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Abstract. Diffusion-ordered NMR spectroscopy (DOSY) constructs multidimensional spectra displaying signal strength as a
function of Larmor frequency and of diffusion coefficient from experimental measurements using pulsed field gradient spin
or stimulated echoes. Peak positions in the diffusion domain are determined by diffusion coefficients estimated by fitting
experimental data to some variant of the Stejskal-Tanner equation, with the peak widths determined by the standard error
estimated in the fitting process. The accuracy and reliability of the diffusion domain in DOSY spectra are therefore determined
by the uncertainties in the experimental data, and thus in part by the signal-to-noise ratio of the experimental spectra measured.
Here the Cramér-Rao lower bound, Monte Carlo methods and experimental data are used to investigate the relationship
between signal-to-noise ratio, experimental parameters, and diffusion domain accuracy in 2D DOSY experiments.
Experimental results confirm that sources of error other than noise put an upper limit on the improvement in diffusion domain

accuracy obtainable by time averaging.
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1 Introduction

The utility of pulsed field gradient spin or stimulated echo (PFGSE) experiments for distinguishing between the NMR signals
of different species was first pointed out by Stilbs (Stilbs, 1981), but practical applications of this principle only became
common with the introduction of diffusion-ordered spectroscopy (DOSY) by Morris and Johnson (Morris, 1992). In DOSY
(Johnson, 1999; Morris, 2007), a pseudo-2D (or higher dimensional) spectrum is synthesised in which the signals of an NMR
spectrum are dispersed into an extra dimension according to the estimated diffusion coefficient D. This is obtained by fitting
experimental measurements of signal attenuation as a function of pulsed field gradient amplitude to a theoretical model, usually
some variation on the Stejskal-Tanner equation. (Stejskal, 1965; Sinnaeve, 2012) The value added by the DOSY approach
over simple PFGSE measurements is that since all signals from spins within a given species should show the same diffusion,
in favourable cases cross-sections through the DOSY spectrum at different D values give separate spectra — which can be
interpreted just as normal 1D spectra — for each of the components of a mixture. This paper examines the impact of one crucial

determinant of the success or failure of a DOSY experiment, the signal-to-noise ratio (SNR) of the experimental data.

One common analogy is that DOSY is akin to performing chromatography within an NMR tube, separating spectra rather than
physically separating analytes. The name DOSY is, however, misleading in some respects. In conventional 2D NMR methods
such as COSY, NOESY and TOCSY the 2D spectrum can be obtained by direct Fourier transformation of signals that are
phase or amplitude modulated as a function of an evolution period #1. The frequency F1 at which a given signal appears is
determined directly by the frequency of evolution in #1: while the phase or amplitude of a signal may behave unexpectedly, the
frequency is determined directly by the quantum mechanics, so signals should always appear at the “correct” frequency. In
pseudo-2D methods such as DOSY (and relaxation-based analogues, often referred to as relaxation-ordered spectroscopy,
ROSY (Lupulescu, 2003; Gilard, 2008; Nishiyama, 2010; Dal Poggetto, 2017)) this is not the case: the diffusion dimension is
a statistical construct, and the positions of signals in the diffusion dimension are scattered about the true D values. When a
DOSY spectrum is constructed, peaks in the diffusion domain are conventionally given Gaussian shapes with widths that
reflect the uncertainty in D estimated from the fitting statistics. Thus in COSY spectra, peaks with the same chemical shift are
exactly aligned; in DOSY spectra, peaks with the same diffusion coefficient have Gaussian shapes that should overlap but are
not coincident. This is just one reason why the interpretation of DOSY spectra demands more of the spectroscopist’s skill and
judgment than most other types of NMR spectrum; others include the effects of signal overlap and of systematic errors

introduced by imperfect experiments.

In simple mixtures in which the NMR signals are well resolved and the individual species have very different diffusion
coefficients, even a crude DOSY experiment will work well. Where species of similar size, and hence similar D, are to be
resolved, however, high quality experimental data are essential. One of the key determinants of the utility of a DOSY spectrum

is its diffusion resolution, the minimum difference in D that can safely be distinguished. In an ideal experiment, this is

determined by the signal-to-noise ratio of the experimental data. Here we use theory, empiricism and simulated and
experimental data to answer some key questions: how good do our experimental data need to be to resolve a given difference
in D? how is the uncertainty in D related to the signal-to-noise ratio (SNR) of raw experimental data, and can this relationship
be expressed in a simple form? and at what point do improvements in SNR stop translating into improved resolution in the

diffusion domain?

