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Abstract 16 

 17 

The relationship between the classic magnetic resonance density matrix relaxation theories of Bloch and 18 
Hubbard, and the modern Lindbladian master equation methods are explored.   These classic theories 19 
are in full agreement with the latest results obtained by the modern methods.  A careful scrutiny shows 20 
that this also holds true for Redfield’s later treatment, offered in 1965.  The early contributions of Bloch 21 
and Hubbard to rotating frame relaxation theory are also highlighted.  Taken together, these seminal 22 
efforts of Bloch and Hubbard can enjoy a new birth of contemporary relevance in magnetic resonance. 23 
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1. Introduction 24 

In a recent and important publication, Bengs and Levitt (Bengs 2019) formalize NMR relaxation theory 25 
for systems that deviate significantly from the equilibrium state, conditions that invalidate the high 26 
temperature, weak ordering approximation, a corner stone in the commonly used Redfield theory 27 
(Redfield 1957).  Bengs and Levitt employed very modern methods that arose in the late 1970’s and are 28 
now fundamental in the topic of open quantum systems.  These methods are often referred to 29 
eponymously as the “Lindbladian Form”.  In addition to the work of Bengs and Levitt, a useful tutorial on 30 
this topic can be found in the work of Manzano (Manzano 2020).   Even though many, if not all of the 31 
classic papers are cited in their offering of their own Lindbladian analysis, Bengs and Levitt were not 32 
aware that a result identical to their own was already offered by Bloch (Bloch 1957), and masterly 33 
expounded upon by Hubbard (Hubbard 1961).  This conclusion can be ascertained by a glance at Table 1 34 
of (Bengs 2019), where references to neither Bloch, nor Hubbard appear in the rightmost column.   From 35 
a study of past efforts, as reviewed by Bengs and Levitt along with their own results, this holds for 36 
Abragam, for Jeener, and for Ernst.  The significance of Bloch and Hubbard has gone unappreciated by 37 
the NMR community for decades. By approaching the problem from a new perspective, and 38 
importantly, with new experimental measurements on specially prepared spin systems, Bengs and Levitt 39 
have resolved a long standing and long misunderstood issue. 40 

This confusion over the results of Bloch and Hubbard is likely due, in part, to the use of difficult notation 41 
by Bloch.  Hubbard’s treatment is a significant improvement but also possesses a few obscure aspects.  42 
In that situation, it is not difficult to understand that nearly all NMR researchers rely on the simpler 43 
Redfield formalism, especially given the fact that the conditions under which the approximations are 44 
applicable, are those encountered in the vast majority of cases.  Bengs and Levitt make a detailed 45 
comparison between other proposals for a more proper relaxation theory that naturally contains the 46 
correct equilibrium steady state, and all are found to be defective in one way or another.  One argument 47 
for the importance of Bengs and Levitt’s effort, is their unequivocal and independent confirmation of 48 
the success of Bloch and Hubbard over the other formulations.  The claim, that a significant aspect of 49 
relaxation theory, with an overcast coastline, now enjoys blue sky, is a fair one. 50 

A brief exposition of Bloch’s main results, by way of Hubbard, using Hubbard’s own notation, appears 51 
therefore to be a worthwhile endeavor, with historical importance and reasonable expectations that 52 
such an effort will be of some interest to NMR researchers in general.  How this task has fallen into the 53 
hands of the author may also be of some help in orienting the reader. 54 

The origins reside in the author’s thesis work, a part of which involved the problem of anisotropic spin 55 
lattice relaxation measurements for deuterated molecules dissolved in a liquid crystalline matrix.  This 56 
induced the author to study all the early papers on relaxation theory very carefully.  Discovering the 57 
significance of Bloch, and the clarity of Hubbard’s exposition, left an indelible impression, even though 58 
the author happily used the simpler Redfield formalism for the task at hand.  The author abandoned the 59 
field in 1988 to pursue other interests, but always enjoyed reading the current NMR relaxation 60 
literature.  Twenty five years later, a coworker gently persuaded the author to work out aspects of 61 
relaxation and exchange during adiabatic sweeps (Barbara 2016).  After completing that task, the author 62 
reacquainted himself with Bloch and Hubbard in order to understand some lingering details.  This effort 63 
fully prepared the author to recognize how the work of Bloch and Hubbard tied into, and formed a 64 
precedent for, the recent efforts of Bengs and Levitt. 65 



4 
 

The main goal is then to go beyond a citation, and demonstrate the equivalence of the major result in 66 
Bengs and Levitt to that of Bloch and Hubbard.  The significant and original result offered here, is in the 67 
mathematical analysis required to reveal the equivalent success of Bloch and Hubbard towards the 68 
problem confronted and solved by Bengs and Levitt by their use of Lindbladian methods.  The effort is 69 
not trivial, and requires a careful study of Hubbard’s notation and the development of symmetry 70 
properties that Hubbard does not provide.  Furthermore, Hubbard offers expressions that in some ways 71 
are superior to the “fully reduced” Lindbladian form, as will be discussed in section 3.  In the conclusion 72 
section, the relation of these aspects of relaxation theory to later work by Redfield is commented on. 73 

