

ω̂+(t′′)dt′′dt′ (26)

The higher-order approximations yn(t) are obtained in similar fashion. The nth derivative with respect to q of Eq. (22) yields

(for n > 1):105

−nL
[
dn−1Φ(t;q)

dqn−1

]
+ (1− q)L

[
dnΦ(t;q)

dqn

]
= nc0

dn−1

dqn−1
N [Φ(t;q)] + qc0

dn

dqn
N [Φ(t;q)] (27)

Executing the derivatives, taking the limit q→ 0, and dividing both sides of the equation by n! gives:

d2yn(t)

dt2
− dln [ω̂−(t)]

dt

dyn(t)

dt
= (c0 + 1){d

2yn−1(t)

dt2
− dln [ω̂−(t)]

dt

dyn−1(t)

dt
}+

1

4
c0|ω̂(t)|2yn−1(t) (28)

with the solution obtained by the same approach as for Eq. (26):

yn(t) = (c0 + 1)yn−1(t) +
c0
4

t∫
0

ω̂−(t′)

t′∫
0

ω̂+(t′′)yn−1(t′′)dt′′dt′ (29)110

Successive use of Eqs. (26) and (29) allows y(t) and hence f(t) to be determined to arbitrary accuracy:

f(t) =

(
−2

ω−(t)

)
dln [y(t)]

dt
=

(
−2

ω−(t)

)∑N
m=0

dym(t)
dt∑N

n=0 yn(t)
(30)

in which N is the order of approximation. For completeness, the derivatives of Eqs. (26), and (29) are, respectively:

dy1(t)

dt
=
c0
4
ω̂−(t)

t∫
0

ω̂+(t′)dt′ (31)

dyn(t)

dt
= (c0 + 1)

dyn−1(t)

dt
+
c0
4
ω̂−(t)

t∫
0

ω̂+(t′)yn−1(t′)dt′ (32)115

Results obtained using y0(t) = 1 together with Eqs. (26) and (29-30) will be called Method 1 in the following discussion. The

iterated form of the above expressions for yn(t) have similarities to the Fourier intergrals obtained from average Hamiltonian

theory by Warren (Warren, 1984).
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The above choices of L[ ] and y0(t) are not unique. Different choices lead to different series approximations and hence

to different qualitative and quantitative results. As a second example, Ω(t) = Ω is assumed to be fixed and only amplitude-120

modulated pulses ω(t) with x-phase are considered (these assumptions can be relaxed as needed). Returning to Eq. (8):

N [g(t)] =
d2g(t)

dt2
−
[
dln [ω(t)]

dt
+ iΩ

]
dg(t)

dt
+

1

4
ω2(t)g(t) (33)

L [g(t)] =
d2g(t)

dt2
− dln [ω(t)]

dt

dg(t)

dt
+

1

4
ω2(t)g(t) (34)

y0(t) = cos

[
1

2
δ(t)

]
(35)

in which:125

δ(t) =

t∫
0

ω(t′)dt′ (36)

This choice of y0(t) satisfies:

d2y0(t)

dt2
− dln [ω(t)]

dt

dy0(t)

dt
+

1

4
ω2(t)y0(t) = 0 (37)

and is the exact on-resonance solution for y(t). Consequently, the first-order deformation equation leads to:

d2y1(t)

dt2
− dln [ω(t)]

dt

dy1(t)

dt
+

1

4
ω2(t)y1(t) =−ic0Ω

dy0(t)

dt
(38)130

The solutions to the homogeneous equation (setting the right-hand-side to 0) are y±(t) = e±iδ(t)/2. The method of variation of

parameters then gives the inhomogeneous solution as:

y1(t) =−ic0Ω

t∫
0

sin

[
δ(t)

2
− δ(t′)

2

]
sin

[
δ(t′)

2

]
dt′ (39)

The nth-order deformation equation for n > 1 is:

d2yn(t)

dt2
−
[
dln [ω(t)]

dt
+ iΩ

]
dyn(t)

dt
+

1

4
ω2(t)yn(t) =135

(1 + c0){d
2yn−1(t)

dt2
− dln [ω(t)]

dt

dyn−1(t)

dt
+

1

4
ω2(t)yn−1(t)}− ic0Ω

dyn−1(t)

dt
(40)

with the solution:

yn(t) = (1 + c0)yn−1(t)− ic0Ω

t∫
0

2

ω(t′)
sin

[
δ(t)