While it is to be hoped that a clearer understanding of the role that signal-to-noise ratio plays in limiting the quality of DOSY

spectra will prove useful, it should be stressed that SNR is just one of many factors involved. In particular the analysis presented

here takes no account of the effects of the systematic and reproducible experimental imperfections that all DOSY experiments

are affected by. These include for example the spatial non-uniformity of pulsed magnetic field gradients (Damberg, 2001
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Connell, 2009) and the effects of peak overlap (Botana, 2011). Questions such as choosing the optimum balance between time

averaging and the number of different field gradient values to be used require may different factors to be taken into account

of which SNR is just one.

2 Methods

In its commonest (“high resolution”) form, DOSY uses least squares fitting of the amplitudes of peaks in pulsed field gradient
echo spectra to determine diffusion coefficients D. A series of N otherwise identical experiments is carried out in which the
amplitudes G of diffusion-encoding field gradient pulses are varied to map out the decay of signal amplitude as a function of
G. In the great majority of experiments, a simple fit to a single exponential is used; multiexponential fitting is possible, but is
extremely demanding of SNR (Nilsson, 2006) and is not considered here. The diffusional attenuation Si/So in successive

measurements takes the form

Si/So = exp(—biD) 1)
where the form of bi is determined by the pulse sequence used (Sinnaeve, 2012). In the simple case of a pulsed field gradient
spin or stimulated echo in which spatial encoding and decoding are performed by two gradient pulses of duration d a time 4 —
J apart,

bi=y* G 8 (4-9/3) ?2)

if the gradient pulses are rectangular in shape, or

bi=12G25* (4 - 5/4) 3)

if half-sine shaped gradient pulses are used. In the former case the effective gradient Gj is equal to the peak gradient applied

in a given pulse; in the latter Gi is equal to the peak gradient multiplied by 2/z. These expressions assume that the field gradient

is constant across the sample, which is not always a good approximation; the effects of field gradient non-uniformity can be

taken info account by yeplacing the term G by an appropriate power series in G* (Connell, 2009).

(Formatted: Subscript

Experimental data are imperfect, most notably because of the presence of a background of random electronic noise. In a well-
conducted experiment the effect of this on the measurement of the amplitude S of a signal, whether in terms of peak height or
of signal integral, is well described by the addition of a Gaussian distribution of standard deviation os. In the case of peak
height, the signal-to-noise ratio (SNR) is by convention defined as S/(2 os) in NMR spectroscopy. In a DOSY dataset using N
different gradient strengths Gi, each of the N measurements Si of the amplitude of a given peak will have the same standard
deviation os. The effect of this uncertainty on the value of D determined by nonlinear least squares fitting can easily be found
by brute force Monte Carlo simulation, or directly from the Cramér-Rao lower bound (CRLB). The latter has been extensively
used in NMR, notably for selecting “optimum” sampling patterns Gi for the simultaneous determination of the diffusion
coefficients of species of different D or for the estimation of diffusion distributions S(D) (see e.g. Brihuega-Moreno, 2003;

Franconi, 2018; Reci, 2019; note that the derivations given in the first two references contain some minor typographical errors).

The question of optimum sampling is considerably complicated by the presence of multiple sources of systematic error in

diffusion NMR experiments and the need to allow for the likelihood of signal overlap, and is largely avoided here; rather, we

use the CRLB for the much more pedestrian purpose of quantifying limiting diffusion resolution in DOSY.
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A convenient measure of resolution Rp in the diffusion dimension of the DOSY spectrum is the inverse of the coefficient of

110  variation of D, that is the ratio of the estimated D to its estimated standard deviation op., Using the conventional definition of (Deleted:

SNR given above, expression (10) of (Franconi, 2018) becomes

AC-B?

— /b _
Rp= (”D) = 2SNR J - (4)
115  where
A=ylie®, B=yllige?, C=ylle?e?, and ei=biD (5)

For a given diffusion coefficient D and choice of N gradient values Gi, therefore, the dependence of the resolution Rp on the
120  signal-to-noise ratio of a given signal can be calculated. Here Rp was evaluated as a function of the number N of gradient

values sampled, the maximum exponent €max, and the form of the sampling scheme.

Expressions (4) and (5) allow direct calculation of Rp. Equivalent results can be obtained easily by Monte Carlo methods,
constructing an attenuation table e~¢ and then repeatedly adding Gaussian noise » of standard deviation os = 1/(2 SNR) to each
125 point of the table and fitting it to a function of the form a e #¢i. The standard deviation oy of the parameter /3 is then the inverse
of Rp. Again Rp was evaluated as a function of the number N of gradient values sampled, the maximum exponent €max, and

the form of the sampling scheme.

