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Abstract 15 

 16 

The relationship between the classic magnetic resonance density matrix relaxation theories of Bloch and 17 
Hubbard, and the modern Lindbladian master equation methods are explored.   These classic theories 18 
are in full agreement with the latest results obtained by the modern methods.  A careful scrutiny shows 19 
that this also holds true for Redfield’s later treatment, offered in 1965.  The early contributions of Bloch 20 
and Hubbard to rotating frame relaxation theory are also highlighted.  Taken together, these seminal 21 
efforts of Bloch and Hubbard can enjoy a new birth of contemporary relevance in magnetic resonance. 22 
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1. Introduction 23 

In a recent and important publication, Bengs and Levitt (Bengs 2019) formalize NMR relaxation theory 24 
for systems that deviate significantly from the equilibrium state, conditions that invalidate the high 25 
temperature, weak ordering approximation, a corner stone in the commonly used Redfield theory 26 
(Redfield 1957).  Bengs and Levitt employed very modern methods that arose in the late 1970’s and are 27 
now fundamental in the topic of open quantum systems.  These methods are often referred to 28 
eponymously as the “Lindbladian Form”.  In addition to the work of Bengs and Levitt, a useful tutorial on 29 
this topic can be found in the work of Manzano (Manzano 2020).   Even though many, if not all of the 30 
classic papers are cited in their offering of their own Lindbladian analysis, Bengs and Levitt were not 31 
aware that a result identical to their own was already offered by Bloch (Bloch 1957), and masterly 32 
expounded upon by Hubbard (Hubbard 1961).  This conclusion can be ascertained by a glance at Table 1 33 
of (Bengs 2019), where references to neither Bloch, nor Hubbard appear in the rightmost column.   From 34 
a study of past efforts, as reviewed by Bengs and Levitt along with their own results, this holds for 35 
Abragam, for Jeener, and for Ernst.  The significance of Bloch and Hubbard has gone unappreciated by 36 
the NMR community for decades. By approaching the problem from a new perspective, and 37 
importantly, with new experimental measurements on specially prepared spin systems, Bengs and Levitt 38 
have resolved a long standing and long misunderstood issue. 39 

This confusion over the results of Bloch and Hubbard is likely due, in part, to the use of difficult notation 40 
by Bloch.  Hubbard’s treatment is a significant improvement but also possesses a few obscure aspects.  41 
In that situation, it is not difficult to understand that nearly all NMR researchers rely on the simpler 42 
Redfield formalism, especially given the fact that the conditions under which the approximations are 43 
applicable, are those encountered in the vast majority of cases.  Bengs and Levitt make a detailed 44 
comparison between other proposals for a more proper relaxation theory that naturally contains the 45 
correct equilibrium steady state, and all are found to be defective in one way or another.  One argument 46 
for the importance of Bengs and Levitt’s effort, is their unequivocal and independent confirmation of 47 
the success of Bloch and Hubbard over the other formulations.  The claim, that a significant aspect of 48 
relaxation theory, with an overcast coastline, now enjoys blue sky, is a fair one. 49 

A brief exposition of Bloch’s main results, by way of Hubbard, using Hubbard’s own notation, appears 50 
therefore to be a worthwhile endeavor, with historical importance and reasonable expectations that 51 
such an effort will be of some interest to NMR researchers in general.  How this task has fallen into the 52 
hands of the author may also be of some help in orienting the reader. 53 

The origins reside in the author’s thesis work, a part of which involved the problem of anisotropic spin 54 
lattice relaxation measurements for deuterated molecules dissolved in a liquid crystalline matrix.  This 55 
induced the author to study all the early papers on relaxation theory very carefully.  Discovering the 56 
significance of Bloch, and the clarity of Hubbard’s exposition, left an indelible impression, even though 57 
the author happily used the simpler Redfield formalism for the task at hand.  The author abandoned the 58 
field in 1988 to pursue other interests, but always enjoyed reading the current NMR relaxation 59 
literature.  Twenty five years later, a coworker gently persuaded the author to work out aspects of 60 
relaxation and exchange during adiabatic sweeps (Barbara 2016).  After completing that task, the author 61 
reacquainted himself with Bloch and Hubbard in order to understand some lingering details.  This effort 62 
fully prepared the author to recognize how the work of Bloch and Hubbard tied into, and formed a 63 
precedent for, the recent efforts of Bengs and Levitt. 64 
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The main goal is then to go beyond a citation, and demonstrate the equivalence of the major result in 65 
Bengs and Levitt to that of Bloch and Hubbard.  The significant and original result offered here, is in the 66 
mathematical analysis required to reveal the equivalent success of Bloch and Hubbard towards the 67 
problem confronted and solved by Bengs and Levitt by their use of Lindbladian methods.  The effort is 68 
not trivial, and requires a careful study of Hubbard’s notation and the development of symmetry 69 
properties that Hubbard does not provide.  Furthermore, Hubbard offers expressions that in some ways 70 
are superior to the “fully reduced” Lindbladian form, as will be discussed in section 3.  In the conclusion 71 
section, the relation of these aspects of relaxation theory to later work by Redfield is commented on. 72 

A discussion of the Lindbladian form is presented beforehand, from a simple and very direct approach 73 
which possesses useful didactics, thereby allowing non experts to appreciate the essence of the 74 
formalism without going into a full review of the mathematical details involved in a rigorous proof.  75 
Since the Lindblad approach is rather new to the NMR literature, it can be helpful to have a more facile 76 
presentation.  Those readers interested in more details can find valuable sources in Bengs and Levitt, 77 
Manzano and (Gyamfi 2020).   78 