A discussion of the Lindbladian form is presented beforehand, from a simple and very direct approach 74 
which possesses useful didactics, thereby allowing non experts to appreciate the essence of the 75 
formalism without going into a full review of the mathematical details involved in a rigorous proof.  76 
Since the Lindblad approach is rather new to the NMR literature, it can be helpful to have a more facile 77 
presentation.  Those readers interested in more details can find valuable sources in Bengs and Levitt, 78 
Manzano and (Gyamfi 2020).   79 

In addition to the Lindbladian form of Bloch’s generalized theory of relaxation, we take advantage of the 80 
opportunity to highlight Bloch’s and Hubbard’s early, and also largely unrecognized, contributions to the 81 
dynamics of spin locking and rotating frame relaxation.   Together these aspects form a basis for a 82 
renewed interest, or at the very least, a new and greater appreciation of these classic publications. 83 

 84 

2:  A Guide to Lindblad 85 

The original publications on the Lindblad form are of a very mathematical flavor, both for the case of 86 
finite dimensions, (Gorini 1976), as well as for a general Hilbert space (Lindblad 1976).  Because of these 87 
combined efforts, the Lindblad form is also often referred to as the GKSL equation. For finite 88 
dimensional problems, as is pertinent to NMR applications, it is possible to offer a straightforward 89 
method of construction, that is reasonably motivated and which uses elementary matrix algebra.   What 90 
follows below is very much ex post facto, and was developed by the author after reading Bengs and 91 
Levitt.  It is not without precedent however.  In an interesting historical overview of the Lindbladian 92 
form (Chruscinski 2017), one can find examples of nearly identical approaches and even a very early use 93 
of the Lindbladian form by Landau in 1927.  For a very readable tutorial and overview, Manzano and 94 
Gyamfi are recommended.  For strictly mathematical proofs on the semi-group, Gorini and Lindblad 95 
should be consulted. The reader should not interpret what follows as a replacement to the rigorous 96 
mathematical if and only if proofs of the semi-group.  The key to the approach is in the importance of 97 
matrix factoring.  Indeed, matrix factoring in terms of Kronecker products is an essential ingredient in 98 
the mathematical proofs, but its role is not often explicitly highlighted in the manner given here.  Matrix 99 
products also arise in a straight forward manner when relaxation theory is approached by way of weak 100 
coupling perturbation theory for the spin system and the bath, so that in this case the spin matrices are 101 
already factored.  Along the way, the simplest Lindbladian, the one used for exchange in NMR, and 102 
which involves the factoring of the identity matrix, is presented. 103 

As an ansatz, one can start from a generalized “state vector” dynamics, governed by a general complex 104 
matrix M 105 
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𝑐̇ =  𝑀  𝑐             (1) 106 

In Eq.(1), M generalizes what is usually the Hamiltonian, so that the equation, in a purely analogous 107 
manner, represents a type of “time dependent Schrodinger equation” for a finite number of states.  108 
From the vector components ci, we construct a Hermitian, rank-one “density matrix” with elements 109 

𝜚  =   𝑐 𝑐∗             (2) 110 

The square of all rank-one matrices are proportional to themselves, 𝜚 = 𝛼𝜚, so that in this case 𝛼 =111 
 Σ𝑐 𝑐∗.  However, keep in mind that the converse does not hold true.  The terminology of “rank” has a 112 
number of variants, and in this section we adopt the usage common in the theory of matrices (Halmos 113 
1958). 114 

The terms “state vector” and “density matrix” have been placed in quotation marks to emphasize their 115 
heuristic labels at this early stage of the construction. The dynamics of this “density matrix” are given by 116 

�̇� = 𝑀𝜚 +  𝜚𝑀                (3) 117 

The solution to Eq.(3) can be expressed as 118 

 𝜚(𝑡) = Υ(𝑡)𝜚(0)Υ(𝑡) ;  Υ̇(𝑡) = 𝑀Υ(t);   Υ(0) = 1          (4) 119 

Of course, Υ(t) is not unitary since M is not necessarily skew Hermitian.  After some type of ensemble 120 
averaging, the “density matrix” will no longer be rank one and will take on the character of a general 121 
Hermitian matrix.  This construction is a simple adaptation of the procedure delineated by Landau and 122 
Lifschitz (Landau 1977).  Conservation of probability 𝑇𝑟(�̇�) = 0 does not hold for Eq.(3), but we are now 123 
just two steps away from rectifying that shortcoming.  An application of Cartesian decomposition allows 124 
any matrix to be written in the form 125 

𝑀 = − 𝐻 + 𝐴        (5) 126 

H is Hermitian,  𝐻 = 𝐻   and A is anti-Hermitian, 𝐴 = −𝐴  , which explains why the notation has been 127 
used.  The reason for the particular numerical factor of -1/2 in front of H will be revealed below. The 128 
dynamics can then be expressed in terms of commutators [x,y] and anti-commutators {x,y} 129 

