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Abstract. Spin relaxation has been at the core of many studies since the early days of NMR, and the undelying theory worked

out by its founding fathers. This Bloch-Redfield-Abragam relaxation theory has been recently reinvestigated (Bengs and Levitt

(2020)) in the perspective of Linblad theory of quantum Markovian master equations in order to account for situations where

the widely used semi-classical relaxation theory breaks down. In this article, we review the conventional approach of quantum

mechanical theory of NMR relaxation and show that under the usual assumptions, it is equivalent to the Linblad formula-5

tion. We also comment on the debate over semi-classical versus quantum versions of spectral density functions involved in

relaxation.

1 Introduction

Relaxation is the process through which a system loses energy to its environment to eventually reach a state of thermal equi-

librium. Spin-lattice relaxation has been described so as to describe the way spins transfers energy to orientation degrees of10

freedom. Since the early days of NMR, it was the subject of numerous studies, both theoretical and encompassing a wide

range of domains of applications. NMR relaxation theory has really been contemporary of the early days of NMR, and it was

formalized by several of its "founding fathers" (Bloembergen et al. (1948); Bloch (1957, 1956); Abragam (1961); Redfield

(1957, 1965)). This is a rather usual approach in the theory of open systems, which has been widely used in various domains

of Physics (VanKampen (1981)). In this perspective, relaxation is the result of the dynamical coupling of a small ensemble of15

spins (the "system") coupled to a large ensemble of particles, or "degrees of freedom" (the "lattice") that is at thermal (Boltz-

mann) equilibrium and is endowed with an infinite heat capacity, thereby constituting a thermal reservoir. This very general

approach has led to many theoretical predictions with far reaching practical applications in the domain of magnetic resonance

spectroscopy. In particular, the role played by molecular motions has been put in good use to extract dynamical information on

complex molecular objects. Thus, with the development of "spin engineering" techniques, it has become possible to measure20

selected relaxation rates with high accuracy in a broad range of problems, with the prospect of relating such observables to

models of molecular dynamics.

*This paper is dedicated to Prof. Geoffrey Bodenhausen on the occasion of his 70th birthday.
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It has been shown recently by Bengs and Levitt (Bengs and Levitt (2020)) that the formulation of Redfield’s semiclassical

theory of relaxation widely used by NMR spectroscopists may lead to erroneous predictions in the case of a two-spin system

prepared in high order states, such as singlet spin states.25

Such an unexpected behaviour was ascribed to the fact that some of the assumptions of the theory may not be fulfilled

in NMR systems, and the authors solved the problem by making use of the Lindblad operator, which is commonly used

in the theory of open quantum systems to account for dissipative Markovian phenomena, i.e., relaxation processes. Among

other properties, the structure of the Lindblad operator ensures that the fundamental properties of the density operator ρ (ρ

is hermitian and definite positive, and Tr(ρ) = 1) are preserved (Lindblad (1976); Alicki and Lendi (2007)). This article has30

sparked renewed interest regarding the general theory of relaxation, as first elaborated by Bloch, and its connection with the

Linblad theory of quantum dissipative systems (Barbara (2021)). This approach has been recently generalized in several recent

works (Nathan and Rudner (2020); Maimbourg et al. (2021)).

The traditional description of NMR relaxation relies on the description of both the spin system and the lattice as quantum

systems, an approach that leads to the celebrated Redfield equation (Bloch (1956); Redfield (1965); Hubbard (1961); see also35

Goldman (2021) for a more recent account on spin lattice relaxation). As far as the description of the lattice is concerned, this

approach is challenging, and actually untractable, as a quantized description of the degrees of freedom involved in molecular

motions (multiple bond rotations, overall tumbling of a molecule,...) is not manageable in practice, even for small molecular

systems. For this reason, an alternative relaxation theory where the spins are treated as quantum objects and the lattice is de-

scribed with classical functions of the lattice degrees of freedom was developed. This semi-classical approach has far reaching40

practical consequences, as spin relaxation can then in principle be described using classical models of dynamics for molecular

motions, and has been extensively used over the years to describe and interpret spin relaxation experiments. However, this

"semi-classical" theory predicts a non-Boltzmann equilibrium density operator, which requires an ad hoc thermal correction

to the relaxation equations (Redfield (1965); Abragam (1961)). More elaborate attempts have been made to overcome this

limitation by modifying the relaxation operator itself and to enforce a Boltzman equilibrium of the density operator (Jeener45

(1982); Levitt and Bari (1992)). However, in the traditional semi-classical NMR relaxation approach and its later modifica-

tions, the spin-lattice interactions are accounted for by a stochastic, fluctuating, hamiltonian. This has important consequences.

First, in the conventional Abragam-Redfield approach, the statistical properties of the (classical) lattice are not constrained by a

fluctuation-dissipation kind of theorem that would enforce a Boltzman equilibrium distribution, therefore a lattice temperature.

Such a constraint is therefore not applied on the spins. Secondly, a major difference between the quantum and classical theories50

of spin relaxation is rooted in the non commutation of quantum bath operators of the spin-lattice coupling hamiltonian, which

confers particular properties to the spin correlation and spectral density functions that are absent in the semi-classical theory.

Both aspects, quantum and statistical, are entangled, and the relations between quantum and classical correlation functions will

be therefore discussed.

It is the purpose of this paper to re-investigate these old questions in order to trace the roles and the consequences of the various55

assumptions of the traditional approach to relaxation developed in the early days of NMR.
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2 Theory of spin relaxation in a thermal bath: a short review

2.1 Derivation of the master equation

The derivation follows the lines of Refs. (Abragam (1961); Bloch (1956); Redfield (1957); Hubbard (1961)). Consider a spin

system in its environment. The hamiltonian of the spin system HS accounts for the interaction of the spins with the magnetic60

fields (Zeeman interaction and interaction with a rf field), as well as non dissipative spin-spin interactions (scalar J coupling,

dipolar coupling). The dynamics of the lattice (the bath) is described by HB, and the spin-bath interaction hamiltonian is H1:

HT =HS +HB +H1 (1)

Thus, the dynamics of the {spin-bath} system is described by the Liouville equation:

ρ̇(t) =−i[HS +HB +H1,ρ(t)] (2)65

Alternatively, it can be written as:

ρ̇(t) = LTρ(t) (3)

where the operator LT =−i[HT, ·] is the total Liouvillian. Introducing the interaction representation of the density operator

ρ∗(t) = e−L0tρ(t), where L0 = LS +LB is the unperturbed liouvillian, one has:

d

dt
ρ∗(t) =−i[H∗1 (t),ρ∗(t)] = L∗1(t)ρ∗(t) (4)70

The Liouville equation is integrated to second order:

ρ∗(t) = ρ∗(0) +

t∫
0

dt1L∗1(t1)ρ∗(0) +

t∫
0

dt1

t1∫
0

dt2L∗1(t1)L∗1(t2)ρ∗(0) + . . . (5)

