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Abstract. Diffusion-ordered NMR spectroscopy (DOSY) constructs multidimensional spectra displaying signal strength as a 

function of Larmor frequency and of diffusion coefficient from experimental measurements using pulsed field gradient spin 

or stimulated echoes. Peak positions in the diffusion domain are determined by diffusion coefficients estimated by fitting 

experimental data to some variant of the Stejskal-Tanner equation, with the peak widths determined by the standard error 10 

estimated in the fitting process. The accuracy and reliability of the diffusion domain in DOSY spectra are therefore determined 

by the uncertainties in the experimental data, and thus in part by the signal-to-noise ratio of the experimental spectra measured. 

Here the Cramér-Rao lower bound, Monte Carlo methods and experimental data are used to investigate the relationship 

between signal-to-noise ratio, experimental parameters, and diffusion domain accuracy in 2D DOSY experiments. 

Experimental results confirm that sources of error other than noise put an upper limit on the improvement in diffusion domain 15 

accuracy obtainable by time averaging. 
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1 Introduction 

The utility of pulsed field gradient spin or stimulated echo (PFGSE) experiments for distinguishing between the NMR signals 20 

of different species was first pointed out by Stilbs (Stilbs, 1981), but practical applications of this principle only became 

common with the introduction of diffusion-ordered spectroscopy (DOSY) by Morris and Johnson (Morris, 1992). In DOSY 

(Johnson, 1999; Morris, 2007), a pseudo-2D (or higher dimensional) spectrum is synthesised in which the signals of an NMR 

spectrum are dispersed into an extra dimension according to the estimated diffusion coefficient D. This is obtained by fitting 

experimental measurements of signal attenuation as a function of pulsed field gradient amplitude to a theoretical model, usually 25 

some variation on the Stejskal-Tanner equation. (Stejskal, 1965; Sinnaeve, 2012) The value added by the DOSY approach 

over simple PFGSE measurements is that since all signals from spins within a given species should show the same diffusion, 

in favourable cases cross-sections through the DOSY spectrum at different D values give separate spectra – which can be 

interpreted just as normal 1D spectra – for each of the components of a mixture. This paper examines the impact of one crucial 

determinant of the success or failure of a DOSY experiment, the signal-to-noise ratio (SNR) of the experimental data. 30 

 

One common analogy is that DOSY is akin to performing chromatography within an NMR tube, separating spectra rather than 

physically separating analytes. The name DOSY is, however, misleading in some respects. In conventional 2D NMR methods 

such as COSY, NOESY and TOCSY the 2D spectrum can be obtained by direct Fourier transformation of signals that are 

phase or amplitude modulated as a function of an evolution period t1. The frequency F1 at which a given signal appears is 35 

determined directly by the frequency of evolution in t1: while the phase or amplitude of a signal may behave unexpectedly, the 

frequency is determined directly by the quantum mechanics, so signals should always appear at the “correct” frequency. In 

pseudo-2D methods such as DOSY (and relaxation-based analogues, often referred to as relaxation-ordered spectroscopy, 

ROSY (Lupulescu, 2003; Gilard, 2008; Nishiyama, 2010; Dal Poggetto, 2017)) this is not the case: the diffusion dimension is 

a statistical construct, and the positions of signals in the diffusion dimension are scattered about the true D values. When a 40 

DOSY spectrum is constructed, peaks in the diffusion domain are conventionally given Gaussian shapes with widths that 

reflect the uncertainty in D estimated from the fitting statistics. Thus in COSY spectra, peaks with the same chemical shift are 

exactly aligned; in DOSY spectra, peaks with the same diffusion coefficient have Gaussian shapes that should overlap but are 

not coincident. This is just one reason why the interpretation of DOSY spectra demands more of the spectroscopist’s skill and 

judgment than most other types of NMR spectrum; others include the effects of signal overlap and of systematic errors 45 

introduced by imperfect experiments.  