Experimental 'H DOSY data were acquired for a 100 mM solution of quinine in DMSO-ds, with 50 mM sodium
130 trimethylsilylpropionate (TSP) as reference, using the Oneshot pulse sequence (Pelta, 2002) on a 500 MHz Varian VNMRS
spectrometer equipped with a 5 mm triaxial gradient probe at 25 °C nominal temperature. 12 quadratically-spaced (equally
spaced in gradient squared) nominal gradient amplitudes from 12.5 to 52.8 G cm™' were used, with a net gradient-encoding
rectangular pulse width of 1 ms and a diffusion delay 4 of 0.16 s. 8 transients of 16384 complex points were acquired for each
gradient value in a total experiment time of 5 min. The data were subjected to standard DOSY processing in Vnmr], consisting
135  of zero-filling, reference deconvolution (Morris, 1997) with a target Lorentzian linewidth of 1.3 Hz, baseline correction, peak
picking, fitting to a Stejskal-Tanner equation modified to compensate for the measured gradient non-uniformity of the probe
used (Damberg, 2001: Connell, 2009), and construction of the DOSY spectrum using the fitted signal amplitude, diffusion
coefficient D, and standard error op. The signal decay for the quinine methoxy peak at 3.9 ppm, which had a SNR of 14400:1
at the lowest gradient used, was extracted, and the Stejskal-Tanner fit repeated with different additions of synthetic Gaussian

140 noise to investigate the influence of SNR on Rp.

3 Results and Discussion

Equation (4) shows that, as is intuitively reasonable, the diffusion resolution is directly proportional to SNR (provided that
systematic sources of error are negligible). The proportionality constant is, however, a complicated function of the choice of
sampling function and its relation to the diffusion coefficient: the more data points are measured the better Rp will be, but just
145 how good depends on what parts of the attenuation curve those points sample. If only the early part of the curve is sampled
(€max < 1, where €may is the maximum value of €) then the effect of diffusion on the measured points will be small, or if too
wide a range of gradients G is sampled (€max >> 1) then many of the measured points will contain very little signal, and in both
cases Rp will suffer. In a typical high resolution DOSY experiment, the sample will contain species of different sizes with a

range of diffusion coefficients D. Where the range is not too wide it is common practice to use a simple sampling scheme in
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which the field gradient pulse amplitude is incremented either linearly, from some minimum value Gmin to @ maximum Gimax

in equal steps of G:

Gi = Gmin + (i — 1)(Gmax — Gmin)/(N — 1) 6)

or quadratically, from Gin to Gmax in equal steps of G*:

G = \/Grznin + (1= D(Ghax - Gri)/(N- 1) .

Because the diffusion-encoding gradient pulses G also play a part in determining coherence transfer pathways in many NMR
methods for measuring diffusion, complementing and reinforcing the effects of phase cycling, it is important in practice that
small values of Gmin be avoided. This is particularly important if experiments such as Oneshot (Pelta, 2002) that employ
unbalanced bipolar gradient pulse pairs are used with low numbers of transients (and hence incomplete phase cycling).
Common practice is therefore to use a constant ratio Gmin/Gmax = k, where x = 0.05 — 0.25, so that G varies from x Gmax t0 Gmax.
Linear and quadratic sampling give similar diffusion resolution, as is shown below. Quadratic sampling can make it easier to
detect systematic deviations from exponential decay as a function of gradient squared, and hence to identify peaks in which

the signals of species of different D overlap.

For a given set of experimental delays and pulse durations, linear and quadratic spacing in G will give different sets of Stejskal-
Tanner exponents €;. Different diffusion coefficients D will give different maxima €emax, and because the attenuation caused by
the minimum gradient Gmin depends on D, the minimum Stejskal-Tanner exponent emin will vary slightly with €max. Thus for

linear sampling the Stejskal-Tanner exponents are

-na-n.?
€= [K + ﬁ] €max ®)

and for quadratic sampling

€ = [KZ + %} €max 9.

Figure 1 compares the results of Monte Carlo simulations (small filled circles) of exponential fits for the two sampling schemes,
with SNR = 100 and x = 0.05 in both cases, as a function of N and emax with the Cramér-Rao upper bounds (open circles) for
Ro. As expected, there is excellent agreement between the Monte Carlo and analytical results. The lines for linear regression
confirm that there is a direct proportionality with \/m for low €max, but that for higher emax, where the signal is strongly
attenuated for greater €i values, the line of best fit is displaced. The slope of the line of best fit for Rp as a function of \/m
rises as €max increases until it reaches a maximum at around €max = 2.1, after which it decreases again. This is again as expected:
for low €max the data are dominated by points that have high precision but low attenuation, while for high €max the converse is

true.
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Figure 1: Diffusion resolution Rp as a function of \/(N - 1), where NV is the number of gradient values used, for (a) linear and (b)
quadratic sampling in the gradient domain, determined by Monte Carlo simulation (small filled circles) and Cramér-Rao Least
Bounds analysis (open circles), for SNVNR = 100 and maximum Stejskal-Tanner exponents €max of 0.25 (black), 0.5 (grey), 1 (blue), 2
(green), and 3 (orange). Solid lines show the results of linear regression of the Cramér-Rao data.