�̇� = − {𝐻, 𝜚} + [𝐴, 𝜚]            (6) 130 

Only the anti-commutator term contributes to 𝑇𝑟(�̇�) = −𝑇𝑟(𝐻𝜚).  If H possesses a non-trivial factoring 131 
such that 𝐻 = 𝑁𝑁 ,  conservation of probability can be non-trivially restored by adding a term in 𝑁 𝜚𝑁, 132 
due to the cyclic properties of the trace operation 𝑇𝑟 𝑁 𝜚𝑁 = 𝑇𝑟 𝑁𝑁 𝜚   .  The augmented dynamics 133 
are then transformed into the famous Lindbladian form: 134 

�̇� = − 𝑁𝑁 , 𝜚 + [𝐴, 𝜚] + 𝑁 𝜚𝑁            (7) 135 

The matrix factoring adopted above is known in the numerical matrix analysis literature as Cholesky 136 
decomposition (Press 1992) and is closely related to polar decomposition, where an arbitrary linear 137 
transformation can be written as a product of a positive matrix and an isometry (Halmos 1958).  While 138 
positive, it may not be completely positive.  The condition of complete positivity requires that the 139 
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Kronecker product of the matrix with the identity matrix of arbitrary dimension also be positive 140 
(Manzano 2020).  This condition has been essential for a strict mathematical proof and also ensures that 141 
the density matrix has real, positive eigenvalues.  Complete positivity has been critiqued in (Pechukas 142 
1994) and (Shaji 2005). 143 

According to Eq.[4], the commutator part and the anti-commutator part of Eq.[7] can be eliminated 144 
from Eq.[7] by the usual method of performing an interaction contact transformation, which then 145 
produces a new dynamical equation �̇� = 𝑘𝑉 (𝑡)𝜚 𝑉(𝑡).   The choice of scaling in Eq.[6] is made so that 146 
k=1.  Throughout the steps used to construct Eq.[7], no assumptions regarding the time dependence of 147 
the  operators are made, and therefore a semi-group structure, where the total propagation must 148 
satisfy 𝑇(𝑡 + 𝑡 ) = 𝑇(𝑡 )𝑇(𝑡 )  does not constitute an essential requirement in this construction of the 149 
Lindbladian form.  This provides some evidence that the exercise offered above is something more than 150 
merely an effort to cut corners. 151 

It is interesting to compare conservation of probability for the density matrix, 𝑇𝑟�̇� = 0, with that for 152 

pure states, ∑ 𝑐 𝑐∗ = 0.  This is a more strict condition and holds if and only if 𝑀 =  −𝑀 as is usual 153 

for unitary quantum state evolution with conservation of probability where ∑ 𝑐 𝑐∗ = 1 and M can be 154 
written as 𝑖ℋ where ℋ is now the Hamiltonian.  By incorporating this condition into a higher 155 
dimensional structure, we enjoy greater latitude in having Hermiticity and probability conservation 156 
along with richer dynamics that can represent relaxation effects. 157 

The anti-Hermitian part of Eq.(5) has a trace preserving, Hamiltonian evolution and can be taken to 158 
represent relaxation induced, or so called, dynamic frequency shifts.  These are often small in NMR 159 
applications, but not exclusively so.  A review of these effects in NMR can be found in (Weberlow 1996), 160 
and this aspect will not be pursued further here. 161 

The Lindbladian form is often written as above, but it is important to recognize that it can be expressed 162 
in terms of commutators, as was used in the original work by Gorini et.al. 163 

𝑁, 𝜚𝑁 + 𝑁𝜚, 𝑁 = − 𝑁 𝑁, 𝜚 + 2𝑁𝜚𝑁          (8) 164 

In this equation, the alternative factoring, 𝐻 = 𝑁 𝑁 has been adopted.  If N is a normal 165 
matrix,[𝑁 , 𝑁] = 0, the ordering is not important, and in this case, the identity matrix, which 166 
corresponds to an infinite temperature limit to within a scalar factor, is a steady state.  A similar 167 
example is afforded by the factoring given by 𝐻 = {𝐻 , 𝐻 } =  𝐻 𝐻 + 𝐻 𝐻  where both matrices are 168 
Hermitian.  The resulting expression can be written in terms of nested commutators: 169 

[𝐻 , 𝜚], 𝐻 + [𝐻 , 𝜚], 𝐻             (9) 170 

The anti-commutator can also be re-expressed as a difference between 𝑆 = (𝐻 + 𝐻 )  and 𝐷 =171 
(𝐻 − 𝐻 )  and the above equation can written as the combination 172 

𝑆𝜚, 𝑆 + [𝑆, 𝜚𝑆 ] −  𝐷𝜚, 𝐷 + 𝐷, 𝜚𝐷         (10) 173 

Even though S and D are both Hermitian, Hermitian conjugates have been kept explicit in order to 174 
conform with Eq.[8].  One simple method for constructing a non-normal factoring is to insert the identity 175 
between factors.  Write 𝐻 = 𝑃 = 𝑃𝑒 𝑒 𝑃  with [𝑃, 𝑄]  ≠ 0 so that 𝑁 =  𝑃𝑒   and 𝑁 = 𝑒 𝑃.  Of 176 
course, Q must be Hermitian in order to preserve the Hermitian character of the density matrix in Eq.(7).     177 
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Non-normal expansions are also generated quite naturally when spectral decomposition is employed. 178 
That procedure will be treated in the next section when the operator expansions of Bloch and Hubbard 179 
are discussed.  180 