In addition to the Lindbladian form of Bloch’s generalized theory of relaxation, we take advantage of the 79 
opportunity to highlight Bloch’s and Hubbard’s early, and also largely unrecognized, contributions to the 80 
dynamics of spin locking and rotating frame relaxation.   Together these aspects form a basis for a 81 
renewed interest, or at the very least, a new and greater appreciation of these classic publications. 82 

 83 

2:  A Guide to Lindblad 84 

The original publications on the Lindblad form are of a very mathematical flavor, both for the case of 85 
finite dimensions, (Gorini 1976), as well as for a general Hilbert space (Lindblad 1976).  Because of these 86 
combined efforts, the Lindblad form is also often referred to as the GKSL equation. For finite 87 
dimensional problems, as is pertinent to NMR applications, it is possible to offer a straightforward 88 
method of construction, that is reasonably motivated and which uses elementary matrix algebra.   What 89 
follows below is very much ex post facto, and was developed by the author after reading Bengs and 90 
Levitt.  It is not without precedent however.  In an interesting historical overview of the Lindbladian 91 
form (Chruscinski 2017), one can find examples of nearly identical approaches and even a very early use 92 
of the Lindbladian form by Landau in 1927.  For a very readable tutorial and overview, Manzano and 93 
Gyamfi are recommended.  For strictly mathematical proofs on the semi-group, Gorini and Lindblad 94 
should be consulted. The reader should not interpret what follows as a replacement to the rigorous 95 
mathematical if and only if proofs of the semi-group.  The key to the approach is in the importance of 96 
matrix factoring.  Indeed, matrix factoring in terms of Kronecker products is an essential ingredient in 97 
the mathematical proofs, but its role is not often explicitly highlighted in the manner given here.  Matrix 98 
products also arise in a straight forward manner when relaxation theory is approached by way of weak 99 
coupling perturbation theory for the spin system and the bath, so that in this case the spin matrices are 100 
already factored.  Along the way, the simplest Lindbladian, the one used for exchange in NMR, and 101 
which involves the factoring of the identity matrix, is presented. 102 

As an ansatz, one can start from a generalized “state vector” dynamics, governed by a general complex 103 
matrix M 104 
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𝑐ప̇ =  ෍ 𝑀௜௝  𝑐௝

௝

            (1) 105 

In Eq.(1), M generalizes what is usually the Hamiltonian, so that the equation, in a purely analogous 106 
manner, represents a type of “time dependent Schrodinger equation” for a finite number of states.  107 
From the vector components ci, we construct a Hermitian, rank-one “density matrix” with elements 108 

𝜚௜௝ =   𝑐௜𝑐௝
∗             (2) 109 

The square of all rank-one matrices are proportional to themselves, 𝜚ଶ = 𝛼𝜚, so that in this case 𝛼 =110 
 Σ𝑐௜𝑐௜

∗.  However, keep in mind that the converse does not hold true.  The terminology of “rank” has a 111 
number of variants, and in this section we adopt the usage common in the theory of matrices (Halmos 112 
1958). 113 

The terms “state vector” and “density matrix” have been placed in quotation marks to emphasize their 114 
heuristic labels at this early stage of the construction. The dynamics of this “density matrix” are given by 115 

𝜚̇ = 𝑀𝜚 +  𝜚𝑀ற               (3) 116 

The solution to Eq.(3) can be expressed as 117 

 𝜚(𝑡) = Υ(𝑡)𝜚(0)Υ(𝑡)ற;   Υ̇(𝑡) = 𝑀Υ(t);   Υ(0) = 1          (4) 118 

Of course, Υ(t) is not unitary since M is not necessarily skew Hermitian.  After some type of ensemble 119 
averaging, the “density matrix” will no longer be rank one and will take on the character of a general 120 
Hermitian matrix.  This construction is a simple adaptation of the procedure delineated by Landau and 121 
Lifschitz (Landau 1977).  Conservation of probability 𝑇𝑟(𝜚̇) = 0 does not hold for Eq.(3), but we are now 122 
just two steps away from rectifying that shortcoming.  An application of Cartesian decomposition allows 123 
any matrix to be written in the form 124 

𝑀 = −
ଵ

ଶ
𝐻 + 𝐴        (5) 125 

H is Hermitian,  𝐻 = 𝐻ற  and A is anti-Hermitian, 𝐴 = −𝐴ற , which explains why the notation has been 126 
used.  The reason for the particular numerical factor of -1/2 in front of H will be revealed below. The 127 
dynamics can then be expressed in terms of commutators [x,y] and anti-commutators {x,y} 128 

𝜚̇ = −
ଵ

ଶ
{𝐻, 𝜚} + [𝐴, 𝜚]            (6) 129 

Only the anti-commutator term contributes to 𝑇𝑟(𝜚̇) = −𝑇𝑟(𝐻𝜚).  If H possesses a non-trivial factoring 130 
such that 𝐻 = 𝑁𝑁ற,  conservation of probability can be non-trivially restored by adding a term in 𝑁ற𝜚𝑁, 131 
due to the cyclic properties of the trace operation 𝑇𝑟൫𝑁ற𝜚𝑁൯ = 𝑇𝑟൫𝑁𝑁ற𝜚൯  .  The augmented dynamics 132 
are then transformed into the famous Lindbladian form: 133 