 

In simple mixtures in which the NMR signals are well resolved and the individual species have very different diffusion 

coefficients, even a crude DOSY experiment will work well. Where species of similar size, and hence similar D, are to be 

resolved, however, high quality experimental data are essential. One of the key determinants of the utility of a DOSY spectrum 50 

is its diffusion resolution, the minimum difference in D that can safely be distinguished. In an ideal experiment, this is 

determined by the signal-to-noise ratio of the experimental data. Here we use theory, empiricism and simulated and 

experimental data to answer some key questions: how good do our experimental data need to be to resolve a given difference 

in D? how is the uncertainty in D related to the signal-to-noise ratio (SNR) of raw experimental data, and can this relationship 

be expressed in a simple form? and at what point do improvements in SNR stop translating into improved resolution in the 55 

diffusion domain? 

 

While it is to be hoped that a clearer understanding of the role that signal-to-noise ratio plays in limiting the quality of DOSY 

spectra will prove useful, it should be stressed that SNR is just one of many factors involved. In particular the analysis presented 

here takes no account of the effects of the systematic and reproducible experimental imperfections that all DOSY experiments 60 

are affected by. These include for example the spatial non-uniformity of pulsed magnetic field gradients (Damberg, 2001; 
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Connell, 2009) and the effects of peak overlap (Botana, 2011). Questions such as choosing the optimum balance between time 

averaging and the number of different field gradient values to be used require may different factors to be taken into account, 

of which SNR is just one. 

2 Methods 65 

In its commonest (“high resolution”) form, DOSY uses least squares fitting of the amplitudes of peaks in pulsed field gradient 

echo spectra to determine diffusion coefficients D. A series of N otherwise identical experiments is carried out in which the 

amplitudes G of diffusion-encoding field gradient pulses are varied to map out the decay of signal amplitude as a function of 

G. In the great majority of experiments, a simple fit to a single exponential is used; multiexponential fitting is possible, but is 

extremely demanding of SNR (Nilsson, 2006) and is not considered here. The diffusional attenuation Si/S0 in successive 70 

measurements takes the form  

 

Si/S0 = exp(–biD) (1) 

 

where the form of bi is determined by the pulse sequence used (Sinnaeve, 2012). In the simple case of a pulsed field gradient 75 

spin or stimulated echo in which spatial encoding and decoding are performed by two gradient pulses of duration δ a time Δ – 

δ apart,  

 

bi = γ2 Gi2 δ2 (Δ – δ/3) (2) 

 80 

if the gradient pulses are rectangular in shape, or 

 

bi = γ2 Gi2 δ2 (Δ – δ/4) (3)  

 

if half-sine shaped gradient pulses are used. In the former case the effective gradient Gi is equal to the peak gradient applied 85 

in a given pulse; in the latter Gi is equal to the peak gradient multiplied by 2/π. These expressions assume that the field gradient 

is constant across the sample, which is not always a good approximation; the effects of field gradient non-uniformity can be 

taken into account by replacing the term G2 by an appropriate power series in G2 (Connell, 2009).  

 

Experimental data are imperfect, most notably because of the presence of a background of random electronic noise. In a well-90 

conducted experiment the effect of this on the measurement of the amplitude S of a signal, whether in terms of peak height or 

of signal integral, is well described by the addition of a Gaussian distribution of standard deviation σS. In the case of peak 

height, the signal-to-noise ratio (SNR) is by convention defined as S/(2 σS) in NMR spectroscopy. In a DOSY dataset using N 

different gradient strengths Gi, each of the N measurements Si of the amplitude of a given peak will have the same standard 

deviation σS. The effect of this uncertainty on the value of D determined by nonlinear least squares fitting can easily be found 95 

by brute force Monte Carlo simulation, or directly from the Cramér-Rao lower bound (CRLB). The latter has been extensively 

used in NMR, notably for selecting “optimum” sampling patterns Gi for the simultaneous determination of the diffusion 

coefficients of species of different D or for the estimation of diffusion distributions S(D) (see e.g. Brihuega-Moreno, 2003; 

Franconi, 2018; Reci, 2019; note that the derivations given in the first two references contain some minor typographical errors). 