While a non-trivial factoring excludes the identity matrix as a sole factor, the identity matrix itself can 181 
often be factored.  If H = 1 = RR the Lindbladian is now the traditional expression used for the 182 
description of intramolecular exchange processes in NMR (Alexander 1962) 183 

𝑘(𝑅𝜚𝑅 − 𝜚)                 (11) 184 

In equation 11, the constant k is now used to denote the rate of exchange.  The case of intermolecular 185 
exchange is considerably more complicated, and is generally nonlinear, unless high temperatures and 186 
small deviations from equilibrium hold forth (Alexander 1962).   It is worth pointing out here that in the 187 
literature on the Lindbladian form the N operators used are often referred to as “jump operators” 188 
(Manzano 2020). 189 

The use of Cartesian decomposition in Eq.(5) is not actually necessary.  If M can be factored, for 190 
example, as the product, 𝐴𝐵 ,  one can directly write down 191 

�̇� = 𝐴𝐵 𝜚 + 𝜚𝐵𝐴 − 𝐴 𝜚𝐵 −  𝐵 𝜚𝐴               (12) 192 

Or 193 

�̇�  = − 𝐵 𝜚, 𝐴 + 𝐴 , 𝜚𝐵                  (13) 194 

This non-Hermitian, mixed form is useful when comparing Lindbladian expressions with the early 195 
relaxation theories of Bloch and Hubbard.  In these, the use of spherical tensor operators can obscure 196 
the Hermitian character of certain expressions and also produce expressions that on first blush, do not 197 
appear to be strictly Lindbladian. 198 

Given that there are n2-1 independent matrices excluding the identity matrix, we can expect to have a 199 
linear combination of Linbladian forms, with coefficients that are not related in a rank one fashion, just 200 
as with the density matrix.  These coefficients represent generalized transport parameters. 201 

Whereas this guide to Lindblad should be sufficient for practical purposes, the perspective from a 202 
differential approach may not be satisfactory for some readers, perhaps even confusing given the 203 
heuristic nature of the construction.  Therefore, an outline of the approach from the general solution 204 
perspective is offered in the appendix. 205 

The constraints of the Lindbladian form, though powerful, do not provide a complete theory of 206 
irreversibility.  Other considerations must be brought to bear on the exact manner in which a 207 
complicated, many body theory that is fundamentally reversible, can be reduced to a simpler, but now 208 
apparently irreversible one.  Assumptions of weak coupling between systems (spins and bath) and loss 209 
of long time scale correlations as applied to perturbation theory, are common elements throughout 210 
both modern Lindbladian and the Bloch Hubbard approaches.  Additionally, the need to invoke the 211 
secular approximation is paramount all such approaches, as will be discussed in the next section. 212 

3. Bloch-Hubbard Relaxation Theory and the Lindbladian Master Equation 213 
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As announced in the introduction, is not the author’s goal to give an in depth review of the Bloch-214 
Hubbard theory.  In particular, Hubbard’s exposition is especially clear on most accounts, and those with 215 
sufficient interest can directly consult the original publications.  Rather, the intention is to provide 216 
reasons and the motivation for others to read or revisit these classic works.  It is useful to point out here 217 
at the outset that many of the mathematical methods used with modern Lindbladian approaches to 218 
Markovian systems are exactly those used by Bloch and Hubbard, and other aspects of this fact will be 219 
emphasized in the conclusions.  Since the success of the Bloch-Hubbard theory has gone unrecognized 220 
for so many years, and has now been brought into the limelight by the work of Bengs and Levitt, a 221 
demonstration of the equivalence can be considered an original contribution to the topic. 222 

We can start with Equation [100] of Hubbard’s excellent review article of Bloch’s generalized theory: 223 

𝑅(𝜎) =  sech 𝛽𝜔 /2 𝐽 (𝜔 ){[𝑂(−𝛽)𝑉 𝑂(𝛽) 𝜎, 𝑉 ] −  [𝜎 𝑂(𝛽)𝑉 𝑂(−𝛽), 𝑉 ]}           (14) 224 

Here we now adopt the notation used by Hubbard and the reader should keep this change in mind. 225 
Hubbard uses σ to denote the spin density matrix.  The 𝑉  operators act on the spin states, and a fuller 226 
description of them will be given shortly, as well as how the frequencies 𝜔  are determined by the 227 

eigenvalues of the spin Hamiltonian E.  The operator, 𝑂(𝛽) = exp ( ) is related to the equilibrium value 228 

of the density matrix.  Clearly, 𝑅(𝜎) is linear in  𝜎 , and as Hubbard points out, it is easy to see that if the 229 
density matrix is at equilibrium, R 𝜎 = 0 .  The commutator form of Hubbard’s equation above is 230 
very suggestive.  It is almost Lindbladian, but not quite the same as the canonical form. 231 

The sums in Eq.(14) are over integer steps from –n to +n for each index, with different values of n for 232 
(k,l) and s.  The indexed operators and frequencies satisfy symmetries for negative and positive values of 233 
their indices: 234 