Taking the derivative, one gets:

d

dt
ρ∗(t) = L∗1(t)ρ∗(0) +

t∫
0

dt′L∗1(t)L∗1(t′)ρ∗(0) (6)

Finally, by making the change of variables τ = t− t′, one gets the master equation for the total density operator as:75

d

dt
ρ∗(t) = L∗1(t)ρ∗(0) +

t∫
0

dτL∗1(t)L∗1(t− τ)ρ∗(0) (7)

The dynamics restricted to the spin system is obtained by eliminating the bath variables. This is achieved by performing a

partial trace over the bath degrees of freedom:

σ(t) = trB {ρ(t)}= trB

{
e−iHTtρ(0)eiHTt

}
= trB

{
eLTtρ(0)

}
(8)80
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Hence, from Eq. 6, the spin density operator in the interaction representation:

σ∗(t) = trBρ
∗(t) (9)

obeys:

d

dt
σ∗(t) = trB {L∗1(t1)ρ∗(0)}+

t∫
0

dt′trB {L∗1(t)L∗1(t′)ρ∗(0)} (10)

Initially, the system and the bath are assumed to be completely decorrelated:85

ρ(0) = ρeB ×σ(0) (11)

where, the exact ρeB denotes the bath density operator in thermal equilibrium. With these assumptions, one has:

d

dt
σ∗(t) = trB {L∗1(t1)ρ∗(0)}+

t∫
0

dt′trB {L∗1(t)L∗1(t′)ρeB}σ∗(0) (12)

In the latter expression, the term trB {L∗1(t1)ρ∗(0)} may be assumed to be zero or can be incorporated in the main system

liouvillian LS (Abragam (1961); Redfield (1957)):90

d

dt
σ∗(t) =

t∫
0

dt′trB {L∗1(t)L∗1(t′)ρeB}σ∗(0) (13)

If the spin density operator is assumed to only moderately depart from its initial state,

σ(t)−σ(0)

σ(0)
� 1, (14)

the density operator varies only slightly from its initial state, so that σ∗(0) can be replaced by σ∗(t) in Eq. 12 (Abragam (1961);

Redfield (1957)):95

d

dt
σ∗(t) =

t∫
0

dt′trB {L∗1(t)L∗1(t′)ρeB}σ∗(t) (15)

The master equation in the Schrödinger representation can be obtained from Eq.15:

d

dt
σ∗(t) =

d

dt
e−LStσ(t) =−LSe

−LStσ(t) + e−LSt
d

dt
σ(t) (16)

=

t∫
0

dt′trB {L∗1(t)L∗1(t′)ρeB}σ∗(t) (17)

Therefore, one has:100

d

dt
σ(t) = LSσ(t) + eLSt

t∫
0

dt′trB {L∗1(t)L∗1(t′)ρeB}σ∗(t) (18)
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Reverting to the Schrödinger representation σ∗(t) = e−tLSσ(t), one obtains the master equation in the Schrödinger repre-

sentation:

d

dt
σ(t) = LSσ(t) +

t∫
0

dt′trB {L1L∗1(t′− t)ρeB}σ(t) (19)

A derivation is given in Appendix A for reference. The term trB {L1L∗1(t′− t)ρeB} in equation 19 is a correlation operator105

acting on the spin system. It projects the system-bath (spin-lattice) coupling onto the bath degrees of freedom. This spin

operator therefore carries the statistical properties of the bath, described by its equilibrium, stationary, density operator. Finally,

assuming that the correlation operator decays to zero in a time τc much shorter than the period over which the density matrix

varies significantly, the upper limit of the integral can be extended to +∞. As above, making the change of variables τ = t−t′,
one obtains:110

d

dt
σ(t) = LSσ(t) +

+∞∫
0

dτ trB {L1L∗1(−τ)ρeB}σ(t) (20)

or, in the hamiltonian representation:

d

dt
σ(t) =−i[HS,σ(t)]−

+∞∫
0

dτ trB {[H1, [H
∗
1 (−τ),ρeBσ(t)]]} (21)

One therefore obtains a master equation of the Redfield kind:

d

dt
σ(t) =−i[HS,σ(t)] +Rσ(t) (22)115

whereR •=−
+∞∫
0

dτ trB {[H1, [H
∗
1 (−τ),ρeB •]]} is the Redfield (relaxation) operator.

2.2 Formulation of the master equation in operator form

In spin relaxation theory, it is customary to express the relaxation equation in operator form, which often provides a clearer

representation of the spin-bath coupling dynamics. Here, the coupling Hamiltonian is assumed to have the form of a sum of

terms, each of which factorizes into a product of lattice Bq and spin Sq operators.120

H1 =
∑
q

SqBq, (23)

with the interaction representation:

Bq(t) = eiHBtBqe−iHBt (24)

Sq(t) = eiHStSqe−iHSt (25)
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Using results of the preceding section (Eqs 16-19), the Redfield equation writes:125

σ̇∗S (t) =−
∑
q,q′

trB

+∞∫
0

dt′[Sq(t)Bq(t), [Sq
′
(t′)Bq

′
(t′),ρeBσ

∗
S (t)]] (26)

Each term in the sum writes:

trB[Sq(t)Bq(t), [Sq
′
(′)Bq

′
(t′),ρeBσ

∗
S (t)]] =

[Sq(t),Sq
′
(t′)σ∗S (t)]〈Bq(t)Bq

′
(t′)〉e + [σ∗S (t)Sq

′
(t′),Sq(t)]〈Bq

′
(t′)Bq(t)〉e (27)

where the notation:130

〈Bq(t)Bq
′
(t′)〉e = trB

{
Bq(t)Bq

′
(t′)ρeB

}
(28)

has been introduced. The 〈Bq(t)Bq′(t′)〉e are the bath (lattice) correlation functions, and in contrast to equation 20, these

denote functions rather than operators.

σ̇∗S (t) = −
∑
q,q′

+∞∫
0

dt′[Sq(t),Sq
′
(t′)σ∗S (t)]〈Bq(t)Bq

′
(t′)〉e

−
∑
q,q′

+∞∫
0

dt′[σ∗S (t)Sq
′
(t′),Sq(t)]〈Bq

′
(t′)Bq(t)〉e (29)135

Using the conventional decomposition of the spin operators into a sum of eigenoperators of the liouvillian LS = [HS,•]:

[HS,S
q
p ] = ωqpS

q
p (30)

one has:

Sq(t) = eiHStSqe−iHSt =
∑
p

Sqpe
iωqpt (31)

one obtains from equation 29, with the change of integration variable τ = t− t′:140

σ̇∗S (t) = −
∑

q,q′,p,p′

e
i(ωqp+ω

q′

p′ )t

+∞∫
0

dτ [Sqp ,S
q′

p′σ
∗
S (t)]〈Bq(t)Bq

′
(t− τ)〉ee−iω

q′

p′τ

−
∑

q,q′,p,p′

e
i(ωqp+ω

q′

p′ )t

+∞∫
0

dτ [σ∗S (t)Sq
′

p′ ,S
q
p ]〈Bq

′
(t− τ)Bq(t)〉ee−iω

q′

p′τ (32)