2
− δ(t′)

2

]
dyn−1(t′)

dt′
dt′ (41)

Each yn(t) is proportional to Ωn and these results yield a power series in Ω for y(t):

y(t) = y0(t) +

N∑
n=1

(2 + c0)yn(t) (42)140
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which is substituted into Eq. (30) to obtain f(t). Results using Eqs. (39), (41) and (42) will be called Method 2 in the following

discussion. For completeness, the derivatives of Eqs. (39) and (41) are:

dy1(t)

dt
=−ic0Ω

ω(t)

2

t∫
0

cos

[
δ(t)

2
− δ(t′)

2

]
sin

[
δ(t′)

2

]
dt′ (43)

dyn(t)

dt
= (1 + c0)

yn−1(t)

dt
− ic0Ω

ω(t)

2

t∫
0

2

ω(t′)
cos

[
δ(t)

2
− δ(t′)

2

]
dyn−1(t′)

dt′
dt′ (44)

2.1 Methods145

Numerical integration was performed using the trapezoid method, implemented in Python 3.6. Pulse shapes were discretized in

1000 increments. Rectangular pulses were simulated using ω1/(2π) = 25,000 Hz and an on-resonance 90° pulse length of 10.0

µs or ω1/(2π) = 250 Hz and an on-resonance 90° pulse length of 1 ms. Eburp-2 (Geen and Freeman, 1991) and Q5 (Emsley

and Bodenhausen, 1992) pulses were simulated using a maximum ω1/(2π) = 9,000 Hz and 90° pulse lengths of 455.2 µs and

504.9 µs, respectively. REBURP (Geen and Freeman, 1991) pulses were simulated using a maximum ω1/(2π) = 10,000 Hz150

and a 180° pulse length of 626.5 µs. WURST-20 (Kupc̆e and Freeman, 1995) pulses were were simulated using maximum

ω1/(2π) = 9512 Hz, frequency sweep of 50,000 Hz, and a pulse length of 440.0 µs.

Equation (7) can be recast as:

α(τp) =
i

4

τp∫
0

dt{ω+(t)f∗(t)−ω−(t)f(t)}{1 + |f(t)|2}/|f(t)|2 (45)

for numerical calculations; α(τp) also can be obtained from the argument of f(τp) calculated for the time-reversed pulse (Li155

et al., 2014). The latter is more computationally demanding, but more numerically stable, and was used for the results presented

herein.

2.2 Results and Discussion

In the present applications, HAM converts the second-order Riccati differential equation, Eq. (8), which cannot be solved

directly, into a series of second-order differential equations that have convenient solutions. The choice of y0(t) = 1 leads using160

Method 1 to simple iterative solutions that can be calculated very efficiently. The form of y0(t) given in Eq. (35) also could be

used in Eq. (24) to obtain an alternative expression for y1(t) to be substituted into Eqs. (29), and (30). The resulting first-order

expressions for y(t) are usually more accurate than the first-order results obtained using y0(t) = 1, but this advantage becomes

less pronounced at higher orders of approximation and comes at increased computational cost. Thus, Eqs. (26), (29), and (30)

are most suitable in practice.165

A first example of the results of the above analysis are given for a rectangular 90° pulse in Fig. 1. The integrals in Eqs. (26)

and (29) can be performed analytically for a rectangular pulse with amplitude ω1. For example, using Eq. (26):

y1(t) =
c0ω

2
1

4Ω2

(
1− eiΩt

)
+ i

c0ω
2
1t

4Ω
(46)
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Figure 1. HAM approximations for on-resonance 90° rectangular pulse with ω1/(2π) = 25,000 Hz. (black) Exact calculation of Euler

angles β(τp) and γ(τp). For a rectangular pulse, α(τp) = γ(τp). (blue, dotted) First-order, (reddish-purple, dashed) second-order, and (or-

ange, dash-dot-dotted) third-order HAM results using Method 1. (green, dash-dotted) Third-order result using the power series of Method 2.