𝜚̇ = −
ଵ

ଶ
൛𝑁𝑁ற, 𝜚ൟ + [𝐴, 𝜚] + 𝑁ற𝜚𝑁            (7) 134 

The matrix factoring adopted above is known in the numerical matrix analysis literature as Cholesky 135 
decomposition (Press 1992) and is closely related to polar decomposition, where an arbitrary linear 136 
transformation can be written as a product of a positive matrix and an isometry (Halmos 1958).  While 137 
positive, it may not be completely positive.  The condition of complete positivity requires that the 138 
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Kronecker product of the matrix with the identity matrix of arbitrary dimension also be positive [3].  This 139 
condition has been essential for a strict mathematical proof and also ensures that the density matrix has 140 
real, positive eigenvalues.  Complete positivity has been critiqued in (Pechukas 1994) and (Shaji 2005). 141 

According to Eq.[4], the commutator part and the anti-commutator part of Eq.[7] can be eliminated 142 
from Eq.[7] by the usual method of performing an interaction contact transformation, which then 143 
produces a new dynamical equation 𝜚̇ᇱ = 𝑘𝑉ற(𝑡)𝜚ᇱ𝑉(𝑡).   The choice of scaling in Eq.[6] is made so that 144 
k=1.  Throughout the steps used to construct Eq.[7], no assumptions regarding the time dependence of 145 
the  operators are made, and therefore a semi-group structure, where the total propagation must 146 
satisfy 𝑇(𝑡ଶ + 𝑡ଵ) = 𝑇(𝑡ଶ)𝑇(𝑡ଵ)  does not constitute an essential requirement in this construction of the 147 
Lindbladian form.  This provides some evidence that the exercise offered above is something more than 148 
merely an effort to cut corners. 149 

It is interesting to compare conservation of probability for the density matrix, 𝑇𝑟𝜚̇ = 0, with that for 150 

pure states, ௗ

ௗ௧
∑ 𝑐௜𝑐௜

∗ = 0.  This is a more strict condition and holds if and only if 𝑀ற =  −𝑀 as is usual 151 

for unitary quantum state evolution with conservation of probability where ∑ 𝑐௜𝑐௜
∗ = 1 and M can be 152 

written as 𝑖ℋ where ℋ is now the Hamiltonian.  By incorporating this condition into a higher 153 
dimensional structure, we enjoy greater latitude in having Hermiticity and probability conservation 154 
along with richer dynamics that can represent relaxation effects. 155 

The anti-Hermitian part of Eq.(5) has a trace preserving, Hamiltonian evolution and can be taken to 156 
represent relaxation induced, or so called, dynamic frequency shifts.  These are often small in NMR 157 
applications, but not exclusively so.  A review of these effects in NMR can be found in (Weberlow 1996), 158 
and this aspect will not be pursued further here. 159 

The Lindbladian form is often written as above, but it is important to recognize that it can be expressed 160 
in terms of commutators, as was used in the original work by Gorini et.al. 161 

ൣ𝑁, 𝜚𝑁ற൧ + ൣ𝑁𝜚, 𝑁ற൧ = −൛𝑁ற𝑁, 𝜚ൟ + 2𝑁𝜚𝑁ற         (8) 162 

In this equation, the alternative factoring, 𝐻 = 𝑁ற𝑁 has been adopted.  If N is a normal 163 
matrix,[𝑁ற, 𝑁] = 0, the ordering is not important, and in this case, the identity matrix, which 164 
corresponds to an infinite temperature limit to within a scalar factor, is a steady state.  A similar 165 
example is afforded by the factoring given by 𝐻 = {𝐻ଵ, 𝐻ଶ} =  𝐻ଵ𝐻ଶ + 𝐻ଶ𝐻ଵ where both matrices are 166 
Hermitian.  The resulting expression can be written in terms of nested commutators: 167 

ൣ[𝐻ଵ, 𝜚], 𝐻ଶ൧ + ൣ[𝐻ଶ, 𝜚], 𝐻ଵ൧            (9) 168 

The anti-commutator can also be re-expressed as a difference between 𝑆ଶ = (𝐻ଵ + 𝐻ଶ)ଶ and 𝐷ଶ =169 
(𝐻ଵ − 𝐻ଶ)ଶ and the above equation can written as the combination 170 

ൣ𝑆𝜚, 𝑆ற൧ + [𝑆, 𝜚𝑆ற] − ൫ ൣ𝐷𝜚, 𝐷ற൧ + ൣ𝐷, 𝜚𝐷ற൧ ൯       (10) 171 

Even though S and D are both Hermitian, Hermitian conjugates have been kept explicit in order to 172 
conform with Eq.[8].  One simple method for constructing a non-normal factoring is to insert the identity 173 
between factors.  Write 𝐻 = 𝑃ଶ = 𝑃𝑒௜ொ𝑒ି௜ொ𝑃  with [𝑃, 𝑄]  ≠ 0 so that 𝑁 =  𝑃𝑒௜ொ   and 𝑁ற = 𝑒ି௜ொ𝑃.  Of 174 
course, Q must be Hermitian in order to preserve the Hermitian character of the density matrix in Eq.(7).     175 
Non-normal expansions are also generated quite naturally when spectral decomposition is employed. 176 
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That procedure will be treated in the next section when the operator expansions of Bloch and Hubbard 177 
are discussed.  178 

While a non-trivial factoring excludes the identity matrix as a sole factor, the identity matrix itself can 179 
often be factored.  If H = 1 = RR the Lindbladian is now the traditional expression used for the 180 
description of intramolecular exchange processes in NMR (Alexander 1962) 181 

𝑘(𝑅𝜚𝑅 − 𝜚)                 (11) 182 

In equation 11, the constant k is now used to denote the rate of exchange.  The case of intermolecular 183 
exchange is considerably more complicated, and is generally nonlinear, unless high temperatures and 184 
small deviations from equilibrium hold forth (Alexander 1962).   It is worth pointing out here that in the 185 
literature on the Lindbladian form the N operators used are often referred to as “jump operators” 186 
(Manzano 2020). 187 