(𝑉 ) = 𝑉 ;    𝜔 = −𝜔 ;     𝑉 = 𝑉                (15) 235 

In order to manipulate Hubbard’s expression, we also need some symmetry properties of the 𝐽 (𝜔).  236 
These index symmetries follow in a straightforward manner from their definitions, which for 237 
completeness, and also adhering to Hubbard’s original notation, we list. 238 

𝐽 (𝜔) =  
1

2
𝑑𝜏 𝐶 (𝜏)𝑒         (16) 239 

Where 240 

𝐶 (𝜏) =  𝐴 (𝜏) + 𝐴 (−𝜏)        (17) 241 

And 242 

𝐴 (𝜏) = 𝑇𝑟 𝜌 𝑈 (𝜏)𝑈 =  𝑇𝑟 𝜌 𝑈 𝑈 (−𝜏)      (18) 243 

The U operators are bath operators, the Trb is a partial trace over bath degrees of freedom with bath 244 
equilibrium density matrix ρT , and the time dependence is that given by propagation by the bath 245 
Hamiltonian.  The index symmetries for the J’s are then 246 
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𝐽 (𝜔) =  𝐽 (−𝜔) =  𝐽∗ (−𝜔)         (19)  247 

We can now re-sum Hubbard’s expression by way of the substitutions 𝑙 →  −𝑙, 𝑠 →  −𝑠 in the first term 248 
and 𝑘 →  −𝑘 in the second and using 249 

𝐽 𝜔 =  𝐽∗ −𝜔 =  𝐽∗ 𝜔          (20) 250 

The commutators in Eq.(14) are then transformed into 251 

𝑋 𝜎, 𝑉 + 𝑉 , 𝜎𝑋          (21) 252 

Where  253 

𝑋 =  sech 𝛽𝜔 /2 𝐽 𝜔  𝑂(𝛽)𝑉 𝑂(−𝛽)        (22) 254 

We have transformed Hubbard’s expression into Lindbladian form of the “non-Hermitian” type as 255 
discussed in section 2.  In doing so, the ease in demonstrating R(σeq) = 0 has been lost, but can be 256 
restored by combining it with the alternative choice of substitutions 𝑘 →  −𝑘 in the first term and 𝑙 →257 
 −𝑙, 𝑠 →  −𝑠 in the second term, and averaging the two results. 258 

Before reducing Eq.(22) further, an explication of Hubbard’s operators is needed.  As is common in NMR, 259 
the interaction of spin and lattice degrees of freedom are decomposed into products, and indexed in the 260 
same manner as Hubbard employs.  Hermiticity is enforced by stipulating that operators with indices of 261 
opposite sign are Hermitian conjugate to each other.  The standard spherical tensor operators of rank L 262 
and projection m, are of this type, and while Hubbard does not explicitly indicate this until examples are 263 
offered at the end of his article, his Vk operators are basically spherical tensors, where Hubbard uses k to 264 
denote the projection index m, and suppresses the rank index L.  Likewise, Hubbard is not very explicit 265 
regarding his Vs

l operators.  He gives their desired properties, but not much on a general method for 266 
their construction.  The key idea is that of spectral decomposition (Halmos 1958) which produces an 267 
operator expansion whose coefficients are the eigenvalues of the operator.  For the Hamiltonian E we 268 
have 269 

𝐸 =  𝜔 𝐸                  (23) 270 

Where ωi are the eigenvalues of E and the Ei are projection operators with the properties 271 

𝐸 𝐸 = 𝛿 𝐸  ;     𝑇𝑟 𝐸 𝐸 =  𝛿  ;      𝐸 = 𝟏              (24) 272 

There are a number of methods for constructing the projectors.  Perhaps the most straightforward is to 273 
use the unitary matrix, U which brings the matrix E to diagonal form.  With U at hand we have 274 

𝐸 = 𝑈𝑋 𝑈                   (25) 275 

The fundamental basis matrices have elements(𝑋 ) = 𝛿 𝛿 .  A family of matrices can now be 276 
constructed from a starting matrix V which will be “eigen-matrices” of the Hamiltonian propagator:  277 

𝐸, 𝐸 𝑉𝐸 = 𝜔 − 𝜔 𝐸 𝑉𝐸               (26) 278 
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𝑒 𝐸 𝑉𝐸 𝑒 =  𝑒 𝐸 𝑉𝐸          (27) 279 

When the V matrices are defined in the eigen-basis of E, this result is almost trivial, for in that case 280 

(𝑒 𝑉𝑒 ) =  𝑒 𝑉         (28) 281 

Even so, the use of projectors allows one to avoid writing out explicit matrix elements.  Lexigraphical 282 
ordering of these (i,j) index pairs can be adopted and assigned to indices that range from negative to 283 
positive integers or odd half integers to obtain Hubbard’s Vl

s and his frequencies ωl
s.  The original 284 

mathematical lemmas and theorems of Gorini et.al heavily rely on the use of spectral decomposition. 285 
Redfield’s notation adopts the use of explicit matrix elements, and this perhaps is another of the reasons 286 
for the popularity of his equations.  Bengs and Levitt commence their own analysis by adopting an 287 
eigenbasis for E as with Eq.(28).  We can now also tie spectral decomposition to the factoring problem of 288 
the previous section.  If H is a positive matrix we can apply Eq.(23) to decompose H into a sum  289 

