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Dedication: We dedicate this publication to Nobel Laureate Prof. Dr. Richard R. Ernst for his extraordinary contributions

to what we recognize as modern, high-resolution NMR. Ernst’s development of pulsed NMR and subsequent usage of the

Fourier Transform improved the sensitivity of the technique by orders of magnitude, which opened up new applications across

the biological and physical sciences. He revolutionized the field again with his contributions to the development of multi-

dimensional experiments, which enhanced resolution and made the study of larger and more complex molecules possible.5

These monumental advances emerged in concert with the increasing power and availability of computational resources, leading

Ernst to declare, “Without computers - no modern NMR” (Ernst, 1991). The NUScon community continues in this spirit of

discovery and gratefully acknowledges Professor Ernst.

Abstract. Although the concepts of non-uniform sampling (NUS) and non-Fourier spectral reconstruction in multidimensional

NMR began to emerge four decades ago (Bodenhausen and Ernst, 1981; Barna and Laue, 1987), it is only relatively recently10

that NUS has become more commonplace. Advantages of NUS include the ability to tailor experiments to reduce data collection

time and to improve spectral quality, whether through detection of closely spaced peaks (i.e., “resolution”) or peaks of weak

intensity (i.e., “sensitivity”). Wider adoption of these methods is the result of improvements in computational performance,

a growing abundance and flexibility of software, support from NMR spectrometer vendors, and the increased data sampling

demands imposed by higher magnetic fields. However, the identification of best practices still remains a significant and unmet15

challenge. Unlike the discrete Fourier transform, non-Fourier methods used to reconstruct spectra from NUS data are nonlinear,

depend on the complexity and nature of the signals, and lack quantitative or formal theory describing their performance.

Seemingly subtle algorithmic differences may lead to significant variabilities in spectral qualities and artifacts. A community-

based critical assessment of NUS challenge problems has been initiated, called the “Nonuniform Sampling Contest” (NUScon),

with the objective to determine best practices for processing and analyzing NUS experiments. We address this objective by20

constructing challenges from NMR experiments that we inject with synthetic signals and we process these challenges using

workflows submitted by the community. In the initial rounds of NUScon our aim is to establish objective criteria for evaluating

the quality of spectral reconstructions. We present here a software package for performing the quantitative analyses and we

present the results from the first two rounds of NUScon. We discuss the challenges that remain and present a road-map for

continued community-driven development with the ultimate aim to provide best practices in this rapidly evolving field. The25

NUScon software package and all data from evaluating the challenge problems are hosted on the NMRbox platform.
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1 Introduction

Jeener (1971) devised the conceptual basis for converting multiple-resonance NMR experiments into multiple-dimensional

experiments by parametric sampling of the free induction decays (FIDs) along “indirect time dimensions.” The subsequent

application of the discrete Fourier transform (DFT) to the analysis of pulsed NMR experiments revolutionized NMR spec-30

troscopy, opened the door to multidimensional experiments, and resulted in the 1991 Nobel Prize in Chemistry being awarded

to Richard Ernst (Ernst, 1997). However, despite the resulting advances in the development and application of NMR to chal-

lenging problems in the biomedical sciences, the limitations of the DFT also became apparent. The DFT operates on a series

of equally spaced values measured over time and identifies the weighted sum of frequency components (i.e., the Fourier basis

terms) needed to represent the time series. The requirement that the input data be equally spaced results in on-grid uniform35

sampling (US). The constraints of US are demonstrated by the following three observations: (1) sampling must be performed to

an evolution time of π×T2 in order to resolve a pair of signals separated by one line width; (2) uniform data collection beyond

1.26×T2 reduces the signal-to-noise ratio (SNR) (Matson, 1977; Rovnyak, 2019), a proxy for sensitivity, with the majority

of SNR obtained by ∼ 0.6×T2, and (3) sampling must be performed rapidly to avoid signal aliasing described by the Nyquist

Sampling Theorem (Nyquist, 1928), which means that attaining high resolution along any indirect dimension that is sampled40

parametrically, will be costly in terms of the data acquisition time. These simple observations result in a forced compromise

between sensitivity, resolution, and experiment time. These DFT limitations are exacerbated at higher magnetic fields, where

increased dispersion requires shorter sampling intervals, resulting in the acquisition of more samples in order to reach the same

evolution time as the corresponding experiment collected at lower fields. Higher dimensionality experiments also help access

the increased resolution afforded by high-field magnets by introducing separation of closely spaced peaks along perpendicular45

dimensions, but at the cost of longer experiment times.

As a consequence of the fundamental limitations of US, there has been an ongoing effort to develop nonuniform sampling

(NUS) schemes and non-Fourier spectral reconstruction methods in multidimensional NMR. NUS allows for a subset of the

FIDs from the US grid to be collected. NUS spectral processing methods reconstruct the missing data instead of replacing it

with zeros, which is the inherent consequence of applying the DFT to NUS data. To date, the field has developed numerous50

spectral reconstruction methods and novel FID sampling strategies (e.g., Poisson gap sampling, Hyberts et al. 2010; quantile

sampling, Craft et al. 2018), yet quantitative tools needed for the robust analysis of these methods and the development of

standards have been comparatively slow to emerge. The field of NUS has often relied upon heuristics to design experiments

(e.g., selecting sampling coverage or setting adjustable parameters for reconstruction algorithms). There are numerous reports

based on a single experiment, a single sample schedule, or select 1D traces through “representative peaks” – all of which55

are prone to over-interpretation. While these investigations have revealed important aspects of NUS, they often carry limited

applicability to other experiments. In addition, the nonlinear nature of non-Fourier methods and the wide range of data char-

acteristics (e.g., sparsity of signals in the spectrum, overlapping peak positions, and dynamic range of peak intensities) makes

the identification of best practices both a challenge and an imperative. Extensive reviews have been undertaken (Billeter and
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Orekhov 2012, Mobli et al. 2012, Bostock and Nietlispach 2017, Pedersen et al. 2020), but without a common set of problems60

or community-adopted metrics, best practices remain elusive.

The field of Compressed Sensing (CS, Donoho, 2006) has pursued intense theoretical investigations, revealing, among other

insights, the importance of incoherence in the sampling scheme and the phenomenon of phase transitions in the ability to

recover the spectrum as a function of the number of samples collected and the number of non-zero elements in the spectrum

(Donoho and Tanner, 2009). However, the theoretical work in CS assumes a measure of sparsity as defined by a strict counting65

of non-zero values in the spectrum. This condition is violated in NMR by experimental noise and by the broadness of peaks

from decaying signals, as compared to delta spikes. In addition, CS theory is founded on random sampling, whereas NUS

often employs biased sampling. CS theory offers significant qualitative insights for NMR (Candes et al., 2008; Qu et al., 2010;

Kazimierczuk and Orekhov, 2011; Mayzel et al., 2014), but because its quantitative predictions are not directly applicable to