The use of Cartesian decomposition in Eq.(5) is not actually necessary.  If M can be factored, for 188 
example, as the product, 𝐴𝐵ற,  one can directly write down 189 

𝜚̇ = 𝐴𝐵ற𝜚 + 𝜚𝐵𝐴ற − 𝐴ற𝜚𝐵 −  𝐵ற𝜚𝐴               (12) 190 

Or 191 

𝜚̇  = −൛ൣ𝐵ற𝜚, 𝐴 ൧ + ൣ𝐴ற, 𝜚𝐵൧ൟ                 (13) 192 

This non-Hermitian, mixed form is useful when comparing Lindbladian expressions with the early 193 
relaxation theories of Bloch and Hubbard.  In these, the use of spherical tensor operators can obscure 194 
the Hermitian character of certain expressions and also produce expressions that on first blush, do not 195 
appear to be strictly Lindbladian. 196 

Given that there are n2-1 independent matrices excluding the identity matrix, we can expect to have a 197 
linear combination of Linbladian forms, with coefficients that are not related in a rank one fashion, just 198 
as with the density matrix.  These coefficients represent generalized transport parameters. 199 

Whereas this guide to Lindblad should be sufficient for practical purposes, the author is aware that 200 
some readers will be left unsatisfied or perhaps adamantly critical.  Therefore, while it was not the 201 
author’s original intention, some elaboration is offered in the appendix. 202 

The constraints of the Lindbladian form, though powerful, do not provide a complete theory of 203 
irreversibility.  Other considerations must be brought to bear on the exact manner in which a 204 
complicated, many body theory that is fundamentally reversible, can be reduced to a simpler, but now 205 
apparently irreversible one.  Assumptions of weak coupling between systems (spins and bath) and loss 206 
of long time scale correlations as applied to perturbation theory, are common elements throughout 207 
both modern Lindbladian and the Bloch Hubbard approaches.  Additionally, the need to invoke the 208 
secular approximation is paramount all such approaches, as will be discussed in the next section. 209 

3. Bloch-Hubbard Relaxation Theory and the Lindbladian Master Equation 210 

As announced in the introduction, is not the author’s goal to give an in depth review of the Bloch-211 
Hubbard theory.  In particular, Hubbard’s exposition is especially clear on most accounts, and those with 212 
sufficient interest can directly consult the original publications.  Rather, the intention is to provide 213 
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reasons and the motivation for others to read or revisit these classic works.  It is useful to point out here 214 
at the outset that many of the mathematical methods used with modern Lindbladian approaches to 215 
Markovian systems are exactly those used by Bloch and Hubbard, and other aspects of this fact will be 216 
emphasized in the conclusions.  Since the success of the Bloch-Hubbard theory has gone unrecognized 217 
for so many years, and has now been brought into the limelight by the work of Bengs and Levitt, a 218 
demonstration of the equivalence can be considered an original contribution to the topic. 219 

We can start with Equation [100] of Hubbard’s excellent review article of Bloch’s generalized theory: 220 

𝑅(𝜎) =  ෍ sech൫𝛽𝜔௦
௟/2൯ 𝐽௟௞(𝜔௦

௟){[𝑂(−𝛽)𝑉௦
௟𝑂(𝛽) 𝜎, 𝑉௞] −  [𝜎 𝑂(𝛽)𝑉௦

௟𝑂(−𝛽), 𝑉௞]}

௞௟௦

           (14) 221 

Here we now adopt the notation used by Hubbard and the reader should keep this change in mind. 222 
Hubbard uses σ to denote the spin density matrix.  The 𝑉௦

௟ operators act on the spin states, and a fuller 223 
description of them will be given shortly, as well as how the frequencies 𝜔௦

௟  are determined by the 224 

eigenvalues of the spin Hamiltonian E.  The operator, 𝑂(𝛽) = exp (
ఉா

ଶ
) is related to the equilibrium value 225 

of the density matrix.  Clearly, 𝑅(𝜎) is linear in  𝜎 , and as Hubbard points out, it is easy to see that if the 226 
density matrix is at equilibrium, R൫𝜎௘௤൯ = 0 .  The commutator form of Hubbard’s equation above is 227 
very suggestive.  It is almost Lindbladian, but not quite the same as the canonical form. 228 

The sums in Eq.(14) are over integer steps from –n to +n for each index, with different values of n for 229 
(k,l) and s.  The indexed operators and frequencies satisfy symmetries for negative and positive values of 230 
their indices: 231 

(𝑉௦
௟)ற = 𝑉 ௦

ି௟;    𝜔ି௦
ି௟ = −𝜔௦

௟ ;      𝑉௟ = ෍ 𝑉௦
௟

௦

               (15) 232 

In order to manipulate Hubbard’s expression, we also need some symmetry properties of the 𝐽௞௟(𝜔).  233 
These index symmetries follow in a straightforward manner from their definitions, which for 234 
completeness, and also adhering to Hubbard’s original notation, we list. 235 

𝐽௟௞(𝜔) =  
1

2
න 𝑑𝜏

ஶ

ିஶ

 𝐶௟௞(𝜏)𝑒௜ఠఛ        (16) 236 

Where 237 

𝐶௞௟(𝜏) =  
ଵ

ଶ
൫𝐴௞௟(𝜏) + 𝐴௞௟(−𝜏)൯       (17) 238 

And 239 

𝐴௞௟(𝜏) = 𝑇𝑟௕൫𝜌்𝑈௞(𝜏)𝑈௟൯ =  𝑇𝑟௕൫𝜌்𝑈௞𝑈௟(−𝜏)൯     (18) 240 

The U operators are bath operators, the Trb is a partial trace over bath degrees of freedom with bath 241 
equilibrium density matrix ρT , and the time dependence is that given by propagation by the bath 242 
Hamiltonian.  The index symmetries for the J’s are then 243 