𝐻 =  𝑁 𝑁                        (29) 290 

where the operators can be written in terms of the unitary matrix T which diagonalizes H with positive 291 
eigenvalues 𝜆  as 292 

𝑁 =  𝜆  𝑇 𝑋       (30) 293 

Returning to Hubbard’s relaxation expression, one can use the properties of the Vl
s to evaluate the 294 

effects of the operator O(β) on Vl
s by employing Eq. [27] with β replacing it.  We can also expand Vk in 295 

terms of Vl
s.  Finally, we invoke the secular approximation, where rapidly oscillating terms, generated by 296 

the evolution of E, are dropped.   If the Zeeman energy as dominant, the spectral decomposition is not 297 
needed, since the spherical tensor operators are already eigen-operators.  A single sum over the V l 298 
terms remain.  Otherwise one needs sums over both l and s: 299 

𝑅(𝜎) =  𝑒 𝐽 (𝜔 ) sech 𝛽𝜔 /2 (𝑉 ) 𝜎, 𝑉  − [𝜎𝑉 , (𝑉 )  ]          (31) 300 

The double sum in Eq.(31) is useful in zero field.  We have now fully reduced Hubbard to Lindbladian 301 
form and essentially reproduced the main result obtained by Bengs and Levitt by way of the Lindbladian 302 
formalism.  One small difference is Hubbard’s use of the thermal symmetrizing factor given by the 303 
hyperbolic secant function.  If so desired, this can be removed as illustrated in Hubbard’s paper.  It is 304 
also imperative to emphasize the importance of the secular approximation in obtaining the Lindblad 305 
form.  Without this step, relaxation in the rotating frame will be time dependent, with very different, 306 
and perhaps even unphysical dynamics.  This same approximation is required in a Lindbladian approach, 307 
which is often referred to as the “rotating wave” approximation (Manzano 2020). 308 

While very compact, the presence of a finite temperature steady state is definitely obscure.  From 309 
Eq.(31) directly, the only apparent recourse is to expand the dynamics in a complete set of basis 310 
matrices and search for one or more zero eigenvalues.  Such a procedure is illustrated in an example 311 
with a simple two dimensional density matrix dynamics in (Manzano 2020) where eigenvalues are easily 312 
computed.  This is in contrast to Hubbard’s original expression, Eq.(14), where the steady state is clearly 313 
recognizable, even for arbitrarily large dimensions.  Alternatively, we can invoke the secular 314 
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approximation directly to Eq.(14)  and we can enjoy a compromise where one retains the clear presence 315 
of the steady state.  Hubbard teaches us how to retain explicit information on the fixed point density 316 
matrix.  However, this seems to be possible only when dynamic frequency shifts can be ignored. 317 

One should also appreciate that a homogeneous system which possess a zero eigenvalue is closely 318 
related to an inhomogeneous system.  The procedure of homogenizing an inhomogeneous system by 319 
incorporating the inhomogeneous vector into equations with an additional dimension, which is invariant 320 
with an eigenvalue of zero, has been employed in a Bloch equation analysis of spin echoes (Bain 2011) , 321 
steady state precession (Nararova 2004) and relaxation (Levitt 1992) .  Going in the opposite direction 322 
can be considerably more difficult.   323 

4. Bloch and Hubbard and Rotating Frame Relaxation: 324 

We now take a side turn to another aspect of the pioneering work of Bloch and Hubbard, which also has 325 
largely gone unrecognized in the NMR literature. As explained in the introduction, the author was 326 
recently reacquainted with these aspects in an effort to go beyond a Bloch equation picture with only R1 327 
and R2 for spin locks and adiabatic sweeps in the presence of exchange (Barbara 2016).  Both examples 328 
illustrate the use of the high temperature, weak ordering situation that occurs when the full theory 329 
contained in Eq.(31) is reduced to the appropriate limit for those circumstances.  These applications do 330 
not require the Lindbladian form.  Nevertheless, it strikes the author as a wasted opportunity to not 331 
mention the treatment of rotating frame relaxation by Bloch and Hubbard and therefore reintroduce 332 
these two results to 21st century NMR scientists. 333 

At the end of Bloch’s paper, he applies his theory to relaxation in the presence of an RF field.  For a rank 334 
one tensor interaction, such as the fluctuating field relaxation mechanism, he derives a set of 335 
generalized Bloch equations in the rotating frame: 336 

�̇�

�̇�

�̇�

+  

𝐴 −Ω cos(θ) 𝑎
Ω sin(θ) 𝐴 −Ω sin(θ)

𝑎 Ω sin(θ) 𝐴

𝑀
𝑀

𝑀
=

𝑐
0
𝑐

     (32) 337 

When the Rabi frequency, Ω sin (θ)  is much smaller than the Larmor frequency ω0, but still comparable 338 
to the resonance offset, Ω cos(θ), we have az =cx = 0.  At high temperature, cz = R1M0 as usual.  In terms 339 
of the spectral densities, 𝐽 (𝜔) the relaxation parameters are given by the equations 340 