NMR, additional research on CS-based NUS in NMR is needed.70

The design of optimal sampling schemes for multidimensional NMR is still an open question. Further, an explosion of com-

putational approaches for spectral estimation from NUS data poses the additional challenge of identifying optimal spectral

reconstruction methods and parameter choices. The approaches vary widely, and can be loosely categorized by the extent to

which the algorithms impose assumptions about the nature of the signals. At one extreme are the parametric methods, which

explicitly model the signals: Bayesian (Yoon et al., 2006), Maximum Likelihood (Chylla and Markley, 1995), SMILE (Ying75

et al., 2017), and CRAFT (Krishnamurthy, 2021). At the other extreme are the non-parametric methods, which make no as-

sumptions about the nature of the signals, but typically assume noise is randomly distributed: maximum entropy (Schmieder

et al., 1993), NESTA (Sun et al., 2015), and CS. Methods like multiway decomposition (Orekhov et al., 2001), which describe

the recovered spectra as an outer product of 1D projections, fall in between the parametric and non-parametric. Regardless of

the approach, a number of factors complicate the critical evaluation of any NUS reconstruction. Most importantly, virtually all80

non-Fourier methods are nonlinear, and the nonlinearities manifest in different ways and to different extents. The same non-

Fourier method may even produce varying degrees of nonlinearity when applied to data with different characteristics such as

noise level, complexity, or dynamic range. An additional difficulty arises from how software packages may differently imple-

ment a similar theory or signal processing scheme. For example, results from algorithms that employ iterative soft thresholding

(IST, Donoho (1995)), a class of CS methods that minimize the `1 norm, differ depending on where the algorithm exits the85

fixed-point iteration. Algorithms that exit following a step in which samples in the time-domain instance of the reconstructed

spectrum are replaced by the measured data yield reconstructions that exactly match the measured NUS data. This differs from

algorithms that exit the iteration following the soft-thresholding step.

The protein folding and molecular docking communities have addressed similar obstacles in the evaluation of complex

workflows with community-driven challenges. The Critical Assessment of Structure Prediction (CASP, Moult et al., 1995;90

Kryshtafovych et al., 2019) challenged the protein folding community by presenting amino acid sequences for recently solved

(but unpublished) structures and then evaluating the structure submissions from contestants. This format helped the community

develop and refine approaches based on template libraries, ab initio physical principles, and most recently machine learning.
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Similarly, the challenges of predicting how molecules bind has been addressed by The Critical Assessment of PRedicted Inter-

actions (CAPRI, Janin et al., 2003; Lensink et al., 2017), resulting in numerous and powerful web-based docking platforms.95

The Nonuniform Sampling Contest (NUScon) was conceived with inspiration from the CASP and CAPRI community ini-

tiatives. The objective of NUScon is to perform a critical assessment of NUS reconstruction tools; a task that required novel

solutions to unique problems in designing the challenges and the scoring metrics to meet the needs of the broader NMR

community. We met this objective by delivering a well-defined, workflow-based, quantitative platform that fosters access, de-

velopment, and optimization of the wide range of NUS tools available to spectroscopists. This modular platform was designed100

to perform critical evaluations of each step in an NUS workflow with the goal of identifying best-practices. NUScon provides

the following deliverables: (1) a simple interface that improves access to the wide range of NUS sampling and reconstruction

tools that are presently available, but underutilized; (2) a quantitative workflow and a corresponding series of NUS challenges

designed to elucidate the best practices for collecting and processing NUS experiments; and (3) a public archive of challenge

data, sample schedules, reconstruction scripts, spectra, and metrics that can be used as a benchmark when developing and105

optimizing new tools. The design of the synthetic data, the processing workflow, and the metrics will all evolve in response

to knowledge gained from future rounds of NUScon. This continued refinement is especially true for the metrics as our com-

munity develops novel quantitative tools that capture essential qualitative spectral features. All of the resources presented here

are distributed on the NMRbox computing platform (Maciejewski et al., 2017) and can be freely accessed by anyone with an

academic, government, or non-profit affiliation.110

2 Workflow

The objectives of NUScon were met by delivering a workflow-based software package that performs quantitative analyses of

the quality of spectral reconstructions. A quantitative evaluation is dependent on how the “truth” is defined (i.e., the benchmark

against which candidates are evaluated). While it may be tempting to use the DFT of a US experiment as the reference and then

use an `2 norm to compare it against a candidate NUS reconstruction, this approach fails on several counts. First, using the DFT115

as the reference is inappropriate since a goal of NUS is to improve spectral quality relative to DFT. Second, NUS reconstruction

methods are nonlinear, so that metrics commonly used to quantitatively compare spectra obtained with the DFT are no longer

appropriate. For example, SNR is not a reliable proxy for sensitivity. Similarly, root-mean-square (RMS) differences may not

be meaningful, although often provide some insight.

In response to these obstacles, the NUScon workflow was designed around synthetic peaks. This ensures that the reference120

values (i.e., peak positions, intensities, and linewidths) are known quantities and that our metrics are based on their recovery.

In addition, the synthetic peaks are injected into a uniformly sampled experimental data-set, as opposed to being injected into

a “clean” background or a background of experimental noise. This was a critical design choice as the CS results of Donoho

and Tanner (2009) show the dependence of all spectral reconstruction methods on the ratio between sampling coverage and

signal sparsity. In other words, the recovery of synthetic peaks in the absence of experimental data (or noise) would present125

an artificial situation where the observed results are likely not applicable to real-world experiments. Another key benefit of
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using synthetic peaks is that an arbitrary number of peaks of varying characteristics may be injected. This ensures that sprectral

reconstruction workflows cannot be overfit to a given spectrum and thus remain transferable to similar experiments.

The NUScon workflow is illustrated in Fig. 1 and the following subsections provide details about each component.

Figure 1. NUScon Workflow. The uniformly sampled experiment (A) is injected with synthetic peaks (B, red stars) and subsampled (C) to

generate a nonuniformly sampled challenge data set (D). Contestants provide scripts to reconstruct the spectra (E). The recovered peaks (E,

blue stars) are compared against the injected peaks (B, red stars) using a variety of metrics to determine spectral quality.

2.1 Challenges130

Each NUScon challenge began with an unpublished experiment that was collected with US. The Challenge Committee was

tasked with identifying appropriate experimental data that is high quality and representative of molecular sizes and experiment

types of interest to our community. The descriptions provided to the contestants for each molecule used in a challenge data set

are given in Table 1. A configuration file was deposited with each experiment, which provided basic metadata (e.g., number of

points along the indirect dimensions, spectral width, region of interest to be extracted along the direct dimension, etc.) that was135

used by the processing workflow. An example configuration file is included in the Supplemental Information. We also include

1H-15N projections from the 3D challenge data in the Supplemental Information; these were not provided to contestants during

the open challenge.
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Table 1. Descriptions provided to the contestants for each of the molecules used in the challenge data.

Molecule Tag Description

proteinA 89 amino acid protein with residues 1-56 comprising a small well-folded protein fused with a linker and an IDP

proteinB 147 amino acid, 16 kDa protein that has a tendency to multimerize (monomer / dimer)

proteinC 107 amino acid protein, 12 kDa that is well folded and well behaved

2.2 Synthetic Peaks

Evaluating the performance of a spectral reconstruction method is a challenging proposition, especially if the procedure must be140

automated. The central challenge is that NMR spectra are used for many purposes, and the properties that make a reconstruction

most fit-for-purpose are not always the same. Also, in practice, parameters of interest are generally extracted from spectra,

rather than from time-domain data. So, while it is possible to make an unbiased, automated evaluation of agreement between

observed time-domain data and the corresponding time-domain version of a reconstruction, this does not necessarily capture

how effectively a reconstruction may serve a particular spectral analysis task.145

Along these lines, while it may be possible to measure fidelity of frequency, amplitude, and signal envelope (decay) of

individual signals, this does not necessarily capture the fitness of a reconstruction to suit a given use. In particular, while