Intoducing the secular approximation ωqp +ωq
′

p′ = 0, so that p= p′, q =−q′, and renaming indices, this reduces to:

σ̇∗S (t) = −
∑
p,q

+∞∫
0

dτ [S−qp ,Sqpσ
∗
S (t)]〈B−q(t)Bq(t− τ)〉ee−iω

q
pτ

−
∑
p,q

+∞∫
0

dτ [σ∗S (t)Sqp ,S
−q
p ]〈Bq(t− τ)B−q(t)〉ee−iω

q
pτ (33)145
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The assumption that the bath is in a stationary state, [HB,ρ
e
B , ] = 0, confers some properties to the correlation functions. Thus,

the bath correlation functions are also stationary. Indeed, one has:

〈Bq(t)B−q(t+ τ)〉e = trB{eiHBtBqe−iHBteiHB(t+τ)B−qe−iHB(t+τ)ρeB}

= trB{eiHB(t−τ)Bqe−iHB(t−τ)eiHBtB−qe−iHBtρeB}

= 〈Bq(t− τ)B−q(t)〉e (34)150

In addition, because tr(AB)∗ = tr(B†A†), it is easy to show that:

〈Bq(t− τ)B−q(t)〉e∗ = 〈Bq(t)B−q(t− τ)〉e (35)

Besides, using the property that B−q =Bq†:

〈B−q(t)Bq(t− τ)〉e =
1

L

∑
f,f ′

〈f |eiHBtB−qe−iHBt|f ′〉〈f ′|eiHB(t−τ)Bqe−iHB(t−τ)e−~HB/kT |f〉

=
1

L

∑
f,f ′

〈f |B−q|f ′〉eifte−if
′t〈f ′|Bq|f〉eif

′(t−τ)e−if(t−τ)e−~f/kT155

=
1

L

∑
f,f ′

〈f |B−q|f ′〉〈f ′|Bq|f〉e−i(f
′−f)τe−~f/kT

=
1

L

∑
f,f ′

|〈f ′|Bq|f〉|2e−i(f
′−f)τe−~f/kT (36)

where the |f〉 are the eigenstates of the bath hamiltonian HB

3 The Redfield equation is equivalent to the Lindblad form of the relaxation equation

It is now straightforward to show that the conventional Bloch-Redfield-Abragam perturbative approach of relaxation is equiv-160

alent to the Lindblad formulation of dissipative systems. Indeed, changing indices in the first term and using the property

ω−qp =−ωqp), and setting τ →−τ one has, from Eq. 33:

σ̇∗S (t) = −
∑
p,q

0∫
−∞

dτ [Sqp ,S
−q
p σ∗S (t)]〈Bq(t)B−q(t+ τ)〉ee−iω

q
pτ

−
∑
p,q

+∞∫
0

dτ [σ∗S (t)Sqp ,S
−q
p ]〈Bq(t− τ)B−q(t)〉ee−iω

q
pτ (37)

Using the stationarity property (equation 34) of the bath correlation functions leads to:165

σ̇∗S (t) = −
∑
p,q

0∫
−∞

dτ [Sqp ,S
−q
p σ∗S (t)]〈Bq(t− τ)B−q(t)〉ee−iω

q
pτ

−
∑
p,q

+∞∫
0

dτ [σ∗S (t)Sqp ,S
−q
p ]〈Bq(t− τ)B−q(t)〉ee−iω

q
pτ (38)
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σ̇∗S (t) ≈ −1

2

∑
p,q

+∞∫
−∞

dτ [Sqp ,S
−q
p σ∗S (t)]〈Bq(t− τ)B−q(t)〉ee−iω

q
pτ

− 1

2

∑
p,q

+∞∫
−∞

dτ [σ∗S (t)Sqp ,S
−q
p ]〈Bq(t− τ)B−q(t)〉ee−iω

q
pτ (39)

so that:170

σ̇∗S (t) ≈ −1

2

∑
p,q

[Sqp ,S
−q
p σ∗S (t)]Jq,−qR (ωqp)−

1

2

∑
p,q

[σ∗S (t)Sqp ,S
−q
p ]Jq,−qR (ωqp)

=
∑
p,q

Jq,−qR (ωqp)

(
S−qp σ∗S (t)Sqp −

1

2

{
SqpS

−q
p ,σ∗S (t)

})
(40)

where the "right" spectral density Jq,−qR (ωqp) of the bath is given by:

Jq,−qR (ωqp) =

+∞∫
−∞

dτ〈BqB−q(τ)〉e−iω
q
pτ =

+∞∫
−∞

dτCq,−qR (τ)e−iω
q
pτ (41)

{·, ·} denotes the anti-commutator. The operator appearing in the right handside of Eq. 40 is the Lindblad dissipation superop-175

erator as:

ˆL D [A,B] =A •B− 1

2
(BA •+ •BA) , (42)

so that equation 40 writes:

σ̇∗S (t) =
∑
p,q

Jq,−qR (ωqp)
ˆL D [S−qp ,Sqp ]σ∗S (t). (43)

Equation 43 (as well as 40) is a Lindblad equation (Lindblad (1976); Alicki and Lendi (2007)), which is thus derived from180

the usual quantized theory of relaxation (Bloch (1957); Redfield (1957); Hubbard (1961); Abragam (1961)). The fact that this

derivation leads to the Lindblad equation is not obvious. In principle, one should not expect the perturbative approach to yield

an irreversible dissipative operator equivalent to a Lindblad operator. In fact, this equivalence requires the Markovian and the

short correlation time assumptions that make the evolution equation depend on the density operator at the present time t only,

not on its previous history. Moreover, it also requires the secular approximation that eliminates the time dependence of the spin185

operators of the coupling hamiltonian in Eq. 29, leading to Eq. 33. The combination of these conditions lead to the semi-group

property and the Lindblad form of the relaxation operator.