The question of optimum sampling is considerably complicated by the presence of multiple sources of systematic error in 100 

diffusion NMR experiments and the need to allow for the likelihood of signal overlap, and is largely avoided here; rather, we 

use the CRLB for the much more pedestrian purpose of quantifying limiting diffusion resolution in DOSY. 
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A convenient measure of resolution RD in the diffusion dimension of the DOSY spectrum is the inverse of the coefficient of 

variation of D, that is the ratio of the estimated D to its estimated standard deviation σD. Using the conventional definition of 105 

SNR given above, expression (10) of (Franconi, 2018) becomes 

 

	𝑅D	= 	 $ !"!% = 	2	𝑆𝑁𝑅)#	%	–	'"

#	
 (4)  

 

where  110 

 

𝐴 =	∑ 𝑒–()#*
+,-  ,  𝐵 =	∑ 𝜖+𝑒–()#*

+,-  ,  𝐶 =	∑ 𝜖+(	𝑒–()#*
+,- ,  and  𝜖i = bi D (5)  

 

For a given diffusion coefficient D and choice of N gradient values Gi, therefore, the dependence of the resolution RD on the 

signal-to-noise ratio of a given signal can be calculated. Here RD was evaluated as a function of the number N of gradient 115 

values sampled, the maximum exponent 𝜖max, and the form of the sampling scheme.  

 

Expressions (4) and (5) allow direct calculation of RD. Equivalent results can be obtained easily by Monte Carlo methods, 

constructing an attenuation table 𝑒–)# and then repeatedly adding Gaussian noise n of standard deviation σS = 1/(2 SNR) to each 

point of the table and fitting it to a function of the form 𝛼	𝑒–.)#. The standard deviation σβ of the parameter β is then the inverse 120 

of RD. Again RD was evaluated as a function of the number N of gradient values sampled, the maximum exponent 𝜖max, and 

the form of the sampling scheme. 

 

Experimental 1H DOSY data were acquired for a 100 mM solution of quinine in DMSO-d6, with 50 mM sodium 

trimethylsilylpropionate (TSP) as reference, using the Oneshot pulse sequence (Pelta, 2002) on a 500 MHz Varian VNMRS 125 

spectrometer equipped with a 5 mm triaxial gradient probe at 25 °C nominal temperature. 12 quadratically-spaced (equally 

spaced in gradient squared) nominal gradient amplitudes from 12.5 to 52.8 G cm–1 were used, with a net gradient-encoding 

rectangular pulse width of 1 ms and a diffusion delay Δ  of 0.16 s. 8 transients of 16384 complex points were acquired for each 

gradient value in a total experiment time of 5 min. The data were subjected to standard DOSY processing in VnmrJ, consisting 

of zero-filling, reference deconvolution (Morris, 1997) with a target Lorentzian linewidth of 1.3 Hz, baseline correction, peak 130 

picking, fitting to a Stejskal-Tanner equation modified to compensate for the measured gradient non-uniformity of the probe 

used (Damberg, 2001; Connell, 2009), and construction of the DOSY spectrum using the fitted signal amplitude, diffusion 

coefficient D, and standard error σD. The signal decay for the quinine methoxy peak at 3.9 ppm, which had a SNR of 14400:1 

at the lowest gradient used, was extracted, and the Stejskal-Tanner fit repeated with different additions of synthetic Gaussian 

noise to investigate the influence of SNR on RD. 135 

3 Results and Discussion 

Equation (4) shows that, as is intuitively reasonable, the diffusion resolution is directly proportional to SNR (provided that 

systematic sources of error are negligible). The proportionality constant is, however, a complicated function of the choice of 

sampling function and its relation to the diffusion coefficient: the more data points are measured the better RD will be, but just 

how good depends on what parts of the attenuation curve those points sample. If only the early part of the curve is sampled 140 

(𝜖max < 1, where 𝜖max is the maximum value of 𝜖) then the effect of diffusion on the measured points will be small, or if too 

wide a range of gradients G is sampled (𝜖max >> 1) then many of the measured points will contain very little signal, and in both 

cases RD will suffer. In a typical high resolution DOSY experiment, the sample will contain species of different sizes with a 

range of diffusion coefficients D. Where the range is not too wide it is common practice to use a simple sampling scheme in 
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which the field gradient pulse amplitude is incremented either linearly, from some minimum value Gmin to a maximum Gmax 145 

in equal steps of G: 

 

Gi = Gmin + (i – 1)(Gmax – Gmin)/(N – 1) (6)  

 

or quadratically, from Gmin to Gmax in equal steps of G2: 150 

 

𝐺+ =	2𝐺/+0( +	(𝑖	– 	1)(𝐺/12( 	–	𝐺/+0( )/(𝑁	– 	1) (7). 