NUS reconstruction methods can have excellent lineshape fidelity (Stern et al., 2002; Bostock and Nietlispach, 2017; Roginkin

et al., 2020), it is seldom important in practice that a lineshape be conserved by a reconstruction, hence the common use of

apodization that alters the lineshape, even if it conserves the integral (Naylor and Tahic, 2007). This is particularly true in150

multidimensional biomolecular data, where the indirect dimensions have little or no decay, so that the observed lineshape is

primarily due to signal processing details rather than to any property of the underlying time-domain data. Furthermore, many

applications, such as typical backbone assignment tasks, don’t use peak heights or integrals quantitatively. Therefore, as a

general point, it is often more useful to sharpen peaks or to suppress reconstruction artifacts than it is to faithfully reproduce

lineshape.155

The NUScon Planning Committee developed strong consensus that the single most important property of spectral recon-

struction is for a real peak to be detectable, a fundamental requirement for all subsequent analyses. This, in turn, means the

evaluation of a reconstruction method is conflated with the procedure used to detect a peak. This is especially problematic for

NMR, since the final decision about whether a spectral feature is a peak is often performed visually. Evaluation of the fidelity

of the frequency, amplitude, and decay of a signal is likewise conflated with the procedure used to extract these parameters.160

The performance of such procedures is influenced by the presence and dynamic range of other peaks in the spectrum, and by

residual phase distortion, systematic artifacts, thermal noise, and the true functional form of the underlying NMR signals. Re-

garding this latter point, evaluations are further complicated by the potential for a single multidimensional peak to actually be

a composite of mixed-phase signals in the presence of one or more unresolved couplings (Mulder et al., 2011) or the mixtures

of signals with different relaxation pathways (Pervushin et al., 1997).165
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Keeping these challenges in mind, we developed a flexible procedure to automatically define and insert synthetic signals into

existing time-domain data. These synthetic signals have a similar appearance and arrangement to signals in the original data.

For example, signals in an HNCA spectrum will generally occur in pairs at the same 1H,15N chemical shift, and will share the

same lineshape in the 1H and 15N dimensions. Accordingly, the signal injection procedure provides options to specify how the

synthetic signals should be placed relative to existing peaks. For example, we can specify that two synthetic HNCA peaks are170

inserted at a random 1H,15N position where no peaks exist anywhere in the original 3D data, but also that these two peaks are

placed at 13C positions that correspond with peaks elsewhere in the original data. In order to better mimic the appearance of

measured data, and to help minimize any evaluation bias due to use of synthetic data, the individual signals allow for random

perturbations of linewidth and phase, and optionally one or more random unresolved couplings in each dimension. It should

be noted that there are opportunities to improve the realism of simulations still further, including using composite signals of175

mixed phases or linewidths, or by attempting to match the coupling constants and decays of synthetic peaks to the values of

related peaks in the measured spectrum. For example, in the current HNCA peak generation procedure, peaks can be inserted

to align with a 13C chemical shift of a peak elsewhere in the measured spectrum, and that synthetic peak will have randomly

chosen 13C decay and couplings. In a more realistic simulation, the synthetic peak could be generated to match not only the
13C chemical shift of a peak elsewhere in the spectrum, but also that measured peak’s 13C decay and couplings, provided that180

these details are known.

The signal injection procedure automatically characterizes the experimental reference spectrum to prepare for the injection

of synthetic peaks. The procedure was built from C-shell and TCL scripts using the facilities of NMRPipe and its custom TCL

interpreter nmrWish (Delaglio et al., 1995; Johnson and Blevins, 1994; Ousterhout, 1994). Here, we present an outline of an

HNCA example used in the first NUScon, with complete data and scripts available on NMRbox (Maciejewski et al., 2017). The185

input to the procedure was the measured reference 3D time-domain data, which was used to establish acquisition parameters

used for simulating time-domain data, and the corresponding 3D spectrum, which was used to establish the phase values for

simulated signals so that the simulated data can be processed by the exact same scheme applied to the measured data. The

output of the procedure was a table of synthetic 3D signals, a 3D time-domain simulation with only the synthetic signals, and

a version of the reference 3D time-domain data with the synthetic signals added:190

1. The fully-sampled 3D time-domain reference data is Fourier processed to generate a corresponding spectrum.

2. Automated peak detection (detection of local maxima) was applied, and the largest peaks were retained (256 peaks for

this HNCA example). The NMRPipe peak detection procedure estimated heights and linewidths by a multidimensional

parabolic fit of the points around the maxima.

3. Using knowledge of median line widths from peak detection, each point in the 3D spectrum was evaluated to decide195

whether it was in an “empty” region, meaning that there are no substantial signals within ±2 median linewidths. The

criteria are that the RMS of the region must be below 1.15 times the estimated noise and that no points in the region are

above 5.0 times the estimated noise. The results were saved as a mask of the 3D spectrum, where intensities were set to
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one for each point with an empty neighborhood, and zero otherwise. 2D projections of the 3D mask were also prepared

as shown in Fig. 2.200

4. Using the peak and mask information from the steps above, the utility genSimTab.tcl was used to generate a syn-

thetic peak table. Synthetic signals were only inserted in empty regions of the original data. Each row in the output peak

table described one signal by a single amplitude and by a frequency, exponential decay, and phase for each dimension.

Optionally, one or more couplings (cosine modulations) for each dimension may be specified. An example NMRPipe

command illustrating the use of genSimTab.tcl is shown in Fig. 3. A key feature of genSimTab.tcl is that the205

desired properties of the signals to insert can be specified by a “program” of keywords and values, allowing substantial

flexibility. Each program generates one or more “strips” (3D peaks at the same 1H,15N coordinate). For HNCA data,

each strip of synthetic signals consists of two 3D peaks. For example, the program:

count=1,xy=novel,z=existing (1)

means generate one strip (count=1) of two peaks (HNCA peaks are generated in pairs) at a randomly chosen 1H,15N210

location where no peaks exist anywhere in the original 3D data (xy=novel), but at 13C positions of known peaks

elsewhere in the spectrum (z=existing).

5. Synthetic time-domain data was generated by the simTimeND application using the synthetic peak table and the ac-

quisition parameters from the measured data as inputs. This included the placement of a group delay of “negative time”

points at the start of each 1D time-domain vector if the reference data did not properly account for digital oversampling,215

as is the case for data from Bruker spectrometers (Moskau, 2002). The synthetic signals had exponential decays, with

options for mixed-time data (Ying et al., 2007). The synthetic data also included a synthetic solvent signal of fixed width

whose amplitude, phase, and frequency varied randomly in each 1D time-domain vector according to specified lower

and upper bounds.

6. The synthetic time-domain data was added to the experimentally measured reference time-domain data. Example 2D220

projections and strip plots are shown in Fig. 2 and Fig. 4, respectively.

7. Given an appropriate sampling schedule, the fully-sampled time-domain data can be resampled to generate NUS data

via the nusCompress.tcl utility.

An advantage of this scheme is that it produces a spectrum processed identically to the experimental data, but containing

only synthetic peaks. This allows the simulated signals to be subjected to any desired detection or quantification method in225

either the presence or the absence of signals and noise from the measured data.