Another point is worth mentioning. The properties of the correlation functions that emerge through this procedure reflect

properties of the bath operators of the spin-bath coupling hamiltonian, and therefore convey additional properties that are not

implied by the structure of the Lindblad equations 40 and 43. Such properties, arising from non commutation of the bath190

operators and of the fact that the lattice is always in stationary Boltzmann equilibrium, and detailed in section 3.1 below and

in Appendix B, ensure detailed balance and that the stationary state of the spin system is compatible with the Boltzmann

equilibrium of the lattice, that is, the lattice temperature. In other words, the perturbative approach leads to a master equation

of the Lindblad form, with additional physical properties that bear constraints from the lattice.
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3.1 An alternative formulation (equivalent to Lindblad)195

It is possible to obtain an alternative and completely equivalent form of the Redfield equation. Expanding Eq. 33, one gets:

σ̇∗S (t) = −
∑
q

∞∫
0

dτS−qp Sqpσ
∗
S (t)〈B−q(τ)Bq〉e−iω

q
pτ

+
∑
q

∞∫
0

dτS−qp σ∗S (t)Sqp〈BqB−q(τ)〉e−iω
q
pτ

+
∑
q

∞∫
0

dτSqpσ
∗
S (t)S−qp 〈B−q(τ)Bq〉e−iω

q
pτ

−
∑
q

∞∫
0

dτσ∗S (t)SqpS
−q
p 〈BqB−q(τ)〉e−iω

q
pτ (44)200

As above, the "left-sided" spectral density function is defined as:

J−q,qL (ω) =

∞∫
−∞

dτ〈B−q(τ)Bq〉e−iωτ =

∞∫
−∞

dτC−q,qL (τ)e−iωτ = e−βωJq,−qR (ω) (45)

where β = ~/kT . The latter equations express a Kubo kind of relation (Kubo (1957)): J−q,qL (ω) = e−βωJq,−qR (ω). A proof is

given in the Appendix (see Eqs B1 and B2). After some straightforward manipulations one obtains:

σ̇∗S (t) = −1

2

∑
q

S−qp Sqpσ
∗
S (t)e−βω

q
pJq,−qR (ωqp) +

1

2

∑
q

S−qp σ∗S (t)SqpJ
q,−q
R (ωqp)205

+
1

2

∑
q

Sqpσ
∗
S (t)S−qp e−βω

q
pJq,−qR (ωqp)−

1

2

∑
q

σ∗S (t)SqpS
−q
p Jq,−qR (ωqp) (46)

Thus, collecting and rearranging terms, one gets:

σ̇∗S (t) =
1

2

∑
q

Jq,−qR (ωqp)
(

[S−qp ,σ∗S (t)Sqp ]− [S−qp ,Sqpσ
∗
S (t)]e−βω

q
p

)
(47)

The Boltzmann factor can be expanded in series:

σ̇∗S (t) =−1

2

∑
q

Jq,−qR (ωqp)[S
−q
p , [Sqp ,σ

∗
S (t)]]− 1

2

∑
q

Jq,−qR (ωqp)[S
−q
p ,Sqpσ

∗
S (t)

∞∑
n=1

1

n!
(−βωqp)n] (48)210

The first term on the right hand side of this equation is the usual double commutator, and the symmetry while the second term

represents the thermal effect of the Boltzmann equilibrium of the lattice. This term, equal to 1− exp(−βωqp), vanishes for

infinite temperature.

4 A Pseudo-classical version of the Redfield equation

A semi-classical version of the master equation can be extremely useful, allowing one to make use of models derived in the215

framework of classical mechanics to calculate spectral density functions. In order to obtain such a theory associated to Eqs. 40
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and 43, additional adjustments are necessary. Indeed, because the B−q(τ) operators do not commute, the correlation functions

of the type 〈B−q(τ)Bq〉 do not obey the general symmetry rules of classical correlation functions. However, symmetrized

correlation functions do commute and so these symmetrized (quantum-mechanical) correlation functions should be introduced

in order to obtain a semi-classical theory (which we may call « pseudo-classical » to distinguish it from the theory where the220

effect of the bath is taken into account only through random functions). A general definition of the classical correlation function

of two dynamical variables A and B is (Evans and Moriss (2008)):

CAB(t) = 〈A(t)B∗〉 (49)

where the brackets indicate classical ensemble average.In the case of stationary processes, the following properties of a corre-

lation functions can be deduced. Its complex conjugate C∗AB(t) is therefore (Evans and Moriss (2008)):225

C∗AB(t) = 〈A(t)B∗〉∗ = 〈A∗(t)B〉= 〈A∗B(−t)〉= CBA(−t) (50)

For an autocorrelation function of A, CAA(t), one has:

CAA(t)∗ = CAA(−t). (51)

Eq. 51 shows that, in the general case where the autocorrelation function is complex: CAA(t) = CrAA(t) + iCiAA(t), with

CrAA(t) =Re(CAA(t)) andCiAA(t) = Im(CAA(t)) are even and odd functions of time, sinceC∗AA(t) = CrAA(t)−iCiAA(t) =230

CrAA(−t) + iCiAA(−t). This implies that the associated spectral density, J(ω) =
∫ +∞
−∞ CAA(t)e−iωtdt is real and J(ω) =

JeAA(ω) +JoAA(ω) JeAA(ω) =
∫ +∞
−∞ CrAA(t)e−iωtdt JoAA(ω) = i

∫ +∞
−∞ CiAA(t)e−iωtdt are real, and respectively even and

odd functions.

A semi-classical relaxation theory should provide spectral density functions obeying the general classical mechanics require-

ments detailed above. It is clear, however, that in the quantum case, where A and B are in general non commuting operators,235

the above symmetry relations do no apply. It is nevertheless possible to define a symmetrized correlation function as:

CAB(t) =
1

2

{
〈A†B(t)〉+ 〈B†A(−t)〉

}
(52)

which is real (when CAB(t) is stationary). Note also that the bath operator correlation functions have the property:

〈BqBq
′
(τ)〉∗ = tr{BqeiHBτBq

′
e−iHBτρe}∗ = tr{ρeeiHBτBq

′†e−iHBτBq†}

= 〈Bq
′†(τ)Bq†〉= 〈Bq

′†Bq†(−τ)〉 (53)240

(correlation functions are assumed stationary), so that:

〈BqB−q(τ)〉∗ = 〈Bq(τ)B−q〉= 〈BqB−q(−τ)〉 (54)

〈B−qBq(τ)〉∗ = 〈B−q(τ)Bq〉= 〈B−qBq(−τ)〉 (55)

Using the definitions C−q,qL (τ) = 〈B−q(τ)Bq〉 and Cq,−qR (τ) = 〈BqB−q(τ)〉, the relations Eqs. 54 and 55 show that the aver-

age Cq(τ) = 1
2 (C−q,qL (τ) +Cq,−qR (τ)) obey the classical correlation function property Cq∗(τ) = Cq(−τ).245
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A semi-classical version of the Redfield equation is thus obtained by using the spectral density function Jq(ω) obtained

from the Fourier transform of the symmetrized correlation function Cq(τ):

Jq(ω) =
1

2
(Jq,−qR (ω) +J−q,qL (ω)) =

1

2
(Jq,−qR (ω) + e−βωJq,−qR (ω)) =

1 + e−βω

2
Jq,−qR (ω) (56)

Using Eqs. 56 and 46, it is therefore possible to derive an alternative expression of the master equation. This gives:

σ̇∗S (t) = −
∑
q

S−qp Sqpσ
∗
S (t)

e−βω
q
p

1 + e−βω
q
p
Jq(ωqp) +

∑
q

S−qp σ∗S (t)Sqp
1

1 + e−βω
q
p
Jq(ωqp)250

+
∑
q

Sqσ∗S (t)S−qp
e−βω

q
p

1 + e−βω
q
p
Jq(ωqp)−

∑
q

σ∗S (t)SqpS
−q
p

1

1 + e−βω
q
p
Jq(ωqp) (57)

or:

σ̇∗S (t) = −
∑
q

S−qp Sqpσ
∗
S (t)

1

1 + eβω
q
p
Jq(ωqp) +

∑
q

S−qp σ∗S (t)Sqp
1

1 + e−βω
q
p
Jq(ωqp)

+
∑
q

Sqpσ
∗
S (t)S−qp

1

1 + eβω
q
p
Jq(ωqp)−

∑
q

σ∗S (t)SqpS
−q
p

1

1 + e−βω
q
p
Jq(ωqp) (58)

Finally, collecting and rearranging terms, one gets:255

σ̇∗S (t) =
1

2

∑
q

Jq(ωqp)

(
[S−qp ,σ∗S (t)Sqp ]

1

1 + e−βω
q
p
− [S−qp ,Sqpσ

∗
S (t)]

1

1 + eβω
q
p

)
(59)

In view of clarifying the connection between the derivation of the quantummechanical master equation to further semi-classical

approximations, it is interesting to rewrite Eq. 59 by expanding the temperature function in terms of the parameters βωqp:

σ̇∗S (t) =
1

2

∑
q

Jq(ωqp)

(
[S−qp ,σ∗S (t)Sqp ](

1

2
+
βωqp

4
−

(βωqp)
3

48
− [S−qp ,Sqpσ

∗
S (t)](

1

2
−
βωqp

4
+

(βωqp)
3

48
)

)

=
1

4

∑
q

Jq(ωqp)[S
−q
p , [Sqp ,σ

∗
S (t)]] +

1

2

∑
q

Jq(ωqp)(
βωqp

4
−

(βωqp)
3

48
+ · · ·)[S−qp ,{Sqp ,σ∗S (t)}] (60)260

Eq. 60 contains a double commutator term weighted by the spectral densities Jq(ωqp), constructed so as to obey the general

symmetry properties of classical spectral density functions (see Eq. 49 and below) and are therefore adapted to a semiclas-

sical version of the relaxation master equation. Then, the Jq(ω) are obtained from classical lattice functions of a fluctuating

hamiltonian, whilst the semi-classical ME obeys detailed balance. The second term of Eq. 60 introduces a lattice-temperature

dependent contribution. However, this term vanishes when the bath operators of the spin-bath coupling hamiltonian commute,265

[B−q,Bq] = 0. According to Eq. B2, the latter condition also implies that one has the equality J−q,qL (ω) = Jq,−qR (ω), meaning

that the lattice temperature is infinite. Stated otherwise, this means that a finite lattice temperature is incompatible with com-

muting bath operators. However, in general, [B−q,Bq] 6= 0, so that detailed balance assumption, or property, which is ensured

by the model of a bath in thermal Boltzmann equilibrium, is conveyed to the spin system through non commutation of the bath

operators Bq . Each term in the series expansion in the righthand side of Eq. 60 explicitly gives the effect of non commutation,270

11



at each order of the parameter βωqp. The first order approximation provides the adequate expression in the high-temperature

limit (see below).

The final relaxation superoperator, which defines the relaxation of density matrix as σ̇∗S (t) = Γ̂σ∗(t), may be written as:

Γ̂ =−1

4

∑
q,p

Jq(ωpq )D̂β(ωqp)[S
−q
p ,Sqp ] (61)

Here D̂β is the thermalized double commutator superoprator, that composes the superoperator from the the two operators275

A,B in the way:

D̂β(ω) [A,B] = [A,fβ(ω)B •−•Bfβ(−ω)] , (62)

where fβ(ω) = 2
1+eβω

, and the dot is the place for operator on which superoperator is applied. It is easy to see that when

T →∞, then fβ(ω)→ 1 and the D̂β(ω) becomes a double commutator superoperator, and the equation 61 becomes a standard

sum of double commutator superoperators. This equation is completely equivalent to Eqs 43 and 48. Nevertheless, the form280

Lindblad dissipator is still easily recognizable, as one may substitute 56 to 43 and get:

σ̇∗S (t) =
∑
p,q

fβ(ωqp)J
q,−q(ωqp)

ˆL D [S−qp ,Sqp ]σ∗S (t).

Equation 59 partially decouples the statistical and the dynamical properties of the heat reservoir. Statistical properties, unre-

lated to the dynamics, which are functions of the temperature, are contained in the temperature factors, whereas the information

about quantum-mechanical bath dynamics is contained in the Fourier transform of the symmetrized (here 1
2 (Jq,−qR + J−q,qL ))285

correlation functions. However, the latter still implicitly depend on the temperature through the trace over the bath degrees of

freedom.

The case of real correlation functions

The above form of the relaxation master equation (Eqs. 59-61) is suitable for semi-classical approximations of relaxation where

classical correlation functions can be used instead of quantum ones that are in general impossible to calculate or compute. It290

is often the case that the classical correlation functions, calculated from classical models of dynamics, such as diffusion,

jumps, ... are real functions of time. The condition of Eq. 51 then implies that the spectral density function Jq(ω) is even:

Jq(−ω) = Jq(ω).

5 Simplifications in the high temperature approximation

When the largest eigenvalue of the operators Sqp is such that max(βωqp)� 1, Eq. 59 takes the simpler form:295

σ̇∗S (t) =
1

4

∑
q

−Jq(ωqp)[S−qp , [Sqp ,σ(t)]] +
βωqp

2
Jq(ωqp)[S

−q
p ,{Sqp ,σ(t)}] (63)

where {., .} denotes the anticommutator.
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The "low order" approximation

The assumption that the density operator is always close to the fully disordered state: ||σ− 1
A || � 1, where A is the dimension

of the density operator, was made by Redfield (Redfield (1957)). Limiting the expansion to zeroth order, Eq. 63 becomes300

(Hubbard (1961)):

σ̇∗S (t) =
1

4

∑
q

−Jq(ωqp)[S−qp , [Sqp ,σ(t)]] +
βωqp
A

Jq(ωqp)[S
−q
p ,Sqp ] (64)

Moreover, using the property, Eq. 30, and the Taylor expansion of the exponential, it is straighforward to show that:

e−βHSSqpe
βHS = e−βω

q
pSqp (65)

Therefore, when the density operator is in thermal equilibrium determined by the hamiltonianHS, σeq = Trace(exp−βHS )−1 exp−βHS ,305

one can show that Rσeq = 0, where R is defined by Eq. 59. Then, discarding terms that are second order or higher in

max(βωqp)� 1, in Eq. 63, one gets the semi-classical formulation of the Redfield equation (Abragam (1961)):

d

dt
(σ∗S (t)−σeq) =−1

2

∑
q,p

Jq(ωqp)[S
−q
p , [Sqp ,σ(t)−σeq]] (66)

The evolution of the expected value of an operator is given by the alternative master equation:

d

dt
〈O〉=

1

4

∑
q

−Jq(ωqp)〈[Sqp , [S−qp ,O]]〉+βωqp
∑
q

Jq(ωqp)〈{Sqp , [O,S−qp ]}〉 (67)310

In this expression, the second term on the right hand side contains the "thermal" contributions to relaxation, and can be

selectively neglected for terms that are higher than first order in
~ωqp
kT . That is, each term in the development such that:

tr
(
{Sqp , [O,S−qp ]}σ(t)

)
�min(tr

(
[Sqp , [S

−q
p ,O]]σ(t)

)
) (68)

at all times can be discarded. Eq. 68 is in principle a less stringent condition and may provide criteria for the quasi-, pseudo-

classical approximation - a test that can be verified a posteriori. It may thus provide a way to select which parts of the density315

operator can be discarded (neglected) and which must be retained in order to get an approximate analytical solution.