The predicted diffusion resolution Rp is a function of the sampling scheme, signal-to-noise ratio SNR, maximum Stejskal-
Tanner exponent €max, and number of gradient values used N. Given the nature of Eqgs. (4) and (5) it is clear that no simple
analytical form exists for Ro(SNR, €max, N). Equally, it is known that Rp is directly proportional to SNR, and it is reasonable to
expect Rp to be proportional to the square root of N — 1, since (a) increasing N will decrease the effects of random errors in
proportion to the square root of the effective number of independent measures of D, and (b) that number will be dependent on
N — 1, since it is the change in signal amplitude that provides information on D, reducing the number of degrees of freedom
by one. In general the effective number will be less than N — 1 for all but low values of emax, because signal attenuation will
reduce the information content for higher values €i. It is thus reasonable to seek an approximate analytical representation of

the form
Ro(SNR, €max, N) = SNR \/(N - 1) flemax) (10).

Figure 2 shows the variation of f'as a function of emax, calculated numerically using Eqgs. (4), (5) , (8) and (9) for values of N

between 10 and 200 for linear and quadratic sampling, together with fits to a three-parameter function of the form

f€max) = a Emaxe_b (Emax)® (1.

The quality of fit is more than adequate for practical use, establishing a simple relationship between diffusion resolution,

signal-to-noise ratio and experimental parameters; fit parameters are given in Table 1.

0.5 05 6000
o 9o
@ ®) CRARCRC) 8829
0.4 0.4 oo 8
~ 0.3 ~03
& &
= =
0.2 0.2
0.1 0.1
0.0 0.0
0.0 0.5 1.0 15 2.0 2.5 3.0 35 0.0 0.5 1.0 15 2.0 25 3.0 3.5
Emax Emax



220

225

230

240

245

250

255

Figure 2: Relative diffusion resolution f{€ma:) determined Cramér-Rao Least Bounds analysis (open circles) as a function of
maximum Stejskal-Tanner exponent €may, for (a) linear and (b) quadratic sampling in the gradient domain with 10 (black), 17 (grey),
37 (blue), 65 (green), 101 (yellow), and 197 (red) gradient values. Solid lines show the results of nonlinear regression of the data
points shown to the three-parameter function Eq. (11).

Linear sampling Quadratic sampling
a 0.72 0.66
b 0.71 0.61
c 0.77 0.86

Table 1. Fitted parameters for Eq. (11) obtained from the data of Fig. 2. No error estimates are given as the data fitted are not
normally distributed.

In principle, diffusion accuracy, should increase indefinitely as the signal-to-noise ratio of the experimental data increases.

(“Accuracy” is used here in the sense of the reliance that can be placed on the positions of peaks in the diffusion dimension of

a DOSY spectrum, i.e. the “trueness” of the diffusion dimension). In practice diffusion accuracy does not increase indefinitely,

because spectral noise is far from the only source of uncertainty in the signal attenuations measured in DOSY experiments.
Radiofrequency pulse irreproducibility, field-frequency ratio instability, gradient noise, temperature variation and a range of
other sources all limit the reliability of signal intensity measurements in NMR, limiting resolution in DOSY and causing #1-
noise in multidimensional spectra (Mehlkopf, 1984; Morris, 1992). In general, the accuracy and reproducibility of NMR data
tend to deteriorate as the number of pulses used in a sequence increases (because of pulse phase and amplitude jitter caused
by limited radiofrequency spectral purity), as the durations of the delays used increase (because of the cumulative effect of
field-frequency fluctuations), and as the overall duration of an experiment increases (because of slow changes in environmental
factors such as room temperature, air pressure etc.). Most such perturbations are at least semi-systematic in nature, but many
(particularly pulse phase instability) have effects that can appear random, and can therefore decrease, at least to some extent,
with time averaging. Other sources of distortion in the measured signal decay are both systematic and reproducible and
therefore do not decrease with time averaging. These include changes in signal attenuation caused by convection (never wholly
absent in practical NMR experiments on liquids (Swan, 2015; Barbosa, 2016)), and by the presence of signals from unwanted
coherence transfer pathways. Distortions caused by spatial non-uniformity of the field gradient can be corrected for if

appropriate calibration is performed (Damberg. 2001: Connell, 2009).