2.3 NUS Sample Schedules

The NUScon software generates sample schedules by passing parameters to the nus-tool software package on NMRbox. The

NUScon contest employed an exponentially biased sample schedule at a low and at a high coverage for each experiment. The

9



Figure 2. Synthetic peaks injected into HNCA empirical data. 2D projection of the 3D empty region mask (gray) overlayed with the

2D projections of the 3D reference spectrum (blue) and simulated signals (green). The areas shaded gray are regions in the measured data

determined to be signal-free, such that a signal inserted at any shaded position will have no substantial signals nearby anywhere in the 3D

spectrum. Synthetic signals were generated by the command in Fig. 3, which generates 10 strips of synthetic peaks at the 1H,15N positions

labeled here. Strips from positions 7 to 10 are shown in Fig. 4. As can be seen here, strips 1 to 7 are at 2D coordinates with no existing peaks,

strip 9 is at a 2D coordinate that partially overlaps with existing peaks, and strips 8 and 10 are at 2D coordinates that corresponds exactly to

existing peaks.
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genSimTab.tcl -specType hnca -iseed 1397571 \¬
   -fid fid/test%03d.fid -ft ft/test%03d.ft3 \¬
   -empty empty/test%03d.ft3 -empty2D empty.dat \¬
   -tab largest.tab -hn hn_sim.tab \¬
   -hiMin 175.0 -hiMax 700.0 \¬
   -xP0Min -3 -xP0Max 3 -yP0Min -3 -yP0Max 3 -zP0Min -3 -zP0Max 3 \¬
   -xwMin 50.0 -xwMax 66.7 -xJMin  4 4 -xJMax 10 5 \¬
   -ywMin 14.3 -ywMax 18.2 -yJMin  0   -yJMax  0   \¬
   -zwMin 33.3 -zwMax 50.0 -zJMin 31 4 -zJMax 40 4 \¬
   -prog count=1,xy=novel,z=existing,noNewOverlap,noSpecOverlap,hiScale=4.0 \¬
         count=6,xy=novel,z=existing,noNewOverlap,noSpecOverlap \¬
         count=1,xy=existing,z=existing,noNewOverlap,noSpecOverlap \¬
         count=1,xy=existing,z=existing,noNewOverlap,noSpecOverlap,forceYOverlap,dyOv=0.5 \¬
         count=1,xy=existing,z=any,noNewOverlap,noSpecOverlap,forceZOverlap,dzOv=0.9 > sim1.tab

Figure 3. Example genSimTab.tcl command. This command generates a table of synthetic peaks for an HNCA spectrum.

parameters that defined each sample schedule are described in Table 2. The public archive of NUScon data contains the sample230

schedules along with the complete nus-tool command used to generate each schedule, including the random seed.

Table 2 has a column that shows the “grid” size, which are the dimensions of the Nyquist grid that spans the indirect

dimensions. Following the notation established in Monajemi et al. (2017), each point in a sampling grid is an indel (indirect

element). The column in Table 2 labeled “indels” shows the number of indels that were collected by the corresponding sample

schedule. Each indel represents 4 FIDs for these three-dimensional experiments with quadrature detection employed. All235

schedules used “full component sampling,” so all 4 FIDs were collected at each indel. In future work, we may consider partial

component sampling (PCS; Schuyler et al., 2013), where the group of FIDs at each indel may be subsampled.

The nus-tool command to generate each sample schedule used input flags to force the collection of all FIDs at the “first” and

“last” indels (i.e., the FIDs taken at the lowest and highest combinations of evolution times). The first indel, which contains the

largest signal intensity, would very likely be sampled by any reasonable exponentially biased sampling schedule, but forcing its240

inclusion is an advantageous convention. The size of the Nyquist grid was explicitly defined in the NUScon workflow metadata.

However, in practice, empirical data may not include such information and the largest time increments observed in a sample

schedule are often the best indicators of the size of the Nyquist grid. To comply with that convention, we forced the inclusion

of the last indel.

2.4 Spectral Reconstruction245

We provided contestants with a template script for submission that accepts NUS time-domain data, a sample schedule, and

various other parameters as inputs. Contestants were charged with using any of the tools on the NMRbox platform to process

the data and produce a spectrum, subject to a basic set of rules. These rules include general guidelines, like the ethics statement:

“Any script that is not ‘reasonable’ or tries to cheat the challenge problem is disqualified.” The rules also contain specific

processing guidelines to ensure fair evaluations: “The spectrum produced by the user script must not exceed a final size larger250
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Figure 4. Strip plots of synthetic peaks. These strips show the auto-generated synthetic peaks and the corresponding measured data from

the command in Fig. 3. The command uses five “programs” to produce strips of synthetic 3D signals at ten 1H,15N positions. The last four

groups of strips (groups 7 to 10) are shown here, from the measured spectrum, simulated spectrum, and sum, labeled FT, SIM, and SUM

respectively. For this HNCA data, two simulated signals are inserted in every case. Strip group 7 corresponds to a program which insert

signals at 1H,15N locations where there are no peaks anywhere in the original data, so that the “FT” strip in group 7 shows no signals. Strip

group 8 corresponds to a program that inserts non-overlapping peaks at a 1H,15N position where there are signals at other 13C positions in the

original data. Strip group 9 corresponds to a program that inserts peaks which are offset by 0.5 ppm in the 15N dimension relative an existing

peak in the original data. Strip group 10 corresponds to a program which inserts two peaks that are 0.9 ppm apart in the 13C dimension. It

can also be seen that the measured data for this case has a combination of peaks with a broad appearance, as in FT strip 8, and peaks with a

narrow appearance, as in FT strips 9 and 10.

than ‘rounding up’ each dimension to the next Fourier number and 3 zero fills.” The rules document is available in the NUScon

archive on NMRbox.
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Table 2. Challenge experiments and sample schedules. The left half of the table shows the NMR experiments that define each challenge data

set. The right half of the table shows the sampling parameters used to generate a lower and a higher coverage exponentially biased sample

schedule for each experiment. The column “nuclei” lists the indirect dimensions, as specified in the fid.com scripts. The term “indel” (i.e.,

“indirect element”) is a single combination of evolution times taken across all indirect dimensions. Sample schedules customarily list the

indels at which FIDs are collected. Dimensions that are constant time are indicated by zero-valued decay rates.

Experiment Exponentially Biased Sample Schedule

molecule NMR nuclei grid indels [#] (%) decay rate [Hz] SW [Hz]

proteinA HNCA 15N, CA 90×44 125 (3.2%) 15, 13 1563, 4951

375 (9.5%)

proteinB HNCA 15N, 13C 36×64 125 (5.4%) 0, 102 1946, 4840

375 (16.3%)

proteinA HNCACB 15N, CACB 90×95 250 (2.9%) 23, 50 1563, 10870

750 (8.8%)

proteinB HNCACB 15N, 13C 32×64 200 (9.8%) 0, 102 1622, 9434

600 (29.3%)

proteinA 13C NOESY-HSQC 13C, Hind 93×150 1000 (7.2%) 33, 55 3876, 6944

3000 (21.5%)

proteinC 15N NOESY-HSQC 1H, 15N 180×70 1500 (11.9%) 63, 18 9300, 2500

4500 (35.7%)

The range of reconstruction software programs employed is summarized in Table 3. Several of the software packages provide

access to various reconstruction algorithms and some contestants used different algorithms for different challenges. The specific

methods and parameters used by each contestant for each challenge should be referenced directly in their submission scripts255

inside the NUScon archive. It is worth noting that the SEER (from Hansen) and low rank (from Qu and Lu) software packages

were new to NMRbox and were provided along with the contest submissions. This showcases the ability of the NUScon

workflow to promote the exploration of novel techniques and the agility of the NMRbox platform to readily incorporate them.