The simple case of a two-spin system

"Double commutator" versus "thermal" contributions

The differences of contributions between the first ("double commutator") and the second ("thermal") series of terms in equation

67 are illustrated in Figures 1 and 2 in the case of a pair of like spins 1
2 subject to relaxation caused by a mutual dipolar320

(dipole-dipole - DD) interaction and the presence of a randomly fluctuating field (ran). Simulations were performed assuming

Lorentzian spectral density functions:

JclDD,ran(ω) =
2τC,ran

1 +ω2τ2C,ran
(69)
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with correlation times τran = 60 ps and τC = 8 ps, for the random field and dipolar interactions, respectively. The dipolar

coupling constant b12 =−(µ0/4π)γ2I~r
−3
12 refers to the dipole-dipole coupling constant, γI the gyromagnetic ratio and r12 the325

internuclear distance. In these simulations, b12 = 35 · 103 Hz. These values were chosen to give T1 ≈ 2 s and TS ≈ 20 s.

Contributions from both relaxation mechanisms to the expected values in Eq. 67 were computed, for the spins prepared

either in a singlet state, or inverted from thermal equilibrium. The individual terms entering the first and second sums in the

rhs of Equation 67 are depicted for the case of the magnetization O = Iz +Sz (Fig. 1) and singlet state O = 1
41− I ·S (Fig.

2) operators. The time evolutions of all the contributions to the rate of change of the expected value of the operator O(t) are330

depicted. When the spins are initially prepared in the state −(Iz +Sz), the thermal contribution (blue curve) to the rate of

change of the magnetization has no effect and the only contribution to d〈O〉(t)
dt comes from the double commutator (red curve).

This is the case for both relaxation, dipolar and random field fluctuations, mechanisms (Figs 1(a) and (b)). Moreover, the values

chosen for the simulation imply that the dipolar contribution (of the double commutator in this case) to the total relaxation rate

< Ȯ > (t) is much larger than than the one of the random field.335

The situation is strikingly different when the spins are initially prepared in a singlet order. Here, the thermal correction (blue)

is negligible with respect to the double commutator (red) contribution to the rate of change< Ȯ > (t) only for the dipole-dipole

mechanism (Fig. 1(c)). In contrast, for terms originating from random field relaxation, both thermal and dipolar terms are of

comparable orders of magnitude (Fig. 1(c)). These are the terms that cannot be neglected in an approximate solution of Eq. 67.

Fig. 1(c) also shows that the dipolar contribution to < Ȯ > (t) increases with time, which is consistent with the progressive340

depletion of the singlet order (immune to dipolar relaxation). And for random relaxation, which mainly affects the singlet order

in this example, Fig. 1(d) illustrates the fact that the weight of the thermal contribution decays with time, with the concomitant

increase of the double commutator term, which is also due to the progressive depletion of the singlet order.

The situation depicted in Fig. 2 is different, and shows the the rate of change of the expected value <O > (t) where O =

1
4 (I ·S), for the same initial state conditions as above. In this case, the dipole-dipole simply does not contribute to< Ȯ > (t), as345

expected from symmetry considerations. This is of course the case whatever the initial state (inverted magnetization (Fig.2(a))

or singlet order (Fig.2 (c)). This illustrates the known fact that singlet state is immune to dipolar relaxation for symmetry

reasons.

Alternatively, when the spins are prepared in the −(Iz +Sz) state, both thermal and double commutators contribute, albeit

to a negligible amount, showing that the spins evolve mostly towards magnetization (compare the scales with Fig. 1(b)), and350

that only a negligible part is transferred to singlet order.

Interestingly, Fig. 2(d) shows that there is no thermal contribution (blue) to the rate < Ȯ > (t), and that, starting from a

singlet order, its evolution can be predicted by discarding the thermal thermal terms of Eq. 67, and therefore retaining the

simple, double commutator, expression for the relaxation master equation.

Singlet-triplet conversion355

The recent achievement of the Lindblad approach was the description of the magnetization relaxation of a two-spin system

prepared in a singlet state (Bengs and Levitt (2020)). In that paper, detailed balance was enforced through the Schofield
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Figure 1. Expected values of magnetization spin operatorO = Iz+Sz: contributions of the "double commutator" (red curves) and "thermal"

(blue curves) parts of the Redfield relaxation operator to the magnetization from the different operators Sqp (see Table C1). (a) and (b)

correspond respectively to the dipolar and random field relaxation of spins inverted from a Boltzmann equilibrium; (c) and (d) correspond

respectively to the dipolar and random field relaxation of spins initially prepared in a singlet state.

procedure (Schofield (1960)), whereby spectral density functions are built from classical ones through the transformation:

J(ω)L,R→ Jcl(ω)e−
βω
2 , (70)

where Jcl(ω) refers to the classical spectral density function. Eq. 70 is one among several that have been proposed to make360

classical spectral density functions asymmetric so as to obey the detailed balance condition (White et al. (1988); Egorov and

Skinner (1998); Egorov et al. (1999); Ramirez and López-Ciudad (2004); Frommhold (1993)). In Ref. (Bengs and Levitt

(2020)), J(ω) was assumed to be any kind of spectral density function obtained through classical models, such as diffusion

jumps, etc. The distinction between left and right spectral densities that appears in the course of the conventional perturbative

derivation of the master equation, was not made there. Moreover, the detailed balance condition appears as an additional365

requirement, as this condition is not implied by Linblad’s approach that merely provides the general mathematical structure
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Figure 2. Same as Fig. 1 for expected value of the singlet operator O = 1
4
1− I ·S.

of the evolution equation obeyed by the density operator that complies with the requirements of quantum mechanics, in the

presence of a Markovian dissipative process (Lindblad (1976); Alicki and Lendi (2007)).