Results are shown for (a,b) c0 = −1 and (c,d) c0 = −0.925. The exact, second-order HAM and third-order HAM curves for Method 1 are

virtually indistinguishable.

however, analytic calculations of higher order yn(t) do not have advantages over numerical integration. As shown in Fig. 1a,b,

the second- and third-order results obtained with Method 1 and c0 =−1 are nearly indistinguishable from the exact result170

of Eq. (4) (using τp = ∆τk) over the range of resonance offsets from 0 to Ω/ω1 = 151/2. The first-order result provides a

highly accurate estimate of γ(τp), but overestimates β(τp). The role of the convergence control parameter c0 is illustrated in

Fig. 1c,d. A value of c0 =−0.925 was chosen using Eqs. (46) and (30) to scale the first-order result for β(τp) to be equal

to π/2 at Ω = 0. As shown, the resulting first-order result using Method 1 is now nearly exact at all resonance offets. In the

present application, adjusting the convergence control parameter provides accuracy equivalent to one or two additional higher175

orders of approximation. Remarkably, this same value of c0 works well for a rectangular 180° pulse (not shown) as well as

90° EBURP-2, 90° Q5, and 180° REBURP and WURST inversion pulses (vide infra).

In contrast to the results of Method 1, the power series for y(t) obtained using Method 2 with c0 =−1, even to third-

order in Ω, is accurate for β(τp) only to slightly more than Ω/ω1 = 1.When c0 =−0.925, the third-order power series has

improved accuracy for resonance offsets up to nearly Ω/ω1 = 2. However, further increases in accuracy at larger resonance180

offsets require very large orders of approximation N in Eq. (42). For example, extending the accuracy of the power series

for β(τp) to offsets Ω/ω1 = 3.5 requires N = 50. The differences between the results of Method 1 and Method 2 reflects the

inevitable shortcomings of power series and perturbation approaches when the expansion parameter is not small.
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A more challenging example is given by the 90° EBURP-2 pulse (Geen and Freeman, 1991). In principle, the integrals in

Eqs. (26) and (29) can be performed analytically, because the pulse shape is expressed as a Fourier series (as are other pulses185

in the BURP (Geen and Freeman, 1991) and SNOB (Kupc̆e et al., 1995) families). In practice, the number of terms that must

be calculated becomes very large and numerical integration is much more efficient. Calculations using Method 1 are shown

in Fig. 2. With c0 =−1, the fifth-order approximation is extremely accurate compared with numerical calculations using Eqs.

(1-4) (Fig. 2a-c). With c0 =−0.925 (Fig. 2d-f), even the small deviations observed for the fifth-order HAM approximation

are eliminated and the third-order result is accurate except at the edge of the excitation band. In contrast, perturbation theory190

or power-series expansions (Method 2) are extremely poor at reproducing β(τp), essentially failing as soon as Ω is non-zero

(not shown). The accuracy of the Method 1 approximations over the full range of resonance offets shows that HAM, with

appropriate choice of linear operator and starting functions, can provide approximate solutions valid far outside the range of

perturbation theory.

The Gaussian Q5 90° pulse (Emsley and Bodenhausen, 1992) has a more complicated amplitude modulation profile than195

the EBURP-2 pulse and requires higher orders of approximation to obtain accurate results. Results obtained for Method 1 with

fifth- and seventh-order approximations are shown in Fig. 3. The seventh-order results is highly accurate for both c0 =−1 and

c0 =−0.925. The choice of c0 =−0.925 has a remarkable effect in increasing the accuracy the fifth-order approximation to

nearly that of the seventh-order result.

The application of HAM is not limited to 90° pulses nor to amplitude-modulated pulses. Figure 4 shows the performance200

of Method 1 for the 180° REBURP (Geen and Freeman, 1991) and WURST-20 inversion (Kupc̆e and Freeman, 1995) pulses.

As for the EBURP-2 pulse, the fifth-order approximation for the REBURP pulse is highly accurate for both c0 =−1 and

c0 =−0.925. The third-order approximation also is highly accurate when c0 =−0.925. The WURST-20 pulse uses a linear

frequency shift, generated by applying a quadratic phase shift during the pulse, and is an example of a phase-modulated or

complex waveform. Again, the more complicated waveform requires higher order approximation, but eleventh-order, with205

c0 =−1, or ninth-order, with c0 =−0.925, results are highly accurate.