2.5 Peak Picking

The peak picking step in the workflow was simple to deliver, but deceptively complex to interpret. We used the peak picker260

from NMRPipe, but setting the threshold and controlling the number of peaks recovered required some attention. The recovered

peak table was used by the metrics discussed in the next section and, as will become clear, the number of peaks in the recovered

table had an effect on the resulting metrics. As a consequence, the threshold used when peak picking had a direct effect on the

metrics. Given that NUS reconstruction methods are nonlinear, there is no single intensity threshold that can be used across all

reconstructions for a given data set. Therefore, the peak picking was performed with a low threshold; the resulting peak table265

was sorted by peak intensity and truncated to include 1,500 of the most intense peaks. The fixed number was determined by
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Table 3. Contestants and categorization of their chosen spectral reconstruction methods.

Contestant Software Algorithm Class Reference

Mark Bostock CambridgeCS IHT (Bostock et al., 2012)

Frank Delaglio NMRPipe IST (Delaglio et al., 1995)

D. Flemming Hansen SEER linear prediction unpublished work

Sven Hyberts hmsIST IST (Hyberts et al., 2012)

Bruce Johnson NMRFx NESTA (Sun et al., 2015)

Krzysztof Kazimierczuk mddnmr IST (Kazimierczuk and Orekhov, 2012)

Hengfa Lu XCloud-LR low rank (Qu et al., 2015)

Mark Maciejewski RNMRTK maximum entropy (Hoch and Stern, 1996)

Vladislav Orekhov mddnmr MDD & CS-IRLS (Orekhov and Jaravine, 2011)

Xiaobo Qu XCloud-LR low rank (Qu et al., 2015)

Scott Robson hmsIST IST (Hyberts et al., 2012)

Jinfa Ying NMRPipe/SMILE decomposition (Ying et al., 2017)

Matt Zambrello RNMRTK maximum entropy (Hoch and Stern, 1996)

manual inspection of the uniformly sampled empirical data and was set conservatively high to ensure that all true peaks would

be captured.

The current approach based on a fixed number of recovered peaks was effective, but will be replaced by the use of the in situ

receiver operator characteristic (IROC, Zambrello et al., 2017) method in future rounds. The IROC method is advantageous270

since it continuously varies the peak picking threshold from the most intense peak down to the noise and reports the recovery

rate and false discovery rate at each threshold. The resulting set of data defines the quality of the reconstruction, independent

of a specific peak picking threshold.

2.6 Metrics

The NUScon metrics were designed to quantify how well reconstruction workflows recover synthetically injected peaks. The275

metrics are briefly described here and their full mathematical definitions are presented in Appendix A.

– M1: Frequency accuracy. A symmetric Hausdorff metric was used with a maximum distance penalty to determine the

accuracy of the recovered chemical shift positions. This metric allowed for different numbers of peaks in the injected

and recovered sets (i.e., it does not require a one-to-one correspondence between the sets).

– M2: Linearity of peak intensity. This quantifies how well the intensities of the recovered peaks were mapped by a linear280

function to their corresponding injected intensities. The correlation coefficient was calculated from the numpy python

package.

– M3: True positive rate. This reports the percentage of injected peaks that were recovered.
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– M4: False positive rate. This reports the percentage of recovered peaks that were false.

– M5: Linearity of peak intensity. This metric delivers the same evaluation as M2, but was implemented using an NMRPipe285

function.

2.7 Rank Lists

A rank list was generated for each metric applied to each combination of experiment data, synthetic peak table, and NUS

schedule. These rank lists are in the NUScon archive on NMRbox in comma separated value (CSV) files. The report

function in the NUScon software package can be used to extract arbitrary subsets of these rank lists to assemble aggregate290

results, which is how the NUScon challenges were evaluated.

3 Software

The NUScon software package is a modular, workflow-based, python3 software package that is installed on the NMRbox

platform (Maciejewski et al., 2017). NMRbox accounts are freely available to those with academic, government, and nonprofit

affiliations. The NUScon software is licensed with GPL3. Users may run the software on NMRbox by executing the command295

nuscon, access the source code in /usr/software/nuscon, or import the NUScon python package into their own

projects. NMRbox users can also execute the command “nuscon -h” to see a help message that defines input syntax and

provides information about auto-generating a template file to run NUScon jobs. This publication uses NUScon software version

5.0.

The NUScon software was designed to manage a collection of project directories that contains the US experiment data,300

synthetic peak tables, sample schedules, and user submission scripts. As each evaluation was performed, workflow output was

written to project directories that contain the spectra, projections, and peak tables. In addition, a JavaScript Object Notation

(JSON) file was written to the output directory for each reconstruction that documented the metadata that defined the particular

reconstruction, the compute times for each task in the NUScon workflow, and the metric scores. When rank lists were generated,

the software simply queried the JSON files to aggregate all scoring data needed for the report. Compartmentalizing all of the305

workflow resources into nested project directories made it easy to run the NUScon workflow in parallel across the NMRbox

computing cluster and to extract arbitrary subsets of evaluation data from the NUScon archive by experiment, user, metric,

etc. JSON files are human-readable and contain a nested structure of key/value pairs. JSON files are easy for users to browse,

efficient for computing workflows to parse, and straightforward to augment as new evaluation tasks may be retroactively

performed on existing data.310

It is worth noting that the design of the NUScon software made it trivial to deploy across the NMRbox cluster for parallel

computing. Since each virtual machine (VM) in the NMRbox cluster has its own scratch disk, NUScon operations that were

file input and output intensive saw tremendous performance improvements. All NMRbox VMs connect to the same file system

so the parallel jobs were written back into a common project. The NUScon software includes a status utility that reports on the

progress of each evaluation task defined in the project.315
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The Supplemental Information shows examples of the input configuration files and an output JSON file.

4 Results and Discussion

A very generous gift from the Miriam and David Donoho Foundation allowed us to provide significant cash prizes to the

contestants of the 2018 and 2019 Challenges. This seed money provided incentive for the leading users and developers of

the most prominent NUS software to participate, with the goal of ushering NUScon into a community-driven initiative that is320

self-sustaining. The publicly available software package is the first deliverable presented here and the remainder of this section

addresses the utilization of the software package to support two rounds of challenge problems.

Varying the type of experiment, nature of the synthetic peaks, sample schedule parameters (including coverage and random

seed), and the metrics, allowed for a comprehensive analysis of spectral reconstructions. It is important to note that while we

customize the properties of the synthetic peaks for use with each metric, there are compounding factors to consider. When325

peaks are weak, broad, and/or close in proximity to additional peaks, they become difficult to recover. In particular, their sen-

sitivity, frequency accuracy, and resolution are intimately connected and quantitatively isolating any single property becomes

challenging. We strive to minimize these complicating factors in our evaluation workflow by using a variety of synthetic peak

collections for each experiment; the “-prog” section of the command in Fig. 3 defines 5 different strips of synthetic peaks.

Strong synthetic peaks in closely spaced pairs are employed to assess resolution, strong peaks in isolation are used to evaluate330

frequency accuracy, and variable intensity peaks in isolation are employed to measure sensitivity.

In the context of NUScon, it was desirable to combine the scoring results for multiple data sets in order to evaluate each

of the challenges, as summarized in Table 4. Since all metrics are normalized onto the interval [0,1], it may be tempting

to combine multiple metrics through averaging. However, the dynamic range of each metric is hard to pre-determine, thus

a mean score would be dominated by whichever metric had the largest range of values. Instead, we chose to rank order all335

submissions for each metric on each data set, convert these ranks into percentiles (i.e., a representation that is independent of

the number of contestants), and then combined results by averaging the percentiles. This approach has the consequence that

adding new evaluation scripts to the archive of existing challenges, requires the re-scoring of the percentiles for all evaluations.