𝐽௞௟(𝜔) =  𝐽௟௞(−𝜔) =  𝐽ି௞ି௟
∗ (−𝜔)         (19)  244 
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We can now re-sum Hubbard’s expression by way of the substitutions 𝑙 →  −𝑙, 𝑠 →  −𝑠 in the first term 245 
and 𝑘 →  −𝑘 in the second and using 246 

𝐽ି௟ ൫𝜔ି௦
ି௟൯ =  𝐽௟ି௞

∗ ൫−𝜔ି௦
ି௟൯ =  𝐽௟ି௞

∗ ൫𝜔௦
௟൯         (20) 247 

The commutators in Eq.(14) are then transformed into 248 

ൣ𝑋ற𝜎, 𝑉௞൧ + ቂ൫𝑉௞൯
ற

, 𝜎𝑋ቃ         (21) 249 

Where  250 

𝑋 =  sech൫𝛽𝜔௦
௟/2൯ 𝐽௟ି௞൫𝜔௦

௟൯ 𝑂(𝛽)𝑉௦
௟𝑂(−𝛽)        (22) 251 

We have transformed Hubbard’s expression into Lindbladian form of the “non-Hermitian” type as 252 
discussed in section 2.  In doing so, the ease in demonstrating R(σeq) = 0 has been lost, but can be 253 
restored by combining it with the alternative choice of substitutions 𝑘 →  −𝑘 in the first term and 𝑙 →254 
 −𝑙, 𝑠 →  −𝑠 in the second term, and averaging the two results. 255 

Before reducing Eq.(22) further, an explication of Hubbard’s operators is needed.  As is common in NMR, 256 
the interaction of spin and lattice degrees of freedom are decomposed into products, and indexed in the 257 
same manner as Hubbard employs.  Hermiticity is enforced by stipulating that operators with indices of 258 
opposite sign are Hermitian conjugate to each other.  The standard spherical tensor operators of rank L 259 
and projection m, are of this type, and while Hubbard does not explicitly indicate this until examples are 260 
offered at the end of his article, his Vk operators are basically spherical tensors, where Hubbard uses k to 261 
denote the projection index m, and suppresses the rank index L.  Likewise, Hubbard is not very explicit 262 
regarding his Vs

l operators.  He gives their desired properties, but not much on a general method for 263 
their construction.  The key idea is that of spectral decomposition (Halmos 1958) which produces an 264 
operator expansion whose coefficients are the eigenvalues of the operator.  For the Hamiltonian E we 265 
have 266 

𝐸 =  ෍ 𝜔௜𝐸௜

௜

                 (23) 267 

Where ωi are the eigenvalues of E and the Ei are projection operators with the properties 268 

𝐸௜𝐸௝ = 𝛿௜௝𝐸௝ ;     𝑇𝑟൫𝐸௜𝐸௝൯ =  𝛿௜௝  ;      ෍ 𝐸௜

௜

= 𝟏              (24) 269 

There are a number of methods for constructing the projectors.  Perhaps the most straightforward is to 270 
use the unitary matrix, U which brings the matrix E to diagonal form.  With U at hand we have 271 

𝐸௜ = 𝑈𝑋௜௜𝑈ற                  (25) 272 

The fundamental basis matrices have elements(𝑋௜௝)ఈఉ = 𝛿௜ఈ𝛿௝ఉ.  A family of matrices can now be 273 
constructed from a starting matrix V which will be “eigen-matrices” of the Hamiltonian propagator:  274 

ൣ𝐸, 𝐸௜𝑉𝐸௝൧ = ൫𝜔௜ − 𝜔௝൯𝐸௜𝑉𝐸௝               (26) 275 

𝑒௜ா௧𝐸௜𝑉𝐸௝𝑒ି௜ா௧ =  𝑒௜൫ఠ೔ିఠೕ൯௧𝐸௜𝑉𝐸௝         (27) 276 
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When the V matrices are defined in the eigen-basis of E, this result is almost trivial, for in that case 277 

(𝑒௜ா௧𝑉𝑒ି௜ா௧)௜௝ =  𝑒௜൫ఠ೔ିఠೕ൯௧𝑉௜௝        (28) 278 

Even so, the use of projectors allows one to avoid writing out explicit matrix elements.  Lexigraphical 279 
ordering of these (i,j) index pairs can be adopted and assigned to indices that range from negative to 280 
positive integers or odd half integers to obtain Hubbard’s Vl

s and his frequencies ωl
s.  The original 281 

mathematical lemmas and theorems of Gorini et.al heavily rely on the use of spectral decomposition. 282 
Redfield’s notation adopts the use of explicit matrix elements, and this perhaps is another of the reasons 283 
for the popularity of his equations.  Bengs and Levitt commence their own analysis by adopting an 284 
eigenbasis for E as with Eq.(28).  We can now also tie spectral decomposition to the factoring problem of 285 
the previous section.  If H is a positive matrix we can apply Eq.(25) to decompose H into a sum  286 

𝐻 =  ෍ 𝑁௞

௞

𝑁௞
ற                       (29) 287 

where the operators can be written in terms of the unitary matrix T which diagonalizes H with positive 288 
eigenvalues 𝜆௞ as 289 