Method 2 yields a power series for y(t). If c0 =−1, the resulting series is identical to the power series expansion obtained

from perturbation theory (Li et al., 2014), while c0 =−0.925 provides additional accuracy. However, as noted above, the

power series requires very high orders N to obtain accuracy comparable to results from modest orders using Method 1. Thus,

Method 1 is much more powerful for general calculations; however, the power series leads to a convenient expression for the210

near-resonance phase shift γ(τp). The first-order power series for y(t), assuming c0 =−1, yields:

f(t) =
sin
[
δ(t)

2

]
+ iΩ

∫ t
0

cos
[
δ(t)

2 −
δ(t′)

2

]
sin
[
δ(t′)

2

]
dt′

cos
[
δ(t)

2

]
− iΩ

∫ t
0

sin
[
δ(t′

2 −
δ(t′)

2

]
sin
[
δ(t′)

2

]
dt′

≈ tan

[
δ(t)

2

]1 + i
Ω

sin[δ(t)]

t∫
0

sin [δ(t′)]dt′

 (47)

in which the second equality is the expansion to first order in Ω and the resulting trigonometric functions have been simplified.

This result is identical to the previously reported result from first-order perturbation theory (Li et al., 2014). The argument of215
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Figure 2. HAM approximations for 90° EBURP-2 pulse.(black) Numerical calculation of Euler angles α(τp), β(τp), and γ(τp) using Eqs.

(1-4). (blue, dotted) First-order, (reddish-purple, dashed) second-order, (green, dash-dotted) third-order, and (orange, dash-dot-dotted) fifth-

order HAM results using Method 1. Results are shown for (a,b,c) c0 = −1 and (d,e,f) c0 = −0.925. The numerical calculation and fifth-order

HAM curves are nearly indistinguishable.

the first-order approximation of f(t) is a good estimate of the phase γ(τp) of the transverse magnetization following the pulse.

As noted above, the phase α(t) is obtained by repeating the calculation with the time-reversed pulse. Therefore, as concluded

from pertubation theory, an amplitude-modulated shaped pulse acts as an ideal rotation of angle β(τp) preceded and followed

by time delays τα and τγ over the frequency range for which the first-order approximation holds (Lescop et al., 2010; Li et al.,

2014):220

τα =
1

sin[δ(τp)]

τp∫
0

sin [δ(τp− t′)]dt′ (48)

τγ =
1

sin[δ(τp)]

τp∫
0

sin [δ(t′)]dt′ (49)
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Figure 3. HAM approximations for 90° Q5 pulse. (black) Numerical calculation of Euler angles α(τp), β(τp), and γ(τp) using Eqs. (1-4).

(blue, dotted) fifth-order and (orange, dash-dot-dotted) seventh-order HAM results using Eqs. (26) and (29). Results are shown for (a,b,c)

c0 = −1 and (d,e,f) c0 = −0.925. The numerical calculation and seventh-order HAM curves are nearly indistinguishable.

For a 90° pulse, the above equations can be written compactly as:

τα + iτγ =

τp∫
0

eiδ(t
′)dt′ (50)

The ratios τα/τp and τγ/τp are the average projections of a unit vector onto the z-axis and −y-axis respectively over the225

duration of the pulse (for a vector is oriented along the z-axis at time 0).
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Figure 4. HAM approximations for (a,b) REBURP and (c,d) WURST-20 inversion pulses. (black) Numerical calculation of Euler angle

β(τp) using Eqs. (1-4). (a,b) (blue, dotted) First-order, (reddish-purple, dashed) second-order, (green, dash-dotted) third-order, and (orange,

dash-dot-dotted) fifth-order HAM results using Method 1. (c,d) (blue, dotted) fifth-order, (reddish-purple, dashed) seventh-order, (green,

dash-dotted) ninth-order, and (orange, dash-dot-dotted) eleventh-order HAM results using Method 1. Results are shown for (a,c) c0 = −1 and

(b,d) c0 = −0.925. (a,b) The numerical calculation and (a,b) fifth-order and (c,d) eleventh-order HAM curves are nearly indistinguishable.

