
Supplemental Information
Pustovalova et al., NUScon: A community-driven platform for quantitative evaluation of nonuniform sampling in NMR.

1 Software Inputs and Outputs

1.1 Input: master.cfg

The master.cfg file defines a structure for the complete project. The NUScon software includes a custom class based5
on the standard configparser python module that parses the path definitions in this file and dynamically substitutes pa-
rameters into the path definitions for each simulation as the resource is requested. This ensures that all project data for all
simulations is handled consistently and it allows for simple augmentation if new files and resources are to be integrated into
the NUScon evaluation. Copied below is a small fragment from the file and is meant to illustrate the simple human read-
able format and the variable substitution. Related parameters are grouped into sections with names in square brackets (e.g.,10
“[path]”). Lines within a section define key/value pairs. Values written as “%%name%%” are substitutions made at the time
the resource is requested. Values written as “${name}” are cross-references to other values in the same section. Values written
as “${otherSection:name}” are cross-references to values in other sections. Comma-separated lists are used to define
nested directory paths.

[path]15
experimentName = %%molecule%%_%%nmr%%
experiment = %%dirExperiment%%

experiment_current = ${experiment}, ${experimentName}
cfgFileExperiment = ${experiment_current}, experiment.cfg
fid_us = ${experiment_current}, fid_us20

fid_data = ${fid_us}, fid
proc_fid = ${fid_us}, fid.com
proc_ft = ${fid_us}, nmr_ft.com

fid_nus_synthetic = ${experiment_current}, fid_nus_synthetic
fid_nus_current = ${fid_nus_synthetic}, synthetic-%%synthetic_index%%, ...25

...schedule-%%schedule_index%%
fid_nus_current_expand = ${fid_nus_current}, nus_expand, test%03d.fid
fid_nus_current_fid = ${fid_nus_current}, nus.fid
fid_nus_current_mask = ${fid_nus_current}, mask, test%03d.fid

For example, the time-domain data for a specific experiment is accessed with getPath(‘fid_nus_current_fid’).30

1

1.2 Input: env.cfg

The env.cfg file defines environment variables that are defined for the shell that runs each reconstruction. Explicit defini-
tions ensure that the NUScon environment is not subject to changes in the NMRbox platform and helps ensure that NUScon
workflows are transferable and reproducible across the NMRbox cluster. Copied below is a small fragment from the file and is
meant to illustrate how the file is structured and how it can easily be modified if needed.35

[defs]
; define PATH and LD_LIBRARY_PATH as multi-line strings
; these are prepended to existing definitions
PATH =

/usr/software/bin40
/usr/software/nmr-scripts
/usr/local/sbin
/usr/local/bin
/usr/sbin
/usr/bin45
/sbin
/bin
/snap/bin
/usr/software/nmrpipe/nmrbin.linux212_64
/usr/software/nmrpipe/com50
/usr/software/nmrpipe/dynamo/tcl

LD_LIBRARY_PATH =
/usr/software/nmrpipe/nmrbin.linux212_64/lib

55
; define environment variables as key/value pairs
NVFXP = /NUScon/software/NMRFxProcessor/version-10.2.3/processor-10.2.3/nmrfxp
NMRPIPE_INIT = /usr/software/nmrpipe/com/nmrInit.linux212_64.com
PICKER = pkDetect3D.tcl
NUSTOOL = nus-tool-generate60

2

1.3 Input: experiment.cfg

There is an experiment.cfg file embedded with each US experiment that documents some of the metadata for the experi-
ment which is utilized by the NUScon workflow.