 

Because the diffusion-encoding gradient pulses G also play a part in determining coherence transfer pathways in many NMR 

methods for measuring diffusion, complementing and reinforcing the effects of phase cycling, it is important in practice that 155 

small values of Gmin be avoided. This is particularly important if experiments such as Oneshot (Pelta, 2002) that employ 

unbalanced bipolar gradient pulse pairs are used with low numbers of transients (and hence incomplete phase cycling). 

Common practice is therefore to use a constant ratio Gmin/Gmax = κ, where κ = 0.05 – 0.25, so that G varies from κ Gmax to Gmax. 

Linear and quadratic sampling give similar diffusion resolution, as is shown below. Quadratic sampling can make it easier to 

detect systematic deviations from exponential decay as a function of gradient squared, and hence to identify peaks in which 160 

the signals of species of different D overlap.  

 

For a given set of experimental delays and pulse durations, linear and quadratic spacing in G will give different sets of Stejskal-

Tanner exponents 𝜖i. Different diffusion coefficients D will give different maxima 𝜖max, and because the attenuation caused by 

the minimum gradient Gmin depends on D, the minimum Stejskal-Tanner exponent 𝜖min will vary slightly with 𝜖max. Thus for 165 

linear sampling the Stejskal-Tanner exponents are 

 

𝜖+ =	 :𝜅 +	
(+4-)(-4	6)
(*4-)

<
(
𝜖/12 (8) 

 

and for quadratic sampling 170 

 

𝜖+ =	 :𝜅( +	
(+4-)(-4	6")

(*4-)
< 𝜖/12 (9). 

 

Figure 1 compares the results of Monte Carlo simulations (small filled circles) of exponential fits for the two sampling schemes, 

with SNR = 100 and κ = 0.05 in both cases, as a function of N and 𝜖max with the Cramér-Rao upper bounds (open circles) for 175 

RD. As expected, there is excellent agreement between the Monte Carlo and analytical results. The lines for linear regression 

confirm that there is a direct proportionality with 2(𝑁	– 	1) for low 𝜖max, but that for higher 𝜖max, where the signal is strongly 

attenuated for greater 𝜖i values, the line of best fit is displaced. The slope of the line of best fit for RD as a function of 2(𝑁	– 	1) 

rises as 𝜖max increases until it reaches a maximum at around 𝜖max = 2.1, after which it decreases again. This is again as expected: 

for low 𝜖max the data are dominated by points that have high precision but low attenuation, while for high 𝜖max the converse is 180 

true. 
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Figure 1: Diffusion resolution RD as a function of  !(𝑵	– 	𝟏), where N is the number of gradient values used, for (a) linear and (b) 185 
quadratic sampling in the gradient domain, determined by Monte Carlo simulation (small filled circles) and Cramér-Rao Least 
Bounds analysis (open circles), for SNR = 100 and maximum Stejskal-Tanner exponents 𝝐max  of 0.25 (black), 0.5 (grey), 1 (blue), 2 
(green), and 3 (orange). Solid lines show the results of linear regression of the Cramér-Rao data. 

 

The predicted diffusion resolution RD is a function of the sampling scheme, signal-to-noise ratio SNR, maximum Stejskal-190 

Tanner exponent 𝜖max, and number of gradient values used N. Given the nature of Eqs. (4) and (5) it is clear that no simple 

analytical form exists for RD(SNR, 𝜖max, N). Equally, it is known that RD is directly proportional to SNR, and it is reasonable to 

expect RD to be proportional to the square root of N – 1, since (a) increasing N will decrease the effects of random errors in 

proportion to the square root of the effective number of independent measures of D, and (b) that number will be dependent on 