Computationally this is insignificant, but it is worth noting that percentile rankings are dependent on their context, whereas the

raw scores will remain unchanged and are a better choice for running iterative optimization.340
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Table 4. NUScon Challenges 2018/2019. Each row group (separated by horizontal lines) shows a NUScon Challenge and the parameters

that define it: “experiment” defines the molecule and NMR experiment providing the uniformly sampled time-domain data; “synthetic table”

gives the index value(s) of the 5 synthetic peak tables that are generated for each experiment (see the Workflow discussion for information

about the design of each); “NUS coverage” indicates the usage of the “low” and “high” coverage sample schedules generated for each

experiment, as defined in Table 2; “metric” lists the index value(s) of the metrics used to evaluate the reconstructions (see the Workflow

discussion for information about each metric). The “Scores” column shows the top performing contestants for the given challenge along with

their average percentile taken across the evaluations of all parameter combinations that define the challenge. Note that not all contestants

provided a submission for each challenge. The entry “multiple” indicates a tie; complete results available in NUScon archive.
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Challenge Parameters Scores

Index Theme experiment synthetic table NUS coverage metric contestant %

2018.1 Overall proteinA + HNCA 1,2,3,4,5 low, high 1,3,5 Ying 82

proteinA + HNCACB Hyberts 73

proteinB + HNCA Hansen 66

proteinB + HNCACB

2018.2 Fidelity proteinA + HNCA 1,2,3,4,5 low, high 1,5 Ying 78

proteinA + HNCACB Hyberts 74

proteinB + HNCA Hansen 67

proteinB + HNCACB

2018.3 Detection proteinA + HNCA 1,2,3,4,5 low, high 3 Ying 90

proteinA + HNCACB Hyberts 71

proteinB + HNCA Hansen 64

proteinB + HNCACB

2018.4 Sensitivity proteinA + HNCA 5 low 3 Ying 89

proteinA + HNCACB Maciejewski 74

proteinB + HNCA Hyberts 67

proteinB + HNCACB

2018.5 Resolution proteinA + HNCA 1 high 1 Ying 80

proteinA + HNCACB Hyberts 75

proteinB + HNCA Delaglio 66

proteinB + HNCACB

2019.1 Overall proteinA + 13C NOESY-HSQC 1,2,3,4,5 low, high 1,3,5 Ying 61

proteinC + 15N NOESY-HSQC Bostock 58

Hansen 52

2019.2 Fidelity proteinA + 13C NOESY-HSQC 1,2,3,4,5 low, high 1,5 Ying 60

proteinC + 15N NOESY-HSQC Bostock 58

Hansen 53

2019.3 Detection proteinA + 13C NOESY-HSQC 1,2,3,4,5 low, high 3 Ying 64

proteinC + 15N NOESY-HSQC Bostock 58

Hansen 51

2019.4 Sensitivity proteinA + 13C NOESY-HSQC 5 low 3 Ying 75

proteinC + 15N NOESY-HSQC multiple 45

2019.5 Resolution proteinA + 13C NOESY-HSQC 1 high 1 Ying 75

proteinC + 15N NOESY-HSQC Hansen 65

Kazimierczuk 55
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Another consequence of using rank order is that a difference in rank may result from either a small change in the underlying

raw scores when many contestants are tightly grouped or from a large change in the underlying raw score when contestants are

well-separated. The former may be insignificant, whereas the latter may indicate an important difference in performance. As

an illustrative example, consider an alternative version of metric m1 that computes differences in peak positions in ppm, rather

than in Hz. This approach resulted in small changes in the raw scores, which in many of the challenges, resulted in a shuffling345

of the ranked results. This example suggests one be cautious not to over-interpret the ranked results in Table 4.

The parameter combinations that defined each NUScon challenge are given in Table 4. The NUScon archive inside NMRbox

at /NUScon/archive/report contains CSV files showing the rank lists by contestant for each metric on each data set.

There are also CSV files showing the aggregated ranked results for each of the Challenges shown in Table 4. Note that not all

contestants provided a submission for each challenge; the CSV files of rank lists should be consulted to determine participation350

in each challenge. It is also important to note that the “Scores” column in Table 4 should be cautiously interpreted; it should

not be used as a way to select a best reconstruction algorithm for an arbitrary experiment and it should not be used to eliminate

a reconstruction method from consideration. The challenge experiments, synthetic peaks, contestant reconstruction scripts, and

metrics represent a diverse collection of data that will guide the community towards best practices. However, the collection

is still a slice through a very complex work-space. We intend to expand the scope of NUScon and to continually refine the355

evaluation metrics through future rounds of challenges. This follows the successful framework used in CASP (Kryshtafovych

et al., 2019) and will help drive our evolving understanding of the challenges we face with NUS NMR.

The summary of computations performed for NUScon is provided in Table 5. This data is provided as a qualitative way

to describe the overall computational costs of the NUScon challenges. Direct comparison of compute times between various

methods is beyond the current scope of the project and would depend on the optimization of each method to run multi-threaded360

operations. In addition, the NMRbox platform is a shared community resource with active users. The NUScon evaluations were

performed in this dynamic environment where resource availability fluctuates.

It is important to note that M2 was not used in the NUScon evaluation, M5 was used instead. M4 will not be used until

IROC methods are incorporated (discussed in Conclusions). The number of peaks recovered was held constant and M4 was

thus redundant to M3. Rather than reducing the set of metrics supported by the NUScon software, we instead intend to support365

an arbitrary variety of metrics and welcome contributions from the community.

To ensure that the metrics were robust, we performed visual inspection of spectra to validate that differences in metric

performance corresponded to expected differences in spectral quality. This ensured that future efforts to optimize reconstruction

methods can be based on maximizing metric performance. Fig. 5 shows a side-by-side comparison of the best and worst

performers for each metric for the protein A / HNCA challenge data. Row 1 shows a spectral region with two synthetic370

peaks, which are indicated by the intersections of the labeled vertical and horizontal lines. Panel A shows a reconstruction

that displays some distortion and inaccuracy in the recovered peak positions (M1 score = 0.01); whereas Panel B shows an

improved recovery of peak position (M1 score = 0.10). Row 2 shows a spectral region with two relatively weak synthetic

peaks. Panel C show a reconstruction that fails to recover one of the peaks (M3 score = 0.10) and Panel D recovers both peaks

(M3 score = 0.85). Row 3 shows a scatter plot of the recovered peak intensities versus their injected intensities. Panel E has375
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Table 5. Summary of computations. The number of spectral reconstruction and the compute times they required. Most of the reconstruction

methods are mutli-threaded and all computations are spread across 10 NMRbox VMs to yield a substantial reduction in the “wall time” for

completing the evaluations.

EXPERIMENT EVALUATION COMPUTE TIME

molecule NMR contestants spectra time [CPU × hr]

proteinA HNCA 12 120 2,229

proteinB HNCA 12 120 1,333

proteinA HNCACB 12 120 13,674

proteinB HNCACB 12 120 1,383

proteinA 13C NOESY-HSQC 6 60 501

proteinC 15N NOESY-HSQC 6 60 172

TOTAL 600 19,292

a broader spread as well as a fairly intense peak that is not recovered (data point on the horizontal axis) resulting in a poor

correlation (M5 score = 0.40). Panel F shows a reconstruction with a better linearity of intensities (M5 score = 0.99).

