
Referee 1 
 
We are grateful to both referees for their helpful comments and for noting several errors. 
 
An important problem in DOSY is how well differences in diffusion coefficient can be 
resolved. In older literature, a “rule of thumb” can be found stating that (in case of nonoverlapping 
signals and good signal-to-noise ratios) the diffusion coefficients have to differ 
by at least 30% to be distinguished, but the reality is of course more complex.  
 
This statement is a little confused. In the limit of good SNR and no overlap, differences in D as small as 1% can 
be distinguished in practice. The 30% figure is commonly quoted as the resolution limit for biexponential fitting 
where signals are overlapped, although at very high SNR signals of comparable intensity can be resolved with 
somewhat smaller differences (Anal Chem 78, 3040). 
 
This work presents a very welcome quantitative assessment of how the signal to noise and sampling 
of gradient strengths affect the diffusion resolution. These new insights can indeed help 
practitioners to assess beforehand whether it will at all be feasible to resolve different 
molecules in the diffusion dimension, using for instance also tools to predict diffusion 
coefficients (based on molecular weight, by the same research group). 
 
I do have some questions that the authors may wish to clarify or consider commenting on. 
 
The final equation (13) illustrates that in practice improving the diffusion resolution by 
increasing the signal-to-noise ratio has its limits. The same equation seems to suggest 
that an increase in the number of gradient values N, rather than increasing the number of 
transients, could indefinitely improve the diffusion resolution. Figure 2 indeed shows no 
deviation from the linear behaviour of RD  as a function of √(N-1). Do the authors think 
that in reality there is also here a limit to be reached, for instance due to gradient 
hardware limitations, or environmental changes as a function of time or gradient strength? 
 
There are two points at issue here. First, the analysis in this manuscript specifically excludes the influence of 
such systematic errors, which will indeed impose limits on diffusion resolution. Second, Fig. 2 only describes the 
effect of spectral noise on diffusion resolution. As is explained later in the manuscript, random and 
pseudorandom perturbations of the measured signal intensity from other sources, for example pulse 
irreproducibility, do indeed also limit diffusion resolution. The effect of these random and pseudorandom 
perturbations averages out with increasing N just as the effect of noise averages out with increasing time 
averaging. What is left in the limit of infinite numbers of scans and of gradient values is the effect of systematic 
error. In this unattainable limit, and with no complications such as peak overlap, conventional DOSY processing 
would lead to diffusion peaks with finite widths, determined by the systematic deviation of the measured data 
from the Stejskal-Tanner equation used, but always at the same apparent D. 
 
The value of SNRlim  in equation (13) appears to be determined by systematic errors in 
signal intensity, which, besides hardware and environment fluctuations, will probably 
depend on the pulse sequence used. The authors rightly mention that in general more rfpulses 
in the sequence or additional unwanted coherence transfer pathways will result in 
more systematic ‘noise’. I wonder if SNRlim , which can be determined experimentally in the 
way described in the paper, could serve as a means to compare the performance of 
various DOSY pulse sequences, comparing it to, for instance, the value measured for the 
oneshot sequence on the same spectrometer and sample? 
 
It is important to distinguish here between systematic and experimentally reproducible sources of error (e.g. 
gradient non-uniformity) and irreproducible random or pseudorandom sources of error (e.g. gradient noise, 
pulse irreproducibility). This manuscript deals with the latter: the former is a different can of worms, and has 
been addressed elsewhere (including the references by Connell et al and Damberg et al.). The limit imposed by 
SNRlim derives from random/pseudorandom variations in signal intensity; it could be used in comparing pulse 
sequences, but the choice of what sequence to use in a given context also depends on a range of other factors. 
 



Figure 2 shows that the data points obtained for low values of N (10 (black) and 17 
(grey)) deviate somewhat more from the fitted curve than all the other data points. Does 
this imply that equation (13), combined with equation (11) and Table 1, approximates 
reality less well for lower values of N? 
 
That is correct. 
 
Some further technical comments that should be fixed: 
In equation (3), the gradient shape factor for half-sine shapes, (2/π)^2, has been 
forgotten. 
 
To be clarified on revision. [Bruker’s Topspin software, which is used for almost all acquisitions using half-sine 
pulses, defines an effective gradient Gi = Gmax(2/π)] 
 
Equation (5), expression for B, shows ti  before the exponent. I guess this should be εi .? 
 
To be corrected on revision.  
 
There are problems with the references. Some citations in the main text do not feature in 
the reference list (I spotted Brihuega-Moreno 2003, Franconi 2018, Reci 2020 and Power 
2016 to be lacking). The reference to Mehlkopf et al. lacks the title. 
 
To be corrected on revision.  
 
 
Referee 2 
 
We are grateful to both referees for their helpful comments and for noting several errors. 
 