N – 1, since it is the change in signal amplitude that provides information on D, reducing the number of degrees of freedom 195 

by one. In general the effective number will be less than N – 1 for all but low values of 𝜖max, because signal attenuation will 

reduce the information content for higher values 𝜖i. It is thus reasonable to seek an approximate analytical representation of 

the form  

 

RD(SNR, 𝜖max, N) » SNR 2(𝑁	– 	1) f(𝜖max) (10). 200 

 

Figure 2 shows the variation of f as a function of	𝜖max, calculated numerically using Eqs. (4), (5) , (8) and (9) for values of N 

between 10 and 200 for linear and quadratic sampling, together with fits to a three-parameter function of the form 

 

𝑓(𝜖789) = 𝑎	𝜖/12𝑒4:	()$%&)' (11). 205 

 

The quality of fit is more than adequate for practical use, establishing a simple relationship between diffusion resolution, 

signal-to-noise ratio and experimental parameters; fit parameters are given in Table 1.  
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Figure 2: Relative diffusion resolution f(𝝐max) determined Cramér-Rao Least Bounds analysis (open circles) as a function of 
maximum Stejskal-Tanner exponent 𝝐max, for (a) linear and (b) quadratic sampling in the gradient domain with 10 (black), 17 (grey), 
37 (blue), 65 (green), 101 (yellow), and 197 (red) gradient values. Solid lines show the results of nonlinear regression of the data 
points shown to the three-parameter function Eq. (11). 

 215 

 

 Linear sampling Quadratic sampling 

a 0.72 0.66 

b 0.71 0.61 

c 0.77 0.86 

 
Table 1. Fitted parameters for Eq. (11) obtained from the data of Fig. 2. No error estimates are given as the data fitted are not 
normally distributed. 

 220 

In principle, diffusion accuracy should increase indefinitely as the signal-to-noise ratio of the experimental data increases. 

(“Accuracy” is used here in the sense of the reliance that can be placed on the positions of peaks in the diffusion dimension of 

a DOSY spectrum, i.e. the “trueness” of the diffusion dimension). In practice diffusion accuracy does not increase indefinitely, 

because spectral noise is far from the only source of uncertainty in the signal attenuations measured in DOSY experiments. 

Radiofrequency pulse irreproducibility, field-frequency ratio instability, gradient noise, temperature variation and a range of 225 

other sources all limit the reliability of signal intensity measurements in NMR, limiting resolution in DOSY and causing t1-

noise in multidimensional spectra (Mehlkopf, 1984; Morris, 1992). In general, the accuracy and reproducibility of NMR data 

tend to deteriorate as the number of pulses used in a sequence increases (because of pulse phase and amplitude jitter caused 

by limited radiofrequency spectral purity), as the durations of the delays used increase (because of the cumulative effect of 

field-frequency fluctuations), and as the overall duration of an experiment increases (because of slow changes in environmental 230 

factors such as room temperature, air pressure etc.). Most such perturbations are at least semi-systematic in nature, but many 

(particularly pulse phase instability) have effects that can appear random, and can therefore decrease, at least to some extent, 

with time averaging. Other sources of distortion in the measured signal decay are both systematic and reproducible and 

therefore do not decrease with time averaging. These include changes in signal attenuation caused by convection (never wholly 

absent in practical NMR experiments on liquids (Swan, 2015; Barbosa, 2016)), and by the presence of signals from unwanted 235 

coherence transfer pathways. Distortions caused by spatial non-uniformity of the field gradient can be corrected for if 

appropriate calibration is performed (Damberg, 2001; Connell, 2009). 