𝐴 = 𝐴 =  𝐽 (𝜔 ) +  𝐽 (Ω) + 𝐽 (0) −  𝐽 (Ω) 𝑐𝑜𝑠 (𝜃)               (33) 341 

𝐴 = 2𝐽 (𝜔 )                               (33) 342 

𝑎 =  − 𝐽 (0) − 𝐽 (Ω) sin(𝜃) cos(𝜃)          (34) 343 

In the absence of an RF field, θ=0 and Ax and Az are R2 and R1 respectively.  Note that ax is generally not 344 
zero if the locking field is off resonance. 345 

It is not always appreciated that the usual formulas for rotating frame relaxation are those for the case 346 
when the locking field, whose magnitude is given by Ω, is much larger that the relaxation rates.  In that 347 
situation, a first order perturbation is applicable (Barbara 2016).  If the transformation, denoted by V, 348 
diagonalizes the Bloch equations without relaxation, the first order contribution from the relaxation 349 
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matrix elements is given by the diagonal elements of V-1RV, which are then rotating frame relaxation 350 
rate constants: 351 

𝜌 =  𝑅 𝑐𝑜𝑠 (𝜃) + 𝑅 − 𝐽 (0) −  𝐽 (Ω)  𝑠𝑖𝑛 (𝜃)        (35) 352 

𝜌 =  𝑅 + 𝑅 𝑐𝑜𝑠 (𝜃) + ( 𝑅 + 𝐽 (Ω) − 𝐽 (0) )𝑠𝑖𝑛 (𝜃)       (36) 353 

When the low frequency terms are collected, one obtains expressions that reproduce those for chemical 354 
shift exchange, as usually derived from an analysis of exchange perturbation in the limit of fast exchange 355 
using the Bloch-McConnell equations (Barbara 2016), (Abergel 2003).  This result is often attributed to 356 
(Wennerstrom 1972).   The theory was already presented in Bloch’s paper in 1957.  Uncorrelated local 357 
fields for two spin ½ systems is an important mechanism for spin isomer conversion, as discussed in 358 
Bengs and Levitt. 359 

Bloch presents other applications to his formalism that are of interest.  These applications offer an 360 
excellent catalytic motivation for going through many of his notational details. 361 

 After his own exposition and refinement of Bloch’s theory, Hubbard also gives an application to rotating 362 
frame relaxation, and ups the ante, by considering second rank, dipole-dipole relaxation mechanisms.  363 
Hubbard obtains equations for the magnetization dynamics similar to Eq.[32] , with off diagonal 364 
relaxation elements.  After taking the first order contribution, the rotating frame, spin lattice rate 365 
constant is given by 366 

𝜌 =  𝑅 𝑐𝑜𝑠 (𝜃) +  𝑅 𝑠𝑖𝑛 (𝜃) − 6𝑠𝑖𝑛 (𝜃){−𝐽 (0) + 𝑐𝑜𝑠 (𝜃)𝐽 (Ω) + 𝑠𝑖𝑛 (𝜃)𝐽 (2Ω)}     (37) 367 

In terms of the spectral densities, R1 and R2 are 368 

𝑅 = 4 𝐽 (𝜔 ) + 4𝐽 (2𝜔 )         (38) 369 

𝑅 = 6𝐽 (0) + 10𝐽 (𝜔 ) + 4𝐽 (2𝜔 )      (39) 370 

This result was produced in very different notation in (Blicharski 1972).  Unfortunately, in that work, the 371 
various contributions are gathered together in such a manner as to obscure the origin of, and the 372 
relationship to each.  The reader should keep in mind that for both examples, details regarding scale 373 
factors of the spectral densities have been suppressed.  These can be added according to the specific 374 
needs of their application, be it dipolar, quadrupolar, fluctuating field, or chemical shift exchange. 375 

5. Comments and Conclusions: 376 

Given the maturity of the topic of relaxation in magnetic resonance, it is not often that a surprise is 377 
forthcoming.  Many modern treatments, that are very application oriented, reflect this maturity. For 378 
example, the extensive overview offered by Kowalewski and Maler (Kowalewski 2007) details many of 379 
the modern applications.  Bloch is not listed in the index, and Hubbard is indexed only in the context of 380 
work he did on rotational diffusion applications and the calculation of correlation functions, even 381 
though Hubbard’s review article is cited in the chapter titled Redfield Relaxation Theory.  In Redfield’s 382 
later effort, which appeared as a chapter in Advances in Magnetic Resonance (Redfield 1965), Redfield 383 
acknowledges the influence of Bloch, and offers his own equations that account for relaxation at finite 384 
temperatures, while only citing Hubbard’s review article in passing.  Redfield makes no effort to 385 
demonstrate or expound on the relationship between his expression, and Bloch’s or Hubbard’s.   A 386 
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glance at Redfield’s equation 3.15 in (Redfield 1965) induces one to question in what way his result is 387 
also Lindbladian, for the expression is very different than Hubbard’s equation Eq.(100).  The factoring of 388 
the spectral densities that Hubbard achieves does not rely on the secular approximation.  Nonetheless, a 389 
careful study reveals that Redfield’s equation is also a mixed Lindbladian type, similar to Eq.(21-22).  390 
Here one can fully appreciate the power of using spectral decomposition to factor out the spectral 391 
densities, and in doing so, produce an expansion in non-Hermitian operators.  Redfield’s 1965 result, 392 
which is based on a Hermitian operator expansion and looks nothing like a Lindbladian, is nonetheless as 393 
serviceable as Hubbard’s. 394 