There is thus a practical limit to the benefits to be gained by increasing SNR, whether by time averaging, increasing the signal
strength (e.g. by increasing sample concentration), or reducing the noise (e.g. by using a cold probe and preamp). This is
illustrated here with experimental data obtained as described earlier for the methoxy signal from a sample of quinine. The
starting SNR of the quinine methoxy peak in the lowest gradient spectrum was 14400:1; successively greater amounts of
synthetic Gaussian noise were added and fitting repeated, averaging the results of 100 additions, to show the influence of SNR
on the diffusion resolution Rp. If the contributions from sources other than noise to the errors in the experimental peak height
as a function of gradient strength are normally distributed and have a root mean square deviation which is a fraction 1/(2
SNRiim) of the initial peak amplitude, then the effect on fitting, and hence on diffusion resolution, of adding uncorrelated noise
is to degrade the effective signal-to-noise ratio SNR in Eq. (10) to

-
SNR,z; = SNR J SN Riim (12).

2 2
SNRE,,+SNR
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This gives a final predicted diffusion resolution for given experimental conditions of

Ro(SNR, €max, N) ~ % SN flems) (13),

SNR
JH(M,M)

where f{emax) can be approximated by Eq. (11). Thus if the noise contribution to the experimental uncertainty is dominant, the
effective signal-to-noise ratio is the actual SNR, but at high SNR the effective signal-to-noise ratio for the purposes of Stejskal-

Tanner fitting is the limit SNRim imposed by other error sources.
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Figure 3: 500 MHz Oneshot 'H DOSY spectrum of 100 mM quinine in DMSO-ds with 50 mM sodium trimethylsilylpropionate as
reference, acquired as described in the text.

To investigate the effect of signal-to-noise ratio on diffusion resolution, synthetic noise was added to the experimental data
used to construct the '"H DOSY spectrum of quinine shown in Fig. 3. Figure 4 shows the effect of SNR on the measured Rp
for experimental data for the quinine methoxy peak, found by titrating in extra noise as described above. The experimental
signal-to-noise ratio of the first gradient increment was 14400:1, but the diffusion resolution Rp found when the raw
experimental data were fitted was only 420, a small fraction of the predicted value of almost 15000. As Figure 3 shows, at low
SNR the observed diffusion resolution follows the line expected for the unmodified Cramér-Rao limit of Eq. (11), but as SNR
increases the improvement in Rp levels off, slowly approaching the limit seen for the data with no noise added. Fitting of Eq.
(13) to the noise-supplemented experimental data gave a value of just over 300 for SNRim. To put this value in context, it
corresponds to a respectably small root mean square uncertainty in the signal amplitudes measured of 1/600 ~ 0.17% of the
original peak intensity, typical of good quality results obtained with multiple pulse sequences on a modern spectrometer. With
extended time averaging and appropriate precautions and instrumental interventions it is possible to obtain data with

significantly smaller uncertainties than this (see e.g. Power, 2016), but the cost in time and effort can be considerable.
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Figure 4: Diffusion resolution Rp as a function of signal-to-noise ratio for the methoxy signal of quinine in a Oneshot experiment on
a 100 mM solution of quinine in DMSO-ds. Open circles show the average of 100 values of Ry by fitting of the experimental data
with the addition of synthetic Gaussian noise for each value of SNR, the dashed line shows the predicted Cramér-Rao limit, Eq. (11),
for the experimental parameters used (V= 12, €max = 0.76), and the solid line the result of nonlinear least-squares fitting of the
Cramér-Rao limit modified to take into account the presence of other errors in the signal intensity, Eq. (12), with SNRjim = 305.

4 Conclusions

It is well known that the signal-to-noise ratio of diffusion-weighted experimental NMR data plays a critical role in determining
the diffusion resolution of a DOSY spectrum constructed from it. There is thus a temptation to conduct very long experiments
with extensive time averaging in order to obtain the best possible results. Conversely, in dilute systems the temptation is to
conduct equally long experiments in the hope of obtaining results with sufficient diffusion resolution to shed light on speciation
etc. In both cases it is possible, and indeed common, to waste a great deal of instrument time for no good result, either because

sources of error other than noise dominate the fitting statistics, or because the final signal-to-noise ratio is insufficient. Here it

is shown that a trivial calculation with equation (11) will show both whether or not such experiments may be worth attempting (Deleted: are

in the first place, and what limiting diffusion resolution is achievable.
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