5 Conclusions

The NUScon software, contest, and archive of spectral evaluation data provide a comprehensive platform for addressing the

most challenging questions related to NUS experiments and even to broader topics in the quantitative analysis of NMR data.380

Establishing both a standardized workflow and a set of curated reference data holds tremendous power for the robust quan-

titative assessment of current methods and provides benchmarks by which novel methods may be compared and optimized.

The NUScon workflow will expand in scope as new challenges are addressed (e.g., sample schedule design and peak picking)

and the quantitative modules deployed in the workflow (e.g., metrics and peak simulation) will be subjected to continuous

refinement.385

A critical component of the NUScon workflow, which also has significant impact beyond the workflow presented here, is the

genSimTab.tcl synthetic peak simulation package that Frank Delaglio delivered as an extension to NMRPipe (Delaglio

et al., 1995). As discussed in the introduction and clearly presented by Donoho and Tanner (2009), quantitative evaluations of

spectral reconstructions requires that candidate peaks (i.e., the synthetic peaks used here as a “ground truth”) be surrounded by

other spectral data of suitable complexity and density. The synthetic peak simulation package was custom built to specifically390

deliver these needed features for the NMR experiments addressed in NUScon challenges. The package is extensible and can

readily be maintained to support future challenges.

Peaks in a spectrum generated by conventional discrete Fourier processing will include truncation artifacts and the effects

of any window function applied. This means that peaks in a discrete Fourier spectrum will never actually be simple ideal

functions, such as Lorentzians, even though such simple functions can often be good approximations of observed lineshapes.395
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Figure 5. Visualization of Metric Performance. Reconstructions that perform relatively worse (left column) and that perform relatively

well (right column) are shown for each of the metrics M1 (row 1), M3 (row 2), and M5 (row 3) on the protein A / HNCA challenge data.

The crossing lines in panels A and B intersect where a pair of synthetic peaks has been injected. The peaks in panel A are clearly offset and

distorted. Panels C and D show a pair of weak peaks, only one of which is recovered in panel C. Panels E and F show correlations between

injected and recovered synthetic peak intensities.

In addition, measured NMR signals will deviate from ideal behavior in other ways, such as in the case when sample instabilities

occur (Gołowicz et al., 2020). The NUScon approach injects time-domain signals with known parameters into measured data
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and tests how well the injected signals can be recovered by the reconstruction method being evaluated. The synthetic time-

domain signal injection approach, despite its advantages, comes at the price of a potential bias that was extensively discussed

during the planning of NUScon. The synthetic signals are generated using ideal exponential decays, but several adjustments are400

applied in order to more effectively mimic experimental distortions. These adjustments include application of small random

phase distortions, small random unresolved couplings, and addition of a synthetic solvent signal to induce baseline distortions.

The simulated signals can also include placement of a group delay of “negative time” points at the start of each 1D time-domain

vector to account for the potential distortion introduced by digital oversampling (Moskau, 2002). Even with these attempts to

generate more realistic simulations, since the signal injection procedure uses signals with ideal exponential decays as a starting405

point, this might still favor parametric reconstruction methods that use the same ideal model, without conferring this benefit on

non-parametric reconstruction methods.

The results captured in our archive of spectral reconstructions have shaped our preliminary definition of best practices and

provide a quantitative benchmark. Future challenge problems (scheduled to be released annually in September/October, with

results showcased at the Experimental NMR Conference in March/April) will enable us to build a database of quantitative410

evaluations across the entire NMR data processing workflow. We have thus far focused on NUS data reconstructions for

common triple resonance experiments used in protein NMR. We plan to expand the workflow by releasing challenges that

address sample schedule design and peak picking. We plan to expand the scope of the contest to include data processing for

experiments on small molecules, where the performance of the algorithms observed here for 3D protein NMR experiments

may differ and require alternate optimization. We plan to offer challenges on 4D experiments where quantitative guidance in415

the description of best-practices has great potential to significantly reduce experiment time and improve spectral quality for a

class of powerful, but underutilized experiments. The reconstruction methods included in this work are among the most heavily

used, but there are numerous other approaches. We plan to solicit submissions from developers and we will initially focus on

emerging tools in the area of machine learning. The modular design and open access to the NUScon platform provides an

easy mechanism for integrating novel tools into the NUScon workflow, where they can be retroactively applied to all previous420

challenge data.

There are several features that are in development and scheduled for release during the next round of challenges. The first

major planned development is the incorporation of the IROC method into the peak picking task; this will eliminate the need

for an arbitrary peak picking threshold. We have written the IROC functionality into a standalone API and wrapped this using

the Common Workflow Language (CWL, Amstutz et al., 2016) – a framework for defining analysis workflows.425

The second major planned development is to provide the NUScon software with distributed computing capabilities. This is

currently managed by manually running batches of evaluation tasks on various NMRbox virtual machines. However, NMRbox

has an instance of HTCondor installed and we will provide a mechanism to easily run distributed and balanced computing jobs

on the NMRbox cluster. One possible approach is to wrap the entire NUScon workflow in CWL and make use of emerging

high-throughput management systems like REANA, which has direct support for connecting CWL to HTCondor (Mačiulaitis430

et al., 2019).
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The final major planned development is the implementation of a GUI front-end, which will assist users with building NUScon

evaluation jobs and browsing the database of quantitative results.

Code and data availability. The NUScon software package (nuscon v5.0) is installed on NMRbox and all contest data is archived and

available on NMRbox at the mount point: /NUScon.435
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Appendix A: Metrics

The following notation is used in defining the metrics

property notation data type

peak list A set of peaks

count |A| positive integer

peak pAi peak of index i from peak list A
dimensions d positive integer

position p̂i = [p̂i[1], p̂i[2], . . . , p̂i[d]] vector of Hz values

intensity |pi| scalar

linewidth p̄i = [p̄i[1], p̄i[2], . . . , p̄i[d]] vector of Hz values

Note that subscripts are used to denote indexing of peaks and square brackets are used to reference values specific to each

dimension.440

A1 M1: Frequency accuracy

In order to quantify the frequency accuracy of a list of recovered peaks (R) relative to a list of master peaks (M) we need

a method for computing the “distance” between peak positions. While it is trivial to compute the distance between pairs of

peaks, it is not trivial to assign the pairings when the two lists may have different numbers of peaks due to artifacts, inadequate

resolution, or low sensitivity; this is compounded when nearest neighbors are not mutual.445

For example, consider Fig. A1, which depicts 4 master peaks (circles)

M= {A,B,C,D} (A1)

and 3 recovered peaks (squares)

R= {X,Y,Z} (A2)

This illustration is meant to represent a case where 3 of the master peaks are recovered, but at slightly offset positions (A→ X ,450

B→ Y , C→ Z) and a fourth master peak (D) is not recovered at all. The bottom half of Fig. A1 shows the recovered peak

that is closest to each master peak, and vice versa (note that correspondence is not always mutual, hence the bi-directional

assignments). In comparing the two assignment tables, we see a variety of situations:

– A and X are mutual partners.

– B and Z are mutual partners.455

– C selects Z, but Z selects B, which is also selected by Y.

– D has no appropriate partner and selects X, which is clearly paired with A.
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– No injected peak selects Y.

– No recovered peak selects C.