Approaches to NMR relaxation theory have changed over its history.  In the work of Bloch, Redfield and 395 
Hubbard, extensive manipulations are carried out at the level of second order perturbation theory for 396 
the solutions to the interaction representation density matrix.  At the end of this effort, a finite time step 397 
expression is produced, which is argued to be basically the solution to a given differential equation.  398 
However, already in the same year that Hubbard’s review article appeared in print, Abragam took the 399 
alternative approach by directly iterating the differential equation in his treatment of relaxation 400 
(Abragam 1983).  This is now the usual practice, and is the path taken, for example, by Goldman in his 401 
review of NMR relaxation theory (Goldman 2000), who offers his own treatment of a finite temperature 402 
relaxation theory therein and also uses spectral decomposition for that case.   This same iteration 403 
approach is also adopted by recent expositions using the Lindbladian formalism and weak collision, 404 
Markovian bath dynamics and the secular approximation.  Again, a good illustration of this is given in 405 
Manzano.  As mentioned earlier, a study of that overview reveals that many of the same tools, e.g. use 406 
of Hamiltonian projection operators to obtain eigen-matrices, as used by Bloch and Hubbard, are also 407 
brought to bear in the same manner.  The historical overview mentioned in section 2 (Chruscinski 2017), 408 
also outlines other open quantum system efforts made by various researchers, and there is a strong 409 
enough similarity to suspect that these have rediscovered the main results of Bloch and Hubbard, as 410 
well as having anticipated the Lindbladian form. 411 

 It is possible to make the argument that NMR theory needs to modernize, in keeping with new 412 
approaches that appear to have a more firm foundation in quantum theory.  The author is reminded of a 413 
classic collection of essays (Peierls 1979) with the surprise here, that these new methods can find their 414 
own perfect reflection in the best work of the old masters. 415 

 416 

Appendix: Some Elaborations on Lindblad and Section 2. 417 

In this appendix, a sketch of further aspects of the Lindbladian form is offered.  It is self-contained and 418 
does not invoke the various mathematical theorems often used as a starting point (Manzano 2020). 419 

The most general linear transformation for a matrix, in particular the density matrix, can be written in 420 
the form 421 

𝜌 =  𝐶  𝑋 𝜌𝑋                    (𝐴1) 422 

Where the 𝑋  are the fundamental basis matrices defined in Section 3.  Rather than derive this 423 
equation, one can grasp that it is correct by reducing it to component form 424 
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𝜌 =  𝐶  𝜌                       (𝐴2) 425 

Here, one recognizes the Redfield notation but with slightly rearranged indices.  Introducing a complete 426 
set of Hermitian matrices 𝑂  provides for a more compact expression where now 427 

𝜌 =  𝐺 𝑂 𝜌𝑂           (𝐴3) 428 

If the transformation preserves the Hermitian character of the density matrix, G is Hermitian in the k 429 
indices 𝐺 =  𝐺 ∗.  If the trace is also invariant we have 430 

𝐺   𝑂 𝑂 = 𝟏       (𝐴4) 431 

This is all we need to obtain a difference equation in 𝜌 - 𝜌 and obtain the Lindblad form.  However this is 432 
not usually the way the problem is approached.  Instead the starting point is from the “Kraus form”, 433 
which is obtained by assuming that the matrix G is positive.  Being positive, one can factor G in the same 434 
manner illustrated in Section 3 via the spectral decomposition for H.  This then allows summations over 435 
the k indices to produce the Kraus operators for the transformation.  The one remaining index is over 436 
the eigenvalue index.  This is basically going a step too far, and it is more direct to use Eq.(A3).  The 437 
required subtraction can be implemented by substituting Eq.(A4) for the identity in a symmetrical 438 
manner: 439 

𝜌 − 𝜌 =  𝐺 𝑂 𝜌𝑂  −  (𝜌𝟏 + 𝟏𝜌)              (𝐴5) 440 

To complete the process, one now extracts those terms in the operator expansion that involves the 441 
identity operator, which we ascribe to the zero index 𝑂 = 𝟏.  It is a simple matter to see that these can 442 
be collected into the expression 443 

 (𝐺 − 𝐺 ∗) 𝑖[𝑂 , 𝜌]                 (𝐴6) 444 

This represents the part of the transformation generated by a commutator.  The remaining part, where 445 
the sums now exclude the identity matrix, is now of the Lindbladian form 446 

𝜌 − 𝜌 =  𝐺 𝑂 𝜌𝑂 −  {𝜌,   𝑂 𝑂  }          (𝐴7) 447 

One can then use the positivity of G to factor this expression into non-Hermitian operators.  In this way 448 
one can see that the approaches from the generalized differential equation and the one based on the 449 
general solution are equivalent.  450 

  451 

 452 

 453 
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