𝑁௞ =  ඥ𝜆௞  𝑇 𝑋௞௞       (30) 290 

Returning to Hubbard’s relaxation expression, one can use the properties of the Vl
s to evaluate the 291 

effects of the operator O(β) on Vl
s by employing Eq. [27] with β replacing it.  We can also expand Vk in 292 

terms of Vl
s.  Finally, we invoke the secular approximation, where rapidly oscillating terms, generated by 293 

the evolution of E, are dropped.  There are two paths that one can follow for this goal.  One path takes 294 
the Zeeman energy as dominant, and at high fields the spectral decomposition is not needed, since the 295 
spherical tensor operators are already eigen-operators.  The second assumes sufficient symmetry in the 296 
bath statistics such that only 𝐽௟ି௟(𝜔௦

௟)  are nonzero, and then Hubbard’s equation simplifies to 297 

𝑅(𝜎) =  ෍ 𝑒
ఉఠೞ

೗

ଶ 𝐽௟ି௟(𝜔௦
௟) sech൫𝛽𝜔௦

௟/2൯ ൛ൣ(𝑉௦
௟)ற𝜎, 𝑉௦

௟ ൧ − [𝜎𝑉௦
௟, (𝑉௦

௟)ற ]ൟ

௟௦

         (31) 298 

In many situations, both conditions are applicable. The double sum in Eq.(29) is useful in zero field.  In 299 
either case, we have fully reduced Hubbard to Lindbladian form and essentially reproduced the main 300 
result obtained by Bengs and Levitt by way of the Lindbladian formalism.  One small difference is 301 
Hubbard’s use of the thermal symmetrizing factor given by the hyperbolic secant function.  If so desired, 302 
this can be removed as illustrated in Hubbard’s paper.  It is also imperative to emphasize the importance 303 
of the secular approximation in obtaining the Lindblad form.  Without this step, relaxation in the 304 
rotating frame will be time dependent, with very different, and perhaps even unphysical dynamics.  This 305 
same approximation is required in a Lindbladian approach, which is often referred to as the “rotating 306 
frame” approximation (Manzano 2020). 307 

While very compact, the presence of a finite temperature steady state is definitely obscure.  From 308 
Eq.(29) directly, the only apparent recourse is to expand the dynamics in a complete set of basis 309 
matrices and search for one or more zero eigenvalues.  Such a procedure is illustrated in an example 310 
with a simple two dimensional density matrix dynamics in (Manzano 2020) where eigenvalues are easily 311 
computed.  This is in contrast to Hubbard’s original expression, Eq.(14), where the steady state is clearly 312 
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recognizable, even for arbitrarily large dimensions.  Alternatively, we can invoke the secular 313 
approximation directly to Eq.(14)  and we can enjoy a compromise where one retains the clear presence 314 
of the steady state.  Hubbard teaches us how to retain explicit information on the fixed point density 315 
matrix.  However, this seems to be possible only when dynamic frequency shifts can be ignored. 316 

One should also appreciate that a homogeneous system which possess a zero eigenvalue is closely 317 
related to an inhomogeneous system.  The procedure of homogenizing an inhomogeneous system by 318 
incorporating the inhomogeneous vector into equations with an additional dimension, which is invariant 319 
with an eigenvalue of zero, has been employed in a Bloch equation analysis of spin echoes (Bain 2011) , 320 
steady state precession (Nararova 2004) and relaxation (Levitt 1992) .  Going in the opposite direction 321 
can be considerably more difficult.   322 

4. Bloch and Hubbard and Rotating Frame Relaxation: 323 

We now take a side turn to another aspect of the pioneering work of Bloch and Hubbard, which also has 324 
largely gone unrecognized in the NMR literature. As explained in the introduction, the author was 325 
recently reacquainted with these aspects in an effort to go beyond a Bloch equation picture with only R1 326 
and R2 for spin locks and adiabatic sweeps in the presence of exchange (Barbara 2016).  Both examples 327 
illustrate the use of the high temperature, weak ordering situation that occurs when the full theory 328 
contained in Eq.(29) is reduced to the appropriate limit for those circumstances.  These applications do 329 
not require the Lindbladian form.  Nevertheless, it strikes the author as a wasted opportunity to not 330 
mention the treatment of rotating frame relaxation by Bloch and Hubbard and therefore reintroduce 331 
these two results to 21st century NMR scientists. 332 

At the end of Bloch’s paper, he applies his theory to relaxation in the presence of an RF field.  For a rank 333 
one tensor interaction, such as the fluctuating field relaxation mechanism, he derives a set of 334 
generalized Bloch equations in the rotating frame: 335 

ቌ

𝑀̇௫

𝑀̇௬

𝑀̇௭

ቍ +  ቌ

𝐴௫ −Ω cos(θ) 𝑎௫

Ω sin(θ) 𝐴௬ −Ω sin(θ)

𝑎௭ Ω sin(θ) 𝐴௭

ቍ ቌ

𝑀௫

𝑀௬

𝑀௭

ቍ = ൭

𝑐௫

0
𝑐௭

൱     (32) 336 

When the Rabi frequency, Ω sin (θ)  is much smaller than the Larmor frequency ω0, but still comparable 337 
to the resonance offset, Ω cos(θ), we have az =cx = 0.  At high temperature, cz = R1M0 as usual.  In terms 338 
of the spectral densities, 𝐽௡(𝜔) the relaxation parameters are given by the equations 339 