We account for the situations depicted above by using a symmetric Hausdorff distance, which considers the correspondence460

problems from both directions (and takes the average distance). We also include a maximum penalty term to guard against the

distance penalty on D being highly dependent on the surroundings. This metric is formally defined as

H(M,R) =
1

2
(D(M→ R) +D(R→ M)) (A3)

The RMSD obtained by selecting each peak inM and finding its closest neighbor inR is computed as

D(M→ R) =

√√√√ 1

|M|
∑
pM
i

min
pR
j

δ(pMi ,pRj )2 (A4)465

The function used to compute the distance between two arbitrary peaks, p1 and p2, is defined as

δ(p1,p2) = min


√√√√ d∑

i=1

(p̂1[i]− p̂2[i])
2
, δmax

 (A5)

The first term in the “min” statement is the `2 norm, which computes the distance (in Hz) between peaks p1 and p2. The

second term in the “min” statement, δmax, puts an upper bound on the distance and ensures that if the metric is used to compare

two peak lists, that a missing peak does not introduce an arbitrary distance term according to whatever is closest. The max470

value enforces a neighborhood around each peak when assigning correspondence. For each experiment, the table of synthetic

peaks is used to establish an average linewidth along each dimension. These average linewidth values define a box and the

distance from the center of the box to a corner is used as the cutoff. In other words, the neighborhood around a peak position

extends half a linewidth along each dimension.

The values of the symmetric Hausdorff in Eqn A3 fall on the interval [0, δmax], with 0 indicating a perfect recovery of peak475

positions and a value of δmax indicating no injected peaks have a recovered peak within the cutoff distance. This is normalized

onto the interval [0,1] and reversed, so that 1 reports perfect recovery and 0 reports no peaks recovered, as

∆(M,R) = 1− H(M,R)

δmax
(A6)

It is important to note that there are several ways to compute distance between peaks. We have chosen to perform this evalu-

ation with peak positions in Hz. Another approach we considered is to perform the computations in ppm and include weighting480

factors along the dimensions. Without this weighting, a 1 ppm difference along a proton dimension would be equivalent to a 1

ppm difference along a nitrogen dimension. In this example, it would be appropriate to use a weighting factor of c= 1 for the

nitrogen dimension and roughly c= 0.25 for the proton dimension (Williamson, 2013).
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A2 M2: Linearity of peak intensity

The intention of this metric is to quantify the linearity of the peak intensities recovered by a reconstruction relative to the485

known intensities from a synthetically injected peak list. This metric assumes that the recovered peaks are neither limited in

sensitivity nor resolution and that the correspondence of peaks between M and R is clearly defined. That is the peaks are

detectable above the noise, not overlapping, and the same indexing can be used to refer to both sets.

Let a set of n peaks fromM andR be denoted

M = [pM1 ,pM2 , . . . ,pMn ] (A7)490

R = [pR1 ,p
R
2 , . . . ,p

R
n ] (A8)

where pRi is the recovered peak corresponding to the master peak pMi . The intensities of the peak lists are given as the vectors

IM = [|pM1 |, |pM2 |, . . . , |pMn |] (A9)

IR = [|pR1 |, |pR2 |, . . . , |pRn |] (A10)

The Pearson correlation coefficient is computed as495

ρ(IM, IR) =
cov(IM, IR)

std(IM)× std(IR)
(A11)

The correlation coefficient is on the interval [-1,+1], where the sign indicates a positive / negative correlation and the magnitude

indicates the strength of correlation. This is converted to a value on the interval [0,1] as

L(M,R) =
1 + ρ(IM, IR)

2
(A12)

The metric as defined above is computed using the Numerical Python (NumPy) library function numpy.corrcoef.500

A3 M3: True positive rate

It might be tempting to simply count the number of peaks in R that are within a cutoff distance of a peak inM, or count how

many peaks inM have a peak inR within a cutoff distance. However, these approaches would allow a peak from one set to be

considered a neighbor to multiple peaks in the other, thus artificially raising the count. We approach this metric by framing it

as a bipartite graph, where the two peak lists form the two sets of vertices and the edges connect peaks fromM to peaks from505

R that are within the cutoff distance (δmax), as defined in metric 1. The metric is then equivalent to finding the cardinality of a

maximal matching on the bipartite graph (i.e., the most number of pairings betweenM andR where peaks are in at most one

pairing). We solve this problem using the networkx module in python. We denote a maximal matching as

X(M,R) = {(pMi ,pRj ) such that d(pMi ,pRj )≤ r,pMi and pRj not in any other pairing} (A13)

We denote the true positive rate as the percentage of master peaks that appear in the maximum matching510

T (M,R) =
|X(M,R)|
|M|

(A14)
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A4 M4: False positive rate

This metric reports on the rate of false positives in the recovered peak list. The false positive rate, which is defined as the

percentage of peaks fromR that do not correspond to a master peak, is obtained as

FPrate(M,R) =
|R|− |X(M,R)|

|R|
(A15)515

This rate is on the interval [0,1], but the best performance (i.e., no false positive peaks in R) corresponds to a value of 0. The

output of the metric can be simply reversed, so that the best performance is at a value of 1 and the worst is at 0. This is done

by subtracting the false positive rate from 1, producing

F (M,R) = 1− |R|− |X(M,R)|
|R|

(A16)

=
|X(M,R)|
|R|

(A17)520

A5 M5: Linearity of peak intensity

This metric uses the NMRPipe function pkDist.tcl to compute the Pearson correlation coefficient comparing the heights

of synthetically injected peaks with the heights of the recovered peaks. This function establishes a correspondence between

each injected peak and the closest corresponding recovered peak. This metric should be employed on synthetic peaks that can

clearly be recovered in order to avoid an ambiguous correspondence between the recovered and injected peaks. The correlation525

coefficient is defined on the interval -1 to 1, but it would not be plausible to observe a negative correlation for the way the this

metric is deployed. As such, the reported M5 metric is simply the correlation coefficient.
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injected→ recovered

A→ X This is as expected and provides an appropriate pairing to compute

a distance.

B→ Z The slight shift in the positions of Y and Z are such that Z is the

closest recovered peak for B, even though the illustration implies

B should pair with Y.

C→ Z This is as expected, but Z is also claimed by B, which is even

closer to Z, even though the illustration implies Z goes with C.

D→ X There is no peak recovered near D, so it gets partnered with what-

ever is closest by, even though it is clearly not related to the injec-

tion of D.

recovered→ injected

X→ A This is as expected and provides an appropriate pairing.

Y→ B This is as expected and provides an appropriate pairing.

Z→ B The slight shift in the positions of Y and Z are such that B is the

closest injected peak for Z, even though the illustration implies Z

should pair with C.

Figure A1. Correspondence. This example illustrates a case where recovered peaks (white squares) are slightly offset from the injected

master peaks (black circles). One injected peak (D) is not recovered and the offset introduces challenges relating to the correspondence

between the two lists.
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Yoon, J. W., Godsill, S., Kupče, E., and Freeman, R.: Deterministic and statistical methods for reconstructing multidimensional NMR spectra,

Magnetic Resonance in Chemistry, 44, 197–209, 2006.650

Zambrello, M. A., Maciejewski, M. W., Schuyler, A. D., Weatherby, G., and Hoch, J. C.: Robust and transferable quantification of NMR

spectral quality using IROC analysis, Journal of Magnetic Resonance, 285, 37–46, 2017.

32

https://doi.org/https://doi.org/10.1073/pnas.94.23.12366
https://doi.org/10.1016/j.pnmrs.2013.02.001
https://doi.org/10.1007/s10858-006-9120-z