The above explications have focused on solutions to the transformed Riccati equation, Eq. (8). However, HAM also could

be applied directly to the original Riccati equation Eq. (5). For example, by analogy to the above appproaches, choosing

N [g(t)] =
dg(t)

dt
− 1

2
ω+(t)g2(t)− iΩg(t)− 1

2
ω−(t) (51)

L[g(t)] =
dg(t)

dt
− iΩg(t) (52)230

f0(t) = tan

[
δ(t)

2

]
(53)

in which f0(t) is the exact solution for Ω = 0, yields a series solution:

f(t) = tan

[
δ(t)

2

]
+

N∑
n=1

fn(t) (54)

The first-order result is obtained from the first-order deformation equation:

df1(t)

dt
− iΩf1(t) =−ic0Ωf0(t)235

f1(t) =−ic0ΩeiΩt
t∫

0

e−iΩt tan

[
δ(t′)

2

]
dt′ (55)
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However, additional terms in the series lack the simple iterative structure shown in Eqs. (29) and (41), because of the increasing

complexity of the higher-derivatives of Φ2(t;q) that must be calculated for the nth order deformation equation. For example,

the differential equations for the next two terms in the series for f(t) become:

df2(t)

dt
− iΩf2(t) = c0{

df1(t)

dt
− iΩf1(t)−ω(t)f0(t)f1(t)} (56)240

df3(t)

dt
− iΩf3(t) = c0{

df2(t)

dt
− iΩf2(t)− 2ω(t)f0(t)f2(t)−ω(t)f2

1 (t)} (57)

In addition, results obtained using Eq. (30) to obtain f(t) from y(t) generally are more accurate than results obtained by direct

calculation of f(t), at the same order of approximation. Thus, in this particular application, use of HAM with the transformed

Riccati equation, Eq. (8), yields more convenient expressions. Nonetheless, this example demonstrates the particular power

of HAM in directly converting the solution of a non-linear differential equation into a series of linear first-order differential245

equations, which always can be solved by integration (Liao, 2012).

For many applications, the Euler angles for a shaped pulse are easily obtained from Eqs. (1-4). However, calculations using

Eqs. (26) (29), and (30) (Method 1) are extremely efficient. In Python 3.6, the seventh-order HAM approximation for the Q5

pulse is approximately 20-fold faster than direct calculation using Eqs. (1-4). Thus, these approximations may be particularly

useful for computational design of radiofrequency pulses, in which many interations of a search or optimization routine are250

necessary (Gershenzon et al., 2008; Li et al., 2011; Nimbalkar et al., 2013; Asami et al., 2018).

The Euler angle representation is particularly convenient because, once calculated, the Euler angles can be used to determine

the outcome of a shaped pulse applied to arbitrary initial magnetization. The Ricatti equation can be extended to incorporate

radiation damping, but not relaxation, as discussed by Rourke (Rourke, 2002). However, the Euler angles can serve to generate

the initial approximations for a second application of HAM to obtain approximate solutions to the Bloch equations for particular255

initial conditions, including relaxation. In the following, Ω(t) = Ω is assumed to be fixed and only amplitude-modulated pulses

ω(t) with x-phase are considered (these assumptions can be relaxed as needed). The Bloch equations for a pulse applied with

x-phase can be written in the form:

d

dt
M̂(t) =−Γ(t)M̂z(t) +


0

0

eR2tR1M0

 (58)

in which,260

M̂(t) =


M̂x(t)

M̂y(t)

M̂z(t)

 (59)

Γ(t) =


0 Ω 0

−Ω 0 ωx(t)

0 −ωx(t) −(R2−R1)

 (60)
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Mk(t) = e−R2tM̂k(t) are the Cartesian components of the magnetization, and M0 is the equilibrium magnetization. The

use of transformed variables M̂(t) rather than M(t) simplifies the following discussion. The linear operator is chosen as

L[g(t)] = dg(t)/dt, in which g(t) = [gx(t),gy(t),gz(t)]
T is an arbitrary matrix function. The non-linear operator is265

N [g(t)] =
dg(t)

dt
+ Γ(t)g(t)−


0

0

eR2tR1M0

 (61)

The initial zeroth-order approximations for HAM are M̂0(t) = M0(t) and are given by the solutions to the Bloch equations

in the absence of exchange for initial equilibrium magnetization [0,0,M0]T . The initial approximations are calculated by using

the Euler angles determined from Method 1 described above. Thus,

d

dt
M̂0(t) + Γ(t)M̂0 = 0 (62)270

and the system of first-order deformation equations yield:

d

dt
M̂1(t) =−c0


0

0

(R2−R1)M̂z0(t) + eR2tR1M0

 (63)

giving M̂x1(t) = M̂y1(t) = 0, and:

M̂z1(t) =−c0

(R2−R1)

t∫
0

M̂z0(t′)dt′+
R1

R2
(eR2t− 1)M0


=−c0

[
(R2−R1)t < M̂z0(t)>+

R1

R2
(eR2t− 1)M0

]
(64)275

The first-order approximation of magnetization during the pulse is given by:

M(t) = e−R2t


Mx0(t)

My0(t)

Mz0(t) + M̂z1(t)

 (65)

At this level of approximation, relaxation of transverse magnetization depends simply on R2, while relaxation of Mz(t)

depends on the average z-magnetization during the pulse (calculated in the absence of relaxation). For macromolecules,

R2 >>R1 typically and the term proportional to R1/R2 is small.280

The nth-order deformation equation leads to the following expression for n > 1:

M̂n(t) = (1 + c0)M̂(n−1)(t)− c0

t∫
0

Γ(t′)M̂(n−1)(t
′)dt′ (66)
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If c0 =−1, the above recursive expressions can be written compactly as:

M̂n(t) = (−1)n−1

t∫
0

Γ(tn−1)dtn−1

tn−1∫
0

Γ(tn−2)dtn−2...

t2∫
0

Γ(t1)M̂1(t1)dt1 (67)

For a rectangular pulse applied to equilibrium magnetization (with magnitude set to unity for convenience), the initial285

approximations are:

M0(t) =


[1− cos(ωet)]cosθ sinθ

−sin(ωet)sinθ

cos(ωet)sin2 θ+ cos2 θ

 (68)

and

M̂z1(t) =−c0(R2−R1)

[
1

ωe
sin(ωet)sin2 θ+ tcos2 θ

]
− c0

R1

R2
(eR2t− 1) (69)

In this case, Γ(t) = Γ and the series of approximations given in Eq. (67) can be summed to give:290

M(t) = e−R2t{M0(t) +

t∫
0

eΓ(t−t′)


0

0

(R2−R1)Mz0(t′) + eR2t
′
R1M0

dt′} (70)

and yields identical results as direct integration of the Bloch equations. Equations (65), (67), and (70) explicitly show the effect

of relaxation as a perturbation of the evolution of magnetization in the absence of relaxation.

Figure 5 shows the magnetization components for rectangular 90◦, 180◦, 270◦, and 360◦ nominal on-resonance pulses in

the absence and presence of relaxation. Calculations were perfomed in the absence of relaxation using Eq. (68), and in the295

presence of relaxation using the HAM approximations, Eqs. (69) and (70). The first-order HAM approximation is surprisingly

accurate for moderate values of R2, except for cases in which < M̂z0(t)>= 0, such as the on-resonance 360◦ pulse. The

above expressions display the fundamental dependence of relaxation during a pulse applied to equilbrium magnetization on

the time-average z-magnetization.

2.3 Conclusion300

Fast, accurate methods for solving differential equations have widespread application in NMR spectroscopy. The present work

has illustrated the Homotopy Analysis Method (Liao, 2012) for approximating solutions for differential equations by appli-

cation to the Riccati differential equation for the Euler angle representation of radiofrequency pulse shapes and to solutions

of the Bloch equations incorporating relaxation. The freedom to select the linear operator, lowest-order approximate solution,

convergence control parameter, and auxiliary function is powerful in obtaining series solutions that are highly accurate for low305

orders of approximation and efficient to calculate or that provide qualitatively convenient series, allowing physical insight. It

can be expected that Homotopy Analysis Method will find other applications in NMR spectroscopy.
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Figure 5. HAM approximations for rectangular (a,b,c) 90◦, (d,e,f) 180◦, (g,h,i) 270◦, and (j,k,l) 360◦ pulses applied to initial z-

magnetization. Values of (a,d,g,j)Mx(Ω), (b,e,h,k),My(Ω), and (c,f,i,l)Mz(Ω) are shown as functions of resonance offset Ω. (black, dotted)

Magnetization components in absence of exchange using Eq. (68), (reddish-purple, dashed) first-order HAM approximation of the Bloch

equations using Eq. (69), and (blue, solid) exact HAM solution of the Bloch equations using Eq. (70). Calculations used ω1/(2π) = 250 Hz,

R1 = 2 s−1, R2 = 100 s−1, and c0 = −1.
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