[proteinA_HNCA]
dim_names = 15N, CA65
max_inc = 90, 44
SW = 1562.5, 4950.5
decay_rate = 23, 50
x1PPM = 10.3
xnPPM = 5.870
xP0 = -156.8
yP0 = 2.4

[metric]
metrics look for a recovered peak within a half linewidth of the injected peak75
this is computed using the average LW (in Hz) of the injected peaks,
as defined in the genSimTab script for the experiment
cutoff = 36.75

the injected peaks are defined in PPM80
their position is needed in Hz for the metrics
put the resonance frequencies defined in fid.com here (xOBS, yOBS, zOBS)
(Hz = PPM * OBS)
OBS = 700.243, 70.963, 176.085

3

1.4 program.cfg85

The program.cfg file defines where the project resources are located (“[project]” section), what NUScon tasks should be
performed (“[run]” section), and what parameters should be used. The example below defines two jobs. The first job (“prog-
WorkflowAll”) generates sample schedules, injects synthetic peaks, performs reconstructions, peak picks spectra, computes
scores, and gathers the scoring data. The second job (“doRank-2019.1”) generates a ranked list of results for a specific NUS-
con Challenge by working with a subset of the data generated by the first job. In practice, the program.cfg file can be90
written with many jobs to either separate the workflow by task or to break the workflow into different sets of parameters so
that jobs can be run in parallel. The program.cfg file has an extensive header that includes a full guide to running NUScon
jobs.

[project]
dirSetting = /NUScon/archive/setting95
dirExperiment = /NUScon/archive/experiment
dirSubmission = /NUScon/archive/submission
dirWorking = /scratch/%%user%%
dirSpectrum = %%HOME%%/myProject/spectrum
dirLog = %%HOME%%/myProject/log100

[run]
programList = progWorkflowAll, doRank-2019.1

[progWorkflowAll]105
task = sched, synth, recon, peak, score, gather
molecule = proteinA, proteinB, proteinC
nmr = HNCA, HNCACB, NOESYHSQC
synth_peak_index = 1,2,3,4,5
schedule_index = 1,3110
user = contestant1, contestant2, contestant3
metric = 1,3,5

[doRank-2019.1]
task = rank115
molecule = proteinA, proteinC
nmr = NOESYHSQC
synthetic_index = ${progWorkflowAll:synthetic_index}
schedule_index = ${progWorkflowAll:schedule_index}
user = ${progWorkflowAll:user}120
metric = ${progWorkflowAll:metric}
rankFileBasename = challenge-2019.1-overall

4

1.5 Output: simData.json

This is a slightly simplified copy of an output json file where some long path names have been truncated to improve readability.
Complete simData.json files are embedded with every NUScon evaluation output directory and are publicly accessible125
in the NUScon data archive. The “param” section documents the resource locations and current evaluation parameters. The
“time” section records the wall, user, and system compute times for each task. The user compute time is multi-thread aware
and reports on the total CPU time for the task. The “metric” section shows the raw scores for each computed metric.

{
"param": {130

"dirExperiment": "/path/to/project/experiment",
"dirSubmission": "/path/to/project/submission",
"dirWorking": "/scratch",
"dirLog": "/path/to/project/log",
"dirSpectrum": "/path/to/project/spectrum",135
"dirRank": "/path/to/project/rank",
"task": "recon",
"molecule": "proteinA",
"nmr": "HNCA",
"synthetic_index": 1,140
"schedule_index": 1,
"user": "contestant1"

},
"time": {

"recon": {145
"wall": 247.5145070552826,
"user": 1039.086282,
"sys": 83.937606

},
"peak": {150

"wall": 378.1961841583252,
"user": 370.63975500000026,
"sys": 3.785168999999943

},
"score": {155

"m1": {
"wall": 0.28973865509033203,
"user": 0.248564,
"sys": 0.008334000000000064

},160
"m3": {

"wall": 0.2306685447692871,
"user": 0.22739200000000004,
"sys": 0.0032560000000003697

},165
"m5": {

"wall": 1.6490709781646729,
"user": 1.198449,
"sys": 0.017908999999999915

5

}170
},
"gather": {

"wall": 0.0007526874542236328,
"user": 0.00012200000000017752,
"sys": 0.000140000000000029175