In this article, Guest et al. analyse the effect of the signal to noise ratio in diffusion-ordered 
NMR spectroscopy (DOSY), and provide guidelines on a choice of sampling 
strategy (number of gradient increment, maximum attenuation, SNR) that provides good 
accuracy. The paper is very well written and contains a number of interesting and useful 
explanations on DOSY. The main message is enlightening and important for users of the 
method. I recommend publication in Magnetic Resonance, after the following minor points 
have been addressed. 
 
It would be useful to clarify what is meant by “accuracy” in the text. Sometimes the word 
refers to systematic errors only, sometimes to a combination of systematic and random 
errors (https://en.wikipedia.org/wiki/Accuracy_and_precision). Here the latter seems to 
be used, but this would need to be explicit. 
 
This is not straightforward. The diffusion dimension of a DOSY spectrum plots an estimated probability 
distribution of values of D: each resonance has a Gaussian peak centred on the estimated diffusion coefficient 
with a width determined by the estimated standard error obtained in the fitting process. Viewed simply, the 
width of the diffusion peak is thus a measure of its experimental precision, and the difference between the peak 
position and the true D is a measure of its accuracy - just as is illustrated in the figure on the Wikipedia page. 
On a strict view, however, the difference between the peak position and the true D in the absence of systematic 
error is purely a reflection of the precision of the estimate of D obtained by fitting: if a large number of DOSY 
experiments were performed, all perfect apart from the effect of noise, the accuracy would be infinite (the 
average of the estimated D values would converge on the correct value). The ambiguity arises because of the 
nature of the DOSY display. We took the pragmatic view that while it is a loose usage, accuracy, in the ISO 
sense of trueness, is the more helpful word for readers. To be clarified on revision. 
 
The conclusion reads “a trivial calculation will show both whether or not such experiments 
are worth attempting in the first place, and what limiting diffusion resolution is 
achievable”. Does this calculation require knowledge of SNR_lim? How can this quantity be 



determined? 
 
SNR_lim is not needed to determine, using Eq. (11), whether it is possible for a given experiment under 
otherwise ideal conditions to achieve sufficient SNR in the time available to give the diffusion resolution 
required. A more sophisticated calculation, using Eq. (13), would show whether instrumental limitations would 
impose a more restrictive limit, but this would require experimental characterisation of the effects of 
instrumental irreproducibility. 
 
To be clarified on revision. 
 
It would be useful to have guidelines on what to do in a fixed total experimental time. Is it 
better to increase the number of gradient increments, or the number of averaged scans? 
In which cases? The answer lies in the proposed equations, but this is so frequent a 
question that it may deserve a specific discussion. For example, it seems from Eq. 13, 
that increasing N will always increase accuracy, while increasing SNR is only useful up to a 
certain limit. Is it the case that one should increase N only as soon as the number of scans 
is sufficient for phase cycling purposes and peak detectability ? 
 
The short answer is that in the case analysed in this manuscript (no systematic errors), increasing SNR will only 
be useful up to a limit set by N, and increasing N will only be useful up to a limit set by SNR, but that there is no 
limit to the accuracy obtainable by increasing both N and SNR. The long answer is that of course systematic 
errors play a crucial role in limiting DOSY, and that in choosing experimental parameters there are many other 
factors to be taken into account (expected range of D, the desirability of being able to detect multiexponential 
decay, the variation of signal irreproducibility with signal amplitude, the effect of B1 inhomogeneity, the effects 
of electrical nonlinearity of the gradient circuitry and spatial nonlinearity of the gradients applied, …). The 
question of optimum sampling strategy is beyond the scope of this manuscript, which deals purely with the 
effect of SNR. (See also the reply to the first point raised by Referee 1). 
 
Overall, while all the tools are provided to guide readers in the choice of appropriate 
parameters, the usefulness of the paper would be increased by the addition of a practical 
example. 
 
Figures 3 and 4 provide this. 
 
The “inverse of the coefficient of variation” is introduced as “a convenient measure of 
resolution”. This choice should be justified. In spectroscopy, resolution or dispersion is 
usually quoted on an absolute, not a relative scale. Why use a relative scale here ? 
 
This is straightforward. In the diffusion dimension, unlike the spectral dimension, linewidths scale with D. A 1% 
error in a D of 1 x 10–10 m2/s has a tenth the impact of a 1% error in a D of 10 x 10–10 m2/s. This is (partly) 
why when DOSY spectra are conventionally plotted, with D increasing from top to bottom, the linewidths in the 
diffusion dimension also tend to increase from top to bottom. 
 
In Eq. 4, the half sine shape seems to be accounted for in Deltaprime, but not in the 
gradient area. 
 
To be clarified on revision. [Bruker’s Topspin software, which is used for almost all acquisitions using half-sine 
pulses, defines an effective gradient Gi = Gmax(2/π)] 
 
In Eq. 5, shouldn’t a sum symbol be used instead of an integral symbol? 
 
It certainly should! To be corrected on revision.. 
 
Also in Eq. 5: what is the variable t_i ? From Franconi et al., it should be espilon_i ? 
 
To be corrected on revision. 
 



I could not find the reference to Reci et al. and Franconi et al. in the manuscript 
 
To be corrected on revision. 