𝐴௫ = 𝐴௬ =  𝐽ଵ(𝜔଴) +  𝐽଴(Ω) + ൫𝐽଴(0) −  𝐽଴(Ω)൯𝑐𝑜𝑠ଶ(𝜃)               (33) 340 

𝐴௭ = 2𝐽ଵ(𝜔଴)                               (33) 341 

𝑎௫ =  −൫𝐽଴(0) − 𝐽଴(Ω)൯ sin(𝜃) cos(𝜃)          (34) 342 

In the absence of an RF field, θ=0 and Ax and Az are R2 and R1 respectively.  Note that ax is generally not 343 
zero if the locking field is off resonance. 344 

It is not always appreciated that the usual formulas for rotating frame relaxation are those for the case 345 
when the locking field, whose magnitude is given by Ω, is much larger that the relaxation rates.  In that 346 
situation, a first order perturbation is applicable (Barbara 2016).  If the transformation, denoted by V, 347 
diagonalizes the Bloch equations without relaxation, the first order contribution from the relaxation 348 
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matrix elements is given by the diagonal elements of V-1RV, which are then rotating frame relaxation 349 
rate constants: 350 

𝜌ଵ =  𝑅ଵ𝑐𝑜𝑠ଶ(𝜃) + ൫𝑅ଶ − ൫𝐽଴(0) −  𝐽଴(Ω)൯ ൯𝑠𝑖𝑛ଶ(𝜃)        (35) 351 

𝜌ଶ =  
ଵ

ଶ
𝑅ଶ +

ଵ

ଶ
൫𝑅ଶ𝑐𝑜𝑠ଶ(𝜃) + ( 𝑅ଵ + 𝐽଴(Ω) − 𝐽଴(0) )𝑠𝑖𝑛ଶ(𝜃)൯      (36) 352 

When the low frequency terms are collected, one obtains expressions that reproduce those for chemical 353 
shift exchange, as usually derived from an analysis of exchange perturbation in the limit of fast exchange 354 
using the Bloch-McConnell equations (Barbara 2016), (Abergel 2003).  This result is often attributed to 355 
(Wennerstrom 1972).   The theory was already presented in Bloch’s paper in 1957.  Uncorrelated local 356 
fields for two spin ½ systems is an important mechanism for spin isomer conversion, as discussed in 357 
Bengs and Levitt. 358 

Bloch presents other applications to his formalism that are of interest.  These applications offer an 359 
excellent catalytic motivation for going through many of his notational details. 360 

 After his own exposition and refinement of Bloch’s theory, Hubbard also gives an application to rotating 361 
frame relaxation, and ups the ante, by considering second rank, dipole-dipole relaxation mechanisms.  362 
Hubbard obtains equations for the magnetization dynamics similar to Eq.[32] , with off diagonal 363 
contributions.  After taking the first order contribution, the rotating frame, spin lattice rate constant is 364 
given by 365 

𝜌ଵ =  𝑅ଵ𝑐𝑜𝑠ଶ(𝜃) +  𝑅ଶ𝑠𝑖𝑛ଶ(𝜃) − 6𝑠𝑖𝑛ଶ(𝜃){−𝐽଴(0) + 𝑐𝑜𝑠ଶ(𝜃)𝐽଴(Ω) + 𝑠𝑖𝑛ଶ(𝜃)𝐽଴(2Ω)}     (37) 366 

In terms of the spectral densities, R1 and R2 are 367 

𝑅ଵ = 4൫𝐽ଵ(𝜔଴) + 4𝐽ଶ(2𝜔଴)൯        (38) 368 

𝑅ଶ = 6𝐽଴(0) + 10𝐽ଵ(𝜔଴) + 4𝐽ଶ(2𝜔଴)      (39) 369 

This result was produced in very different notation in (Blicharski 1972).  Unfortunately, in that work, the 370 
various contributions are gathered together in such a manner as to obscure the origin of, and the 371 
relationship to each.  The reader should keep in mind that for both examples, details regarding scale 372 
factors of the spectral densities have been suppressed.  These can be added according to the specific 373 
needs of their application, be it dipolar, quadrupolar, fluctuating field, or chemical shift exchange. 374 

5. Comments and Conclusions: 375 

Given the maturity of the topic of relaxation in magnetic resonance, it is not often that a surprise is 376 
forthcoming.  Many modern treatments, that are very application oriented, reflect this maturity. For 377 
example, the extensive overview offered by Kowalewski and Maler (Kowalewski 2007) details many of 378 
the modern applications.  Bloch is not listed in the index, and Hubbard is indexed only in the context of 379 
work he did on rotational diffusion applications and the calculation of correlation functions, even 380 
though reference Hubbard’s review article is cited in the chapter titled Redfield Relaxation Theory.  In 381 
Redfield’s later effort, which appeared as a chapter in Advances in Magnetic Resonance (Redfield 1965), 382 
Redfield acknowledges the influence of Bloch, and offers his own equations that account for relaxation 383 
at finite temperatures, while only citing Hubbard’s review article in passing.  Redfield makes no effort to 384 
demonstrate or expound on the relationship between his expression, and Bloch’s or Hubbard’s.   A 385 
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glance at Redfield’s equation 3.15 in (Redfield 1965) induces one to question in what way his result is 386 
also Lindbladian, for the expression is very different than Hubbard’s equation Eq.(100).  The factoring of 387 
the spectral densities that Hubbard achieves does not rely on the secular approximation.  Nonetheless, a 388 
careful study reveals that Redfield’s equation is also a mixed Lindbladian type, similar to Eq.(21-22).  389 
Here one can fully appreciate the power of using spectral decomposition to factor out the spectral 390 
densities, and in doing so, produce an expansion in non-Hermitian operators.  Redfield’s 1965 result, 391 
which is based on a Hermitian operator expansion and looks nothing like a Lindbladian, is nonetheless as 392 
serviceable as Hubbard’s. 393 