}
},
"metric": {

"m1": 0.5625487106185185,
"m3": 0.95,180
"m5": 0.74681

}
}

6

1.6 Synthetic Peak Simulation

Example genSimTab.tcl command for auto-generating a table of synthetic peaks for an HNCA spectrum; the command185
provides many options not shown here. Dimension-specific parameters are specified with usual NMRPipe nomenclature of
X, Y, and Z for the three dimensions. Option -specType specifies the type of data being simulated, with the currently
available types: hnco hnca cbcaconh cbcanh n15Noe c13noe. Type hnca means that peaks will be inserted in
pairs at the same 1H,15N chemical shift, and will share the same lineshape in the 1H and 15N dimensions. The option -iseed
specifies a random number seed. Options -fid and -ft specify the reference time-domain input data and corresponding190
input spectrum; these are used to determine the acquisition parameters and phases that should be used to generate the synthetic
data. Option -empty specifies the 3D spectrum mask input that identifies signal-free regions in the reference spectrum, while
option -empty2D specifies the 2D mask that identifies empty regions in the XY (here, 1H,15N) plane (Fig. ??). Option -tab
specifies the input peak table of the largest peaks in the reference spectrum, and option -hn specifies an output table that will
contain the 1H,15N coordinates where one or more synthetic peaks were generated; this table can be used later for viewing195
strips of the simulated signals. Several simulation parameters are Gauss-random values clipped to fall within specified upper
and lower bounds, using a Gaussian distribution whose standard deviation is 0.35 times the range of the bounds. Options
-hiMin -hiMax specify the range of Gauss-random time-domain amplitudes for the signals generated. Options -xP0Min
-xP0Max etc. specify the ranges of Gauss-random phase perturbations in degrees to add in each dimension. Options -xwMin
-xwMax etc. specify the ranges of Gauss-random time-domain decays in each dimension, in Hz. Options -xJMin -xJMax200
etc. specify the lower and upper bounds in Hz for one or more Gauss-random cosine modulations in each dimension, in
Hz. The -prog option specifies details for one or more “strips” (related peaks at the same 1H,15N coordinate) of synthetic
peaks to create. Details are specified as one or more “programs”, where each program is comma-separated list of keywords and
values that describe the desired properties of the synthetic signals, including how their positions should be chosen. The program
scheme provides substantial flexibility to generate synthetic signals, although some combinations of settings are redundant, and205
it is possible to specify contradictory combinations of options that can’t be achieved. In this example, there are five programs
generating a total of 10 strips:

1. count=1,xy=novel,z=existing,noNewOverlap,noSpecOverlap,hiScale=4.0
Generate a single strip (count=1) of 3D peaks. xy=novelmeans the peak will be inserted at an empty 1H,15N location
(i.e., no existing peaks at that 1H,15N location anywhere in the 3D spectrum). z=existing means the peaks will have210
13C positions that correspond with peaks elsewhere in the spectrum, according to table of largest peaks in the measured
spectrum (largest.tab). Note that while these synthetic peaks will have 13C chemical shifts that match existing peaks in the
spectrum, the 13C lineshapes of the synthetic peaks are independent of existing peaks. Keyword noNewOverlapmeans
the simulated peaks will not overlap other simulated peaks. Keyword noSpecOverlap means the simulated peaks will
not overlap known peaks in the measured spectrum. Keyword/value hiScale=4.0 means the peak intensities will be215
scaled up by a factor of 4.

2. count=6,xy=novel,z=existing,noNewOverlap,noSpecOverlap
Generate six strips (count=6) with the default height range, using the same parameters as program 1.

3. count=1,xy=existing,z=existing,noNewOverlap,noSpecOverlap
Generate one strip at the same 1H,15N coordinate as an existing peak in the measured data (xy=existing), although220
the 15N lineshapes of the synthetic signal are independent of existing peaks. As before, z=existing means the peaks
will have 13C positions that correspond with peaks elsewhere in the spectrum.

4. count=1,xy=existing,z=existing,noNewOverlap,forceYOverlap,dyOv=0.5
Generate one strip according to the 1H,15N coordinate of an existing peak in the measured data (xy=existing), but
displace the peaks by 0.5 ppm in the 15N dimension (forceYOverlap,dyOv=0.5).225

5. count=1,xy=existing,z=any,noNewOverlap,noSpecOverlap,forceZOverlap,dzOv=0.9
Generate one strip with a pair of peaks that overlap by 0.9 ppm in the 13C dimension (forceZOverlap,dzOv=0.9).

7