In the following, we derive the evolution of the magnetization of a two-spin system using the singlet-triplet population basis

and compare results obtained by both approaches. As above (and in Ref. (Bengs and Levitt (2020)) the relaxation superoperator370

Γ̂ is the sum of contributions from mutual dipole-dipole relaxation (Γ̂DD) and the interaction with a partially correlated random

field (Γ̂ran):

Γ̂ = Γ̂DD + Γ̂ran, (71)
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The irreducible tensor operator Tλµ representation is better suited to derive analytical solutions for the problem at hand, where

Γ̂ is expressed, according to Eq. 62, as:375

Γ̂DD =
6

5
b212

µ=2∑
µ=−2

JclDD(µω0)D̂β(µω0)[T
(12)†
2µ ,T

(12)
2µ ],

Γ̂ran =

2∑
i,j=1

κijω
(i)
rmsω

(j)
rms

µ=1∑
µ=−1

Jclran(µω0)D̂β(µω0)[T
(i)†
1µ ,T

(j)
1µ ].

(72)

The Tλµ are eigenoperators of the main Zeeman Hamiltonian and their expressions are shown in Appendix C. ω(i)
rms is the root

mean square fluctuation of the random field acting on spin Ii, and in the isotropic case considered here, is identical for both

nuclei, so that ω(1)
rms = ω

(2)
rms. The coefficient −1≤ κ12 ≤ 1 describes the degree of correlation of random field fluctuations on

the 1 and 2 nuclei. By definition, κ11 = κ22 = 1. In order to simplify the notations, we will henceforth drop the subscript380

(κ12→ κ).

In the extreme narrowing regime where ωτC,ran� 1, the spectral densities become frequency independent and J(ω)≈ 2τ .

The dipole-dipole and random field contributions to the longitudinal relaxation rate constant R1 =RDD
1 +Rran

1 are given by,

according to Eq. 62:

RDD
1 = − (Iz|Γ̂DD|Iz)

(Iz|Iz)
=

3

20
b212τC (4fβ(2ω0) + 4fβ(−2ω0) + fβ(ω0) + fβ(−ω0)) =

3

2
b212τC,385

Rran
1 = − (Iz|Γ̂ran|Iz)

(Iz|Iz)
= ω2

rmsτran (fβ(ω0) + fβ(−ω0)) = 2ω2
rmsτran (73)

where fβ(ω) = 2
1+eβω

.It is interesting to note that in this model the relaxation rates do not depend on the temperature, in

contrast to Ref. (Bengs and Levitt (2020)). This is not due to any approximation, rather, it arises from the fact that fβ(ω) +

fβ(−ω) = 2, which is explicit in equation 73. Similarly, the singlet order relaxation rate is given by:

RS =Rran
S =− (I1I2|Γ̂ran|I1I2)

(I1I2|I1I2)
= 4ω2

rmsτran(1−κ) (74)390

, which does not depend on the temperature. For sake of comparison with the results of (Bengs and Levitt (2020)), we use the

singlet-triplet population basis, where the singlet and triplet states are defined as:

|S0〉 = (|α1β2〉− |β1α2〉)/
√

2, (75)

|T+1〉 = |α1α2〉 ,

|T0〉 = (|α1β2〉+ |β1α2〉)/
√

2,395

|T−1〉 = |β1β2〉 ,
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where |α〉 and |β〉 denote the Zeeman spin states of an isolated spin-1/2 nucleus with z-projection of +1/2 and –1/2. In this

representation, the population block of relaxation superoperator 72 is given by:

[Γ̂]4×4 =

|S0〉〈S0| |T+1〉〈T+1| |T0〉〈T0| |T+1〉〈T+1|

−Σ1
1
2 (1−κ)Rran1 fβ(−ω0) 1

2 (1−κ)Rran1
1
2 (1−κ)Rran1 fβ(ω0)

1
2 (1−κ)Rran1 fβ(ω0) −Σ2

1

5
RDD1 fβ(ω0)+

1

2
Rran1 (1 +κ)fβ(ω0)

2
5R

DD
1 fβ(2ω0)

1
2 (1−κ)Rran1

1

5
RDD1 fβ(−ω0)+

1

2
Rran1 (1 +κ)fβ(−ω0)

−Σ3

1

5
RDD1 fβ(ω0)+

1

2
Rran1 (1 +κ)fβ(ω0)

1
2 (1−κ)Rran1 fβ(−ω0) 2

5R
DD
1 fβ(−2ω0)

1

5
RDD1 fβ(−ω0)+

1

2
Rran1 (1 +κ)fβ(−ω0)

−Σ4



(76)

where Σi denotes the sum of the terms alongside respective column. This matrix is very similar to one introduced in (Bengs400

and Levitt (2020)), but with the substitution of term θ(ω) = exp(−βω/2) by fβ(ω).

In the high-temperature limit, both terms become approximately equal, θ(ω)≈ fβ(ω)≈ 1− βω
2 and the difference between

θ(ω) and fβ(ω) becomes significant only in case of extremely low temperatures or very high frequencies. As could be expected

in this limit, the time evolution of the z magnetization is given by the same biexponential behavior as in Ref. (Bengs and Levitt

(2020)):405

〈Iz(t)〉/〈Ieqz 〉 ≈ 1 +A1e
−R1t +ASe

−RSt (77)

with the same coefficients A1 =
RS

2(R1−Rs)
and AS =

−2R1 +RS
2(R1−Rs)

. The fact that A1 and AS are the ones found in (Bengs

and Levitt (2020)) is expected, because in this limit R1 and RS do not depend on the temperature factor. In the usual conditions

of high but not infinite temperature, it is found that the next nonzero terms in the expansions of A1(β) and AS(β) are of degree

β2, and therefore do not contribute in the regime where ωβ� 1. These expressions can be found in Appendix D.410

The foregoing discussion has shown that in the high temperature approximation, the exact "thermalization" procedure of the

spectral density function is irrelevant, as all models are equivalent in these conditions. Indeed, in a field of 23.5 T (1000 MHz

resonance proton frequency) the temperature at which ~ωH ≈ kT , where both approaches may lead to significant differences,

is T ≈ 50 mK. These are unrealistic experimental conditions. Alternatively, the master equation of Eqs. (59-62) may well be of

use in the context of DNP to describe the electron spin-lattice relaxation outside of the high-temperature limit, through direct415

spin-phonon coupling at temperatures below 4 K and at high fields, where this process is predominant.