Approaches to NMR relaxation theory have changed over its history.  In the work of Bloch, Redfield and 394 
Hubbard, extensive manipulations are carried out at the level of second order perturbation theory for 395 
the solutions to the interaction representation density matrix.  After extensive manipulations, a finite 396 
time step expression is produced, which is argued to be basically the solution to a given differential 397 
equation.  However, already in the same year that Hubbard’s review article appeared in print, Abragam 398 
took the alternative approach by directly iterating the differential equation in his treatment of 399 
relaxation (Abragam 1983).  This is now the usual practice, and is the path taken, for example, by 400 
Goldman in his review of NMR relaxation theory (Goldman 2000), who offers his own treatment of a 401 
finite temperature relaxation theory therein and also uses spectral decomposition for that case.   This 402 
same iteration approach is also adopted by recent expositions using the Lindbladian formalism and weak 403 
collision, Markovian bath dynamics and the secular approximation.  Again, a good illustration of this is 404 
given in Manzano.  As mentioned earlier, a study of that overview reveals that many of the same tools, 405 
e.g. use of Hamiltonian projection operators to obtain eigen-matrices, as used by Bloch and Hubbard, 406 
are also brought to bear in the same manner.  The historical overview mentioned in section 2 407 
(Chruscinski 2017), also outlines other open quantum system efforts made by various researchers, and 408 
there is a strong enough similarity to suspect that these have rediscovered the main results of Bloch and 409 
Hubbard, as well as having anticipated the Lindbladian form. 410 

 It is possible to make the argument that NMR theory needs to modernize, in keeping with new 411 
approaches that appear to have a more firm foundation in quantum theory.  The author is reminded of a 412 
classic collection of essays (Peierls 1979) with the surprise here, that these new methods can find their 413 
own perfect reflection in the best work of the old masters. 414 

 415 

Appendix: Some Elaborations on Lindblad and Section 2. 416 

In this appendix, a sketch of further aspects of the Lindbladian form is offered.  It is self-contained and 417 
does not require further references than those already provided. 418 

The most general transformation for a matrix, in particular the density matrix can be written in the form 419 

𝜌ᇱ =  ෍ 𝐶ఈఉఈᇲఉᇲ  𝑋ఈఉ𝜌𝑋ఈᇲఉᇲ

ఈఉ ᇲఉᇲ

                   (𝐴1) 420 

Where the 𝑋ఈఉ are the fundamental basis matrices defined in Section 3.  Rather than derive this 421 
equation, one can grasp that it is correct by reducing it to component form 422 
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𝜌௜௝
ᇱ =  ෍ 𝐶௜ఉఈᇲ௝

ఉఈᇲ

 𝜌ఉఈᇲ                       (𝐴2) 423 

Here, one recognizes the Redfield notation but with slightly rearranged indices.  Introducing a complete 424 
set of Hermitian matrices 𝑂௞ provides for a more compact notation where now 425 

𝜌ᇱ =  ෍ 𝐺௞௞ᇲ

௞௞ᇲ

𝑂௞𝜌𝑂௞ᇲ           (𝐴3) 426 

If the transformation preserves the Hermitian character of the density matrix, G is Hermitian in the k 427 
indices 𝐺௞௞ᇲ =  𝐺௞ᇲ௞

∗.  If the trace is also invariant we have 428 

෍ 𝐺௞௞ᇲ   𝑂௞ᇲ

௞௞ᇲ

𝑂௞ = 𝟏       (𝐴4) 429 

This is now all we need to obtain a difference equation in 𝜌ᇱ- 𝜌 and obtain the Lindblad form.  However 430 
this is not usually the way the problem is approached.  Instead the starting point is from the “Kraus 431 
form”, which is obtained by assuming that the matrix G is positive.  Being positive, one can factor G in 432 
the same manner illustrated in Section 3 via the spectral decomposition for H.  This then allows 433 
summations over the k indices to produce the Kraus operators for the transformation.  The one 434 
remaining index is over the eigenvalue index.  However this is basically going a step to far, and it is more 435 
direct to use Eq.(A3).  The required subtraction can be implemented by substituting Eq.(A4) for the 436 
identity in a symmetrical manner: 437 

𝜌ᇱ − 𝜌 =  ෍ 𝐺௞௞ᇲ

௞௞ᇲ

𝑂௞𝜌𝑂௞ᇲ  −
ଵ

ଶ
 (𝜌𝟏 + 𝟏𝜌)              (𝐴5) 438 

To complete the process, one now extracts those terms in the operator expansion that involves the 439 
identity operator, which we ascribe to the zero index 𝑂଴ = 𝟏.  It is a simple matter to see that these can 440 
be collected into the expression 441 

෍
ଵ

ଶ௜
௞

 (𝐺௞଴ − 𝐺௞଴
∗) 𝑖[𝑂௞ , 𝜌]                 (𝐴6) 442 

This represents the part of the transformation generated by a commutator.  The remaining part, where 443 
the sums now exclude the identity matrix, is now of the Lindbladian form 444 

𝜌ᇱ − 𝜌 =  ෍ 𝐺௞௞ᇲ

௞௞ᇲ

ቂ𝑂௞𝜌𝑂௞ᇲ −
ଵ

ଶ
 {𝜌,   𝑂௞ᇲ𝑂௞  }ቃ         (𝐴7) 445 

One can then use the positivity of G to factor this expression into non-Hermitian operators.  In this way 446 
one can see that the approaches from the generalized differential equation and the one based on the 447 
general solution are equivalent.  448 

  449 

 450 

 451 
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