 

There is thus a practical limit to the benefits to be gained by increasing SNR, whether by time averaging, increasing the signal 

strength (e.g. by increasing sample concentration), or reducing the noise (e.g. by using a cold probe and preamp). This is 240 

illustrated here with experimental data obtained as described earlier for the methoxy signal from a sample of quinine. The 

starting SNR of the quinine methoxy peak in the lowest gradient spectrum was 14400:1; successively greater amounts of 

synthetic Gaussian noise were added and fitting repeated, averaging the results of 100 additions, to show the influence of SNR 

on the diffusion resolution RD. If the contributions from sources other than noise to the errors in the experimental peak height 

as a function of gradient strength are normally distributed and have a root mean square deviation which is a fraction 1/(2 245 

SNRlim) of the initial peak amplitude, then the effect on fitting, and hence on diffusion resolution, of adding uncorrelated noise 

is to degrade the effective signal-to-noise ratio SNR in Eq. (10) to  

𝑆𝑁𝑅;<< = 𝑆𝑁𝑅) =*>(#$
"

=*>(#$
" ?=*>"

 (12). 
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This gives a final predicted diffusion resolution for given experimental conditions of 250 

 

RD(SNR, 𝜖max, N) »  =*>

@-?A )*+
)*+(#$

B
"
 2(𝑁	– 	1) f(𝜖max) (13), 

 

where f(𝜖max) can be approximated by Eq. (11). Thus if the noise contribution to the experimental uncertainty is dominant, the 

effective signal-to-noise ratio is the actual SNR, but at high SNR the effective signal-to-noise ratio for the purposes of Stejskal-255 

Tanner fitting is the limit SNRlim imposed by other error sources. 

 
Figure 3: 500 MHz Oneshot 1H DOSY spectrum of 100 mM quinine in DMSO-d6 with 50 mM sodium trimethylsilylpropionate as 
reference, acquired as described in the text. 

 260 

To investigate the effect of signal-to-noise ratio on diffusion resolution, synthetic noise was added to the experimental data 

used to construct the 1H DOSY spectrum of quinine shown in Fig. 3. Figure 4 shows the effect of SNR on the measured RD 

for experimental data for the quinine methoxy peak, found by titrating in extra noise as described above. The experimental 

signal-to-noise ratio of the first gradient increment was 14400:1, but the diffusion resolution RD found when the raw 

experimental data were fitted was only 420, a small fraction of the predicted value of almost 15000. As Figure 3 shows, at low 265 

SNR the observed diffusion resolution follows the line expected for the unmodified Cramér-Rao limit of Eq. (11), but as SNR 

increases the improvement in RD levels off, slowly approaching the limit seen for the data with no noise added. Fitting of Eq. 

(13) to the noise-supplemented experimental data gave a value of just over 300 for SNRlim. To put this value in context, it 

corresponds to a respectably small root mean square uncertainty in the signal amplitudes measured of 1/600 ~ 0.17% of the 

original peak intensity, typical of good quality results obtained with multiple pulse sequences on a modern spectrometer. With 270 

extended time averaging and appropriate precautions and instrumental interventions it is possible to obtain data with 

significantly smaller uncertainties than this (see e.g. Power, 2016), but the cost in time and effort can be considerable. 
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Figure 4: Diffusion resolution RD as a function of signal-to-noise ratio for the methoxy signal of quinine in a Oneshot experiment on 275 
a 100 mM solution of quinine in DMSO-d6. Open circles show the average of 100 values of RD by fitting of the experimental data 
with the addition of synthetic Gaussian noise for each value of SNR, the dashed line shows the predicted Cramér-Rao limit, Eq. (11), 
for the experimental parameters used (N = 12, 𝝐max = 0.76), and the solid line the result of nonlinear least-squares fitting of the 
Cramér-Rao limit modified to take into account the presence of other errors in the signal intensity, Eq. (12), with SNRlim = 305. 

 280 

4 Conclusions 

It is well known that the signal-to-noise ratio of diffusion-weighted experimental NMR data plays a critical role in determining 

the diffusion resolution of a DOSY spectrum constructed from it. There is thus a temptation to conduct very long experiments 

with extensive time averaging in order to obtain the best possible results. Conversely, in dilute systems the temptation is to 

conduct equally long experiments in the hope of obtaining results with sufficient diffusion resolution to shed light on speciation 285 

etc. In both cases it is possible, and indeed common, to waste a great deal of instrument time for no good result, either because 

sources of error other than noise dominate the fitting statistics, or because the final signal-to-noise ratio is insufficient. Here it 

is shown that a trivial calculation with equation (11) will show both whether or not such experiments may be worth attempting 

in the first place, and what limiting diffusion resolution is achievable.  

 290 
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