6 Conclusion: a remark on the "semiclassical" theory

In the semiclassical viewpoint (as in Ref. (Abragam (1961)), for instance), the effect of the bath is taken into account through

a stochastic spin hamiltonian, the spatial part of which is a function of the lattice variables and is a random function of time. It
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is usually understood that this approach does not comply with the Boltzmann equilibrium of the bath. Besides, the stationary420

state reached by the spin density operator is left undetermined by the master equation so that it must be enforced by the

supplementary ad hoc assumption that the spins return to the Boltzmann distribution of the spin populations. A recent analysis

by Bengs and Levitt (Bengs and Levitt (2020)) showed that the usual semi-classical master equation was not able to predict the

correct magnetization evolution of a two-spin system prepared in a singlet state. Thus, the usual semiclassical inhomogeneous

master equation provides erroneous predictions in this case. The latter is obtained when the thermal corrections to the double425

commutator part of the relaxation operator are retained to first order in the largest eigenvalue
ωqp
kT , and the relaxation operator

reduces to a double commutator (“low order” case). However, the equilibrium density operator is not a stationary solution in

this case and therefore a correction term is added to the master equation, leading to the same result as the usual semiclassical

master equation (Hubbard (1961)). And so, when the low order assumption is not verified, as in the case of a spin system

prepared in the singlet state, this description becomes inconsistent.430

As shown above, the non commutation of the bath operators have critical consequences, leading to the lattice tempera-

ture dependent terms in the master equation, and only when the bath operators [B−q(t),Bq(0)] = 0 one recovers the double

commutator expression, with the additional property JL(ω) = JR(ω), so that the Kubo relation imposes an infinite lattice tem-

perature. This illustrates how the finite temperature of the lattice is conveyed to the spins through non commutation of the bath

operators of the coupling hamiltonian.435

The conventional semiclassical approach, where spin-bath interactions are represented by random spin hamiltonians, has

two simultaneous consequences: the structure of the relaxation operator is affected in such a way that the master equation

takes the form of a double commutator; and since JL(ω) = JR(ω), the system cannot evolve to a thermodynamic equilibrium

associated with a finite temperature. In this case, detailed balance property is conserved but only in the special case of infinite

lattice temperature. In fact, since detailed balance is statistical by nature, it is per se compatible with a semiclassical approach.440

If, on the other hand, detailed balance is taken into account in the semi-classical theory of NMR relaxation, so that J(−ω) =

e−~ω/kTJ(ω) and the general relations Eq. 49 or 51 obeyed by correlation functions are retained, it is easy to show from the

symmetry properties of the spectral density function that the semiclassical Redfield equation (Abragam (1961)):

σ̇∗S (t) =−1

2

∑
q,p

J(ωqp)[S
−q
p , [Sqp ,σ(t)]] (78)

is obeyed, with this definition of J(ω). However, the expected equilibrium density operator is not a stationary state of Eq. 78 in445

this case, which illustrates the (also known) fact that this condition alone is insufficient to completely determine the transition

probabilities of the bath in the absence of a dynamical model for the latter. On the other hand, it is possible to describe the

dynamics of a classical system where microscopic irreversibility, i.e., detailed balance, is ensured. This is straightforward from

the definition of the correlation function of a phase variable in classical mechanics, 〈A(t)B∗〉=
∫
dqdpρeB∗eiLtA, where L

is the classical Liouvillian acting on the phase space (Evans and Moriss (2008)). In addition, general procedures have been used450

that provide Fokker-Planck or master equations for diffusion that obey the detailed balance condition, yielding classical spectral

density functions that comply with the Boltzmann equilibrium distribution and the classical laws of motion of the bath (see

for instance (VanKampen (1981); Risken (1972); Wassam et al. (1980))), in particular in the context of magnetic resonance
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(Stillman and Freed (1980)). As stated in several instances in this work, in the fully quantum approach, detailed balance is

ensured by assuming that the bath is in a stationary state defined by a Boltzmann distribution of its energy states. Thus, the455

“irreducible” difference between the semi-classical and the fully quantized theory lies in the fact that the bath operators do not

mutually commute, which prevents the expression in Eq. 27 to reduce to the double commutator. Both thermodynamic and

quantum mechanical effects are thus entangled in the fully quantum mechanical treatment of relaxation.
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Appendix A: Derivation of Eq. 19

d

dt
σ(t) = LSσ(t)+ eLSt

t∫
0

dt′trB

{
L∗1(t)L∗1(t′)ρeB

}
σ∗(t) (A1)

= LSσ(t)+

t∫
0

dt′trB

{
eLStL∗1(t)L∗1(t′)ρeB

}
e−tLSσ(t) (A2)

= LSσ(t)+

t∫
0

dt′trB

{
eLSte−(LS+LB)tL1e

(LS+LB)te−(LS+LB)t
′
L1e

(LS+LB)t
′
e−tLSρeB

}
σ(t) (A3)465

= LSσ(t)+

t∫
0

dt′trB

{
e−LBtL1e

(LS+LB)te−(LS+LB)t
′
L1e

(LS+LB)t
′
e−tLSρeB

}
σ(t) (A4)

= LSσ(t)+

t∫
0

dt′trB

{
L1e

(LS+LB)te−(LS+LB)t
′
L1e

(LS+LB)t
′
e−tLSe−LBtρeB

}
σ(t) (A5)

= LSσ(t)+

t∫
0

dt′trB

{
L1e

−(LS+LB)(t
′−t)L1e

(LS+LB)(t
′−t)ρeB

}
σ(t) (A6)

In this derivation, the invariance of the trace to circular permutations has been used, as well as the fact that [LB,ρ
e
B] = 0, since the bath is in

a stationary state.470

Appendix B: Evaluation of the terms of eq. 44

The correlation functions involved in Equation 44:

1

2
Jq,−qR (ωqp) =

∞∫
0

dτ〈BqB−q(τ)〉e−iω
q
pτ

=

∞∫
0

dτ
1

L

∑
f,f ′

〈f |Bq|f ′〉〈f ′|B−q|f〉ei(f
′−f)τe−βfe−iω

q
pτ =

∞∫
0

dτ
1

L

∑
f,f ′

|〈f |Bq|f ′〉|2ei(f
′−f)τe−βfe−iω

q
pτ

≈ 1

2

1

L

∑
f,f ′

|〈f |Bq|f ′〉|2e−βf
∞∫
−∞

ei(f
′−f−ωqp)τdτ =

1

2

1

L

∑
f,f ′

|〈f |Bq|f ′〉|2e−βfδ(f ′− f −ωqp)475

=
1

2

1

L

∑
f

|〈f |Bq|f +ωqp〉|2e−βf (B1)

since B−q =Bq†. Similarly, one has:

1

2
J−q,qL (ωqp) =

∞∫
0

dτ〈B−q(τ)Bq〉e−iω
qτ =

1

L

∑
f,f ′

〈f |B−q|f ′〉〈f ′|Bq|f〉e−~f/kT
∞∫
0

dτei(f−f
′)τe−iω

qτ

=
1

2

1

L

∑
f,f ′

|〈f |B−q|f ′〉|2e−~f/kT
∞∫
−∞

ei(f−f
′−ωq)τ =

1

2

1

L

∑
f,f ′

|〈f |B−q|f ′〉|2e−~f/kT δ(f − f ′−ωq)
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Noting that |〈f |B−q|f ′〉|= |B−qff ′ |= |B
q†
ff ′ |= |B

q∗
f ′f |= |B

q
f ′f |, and exchanging indices f ↔ f ′, one gets, from Eq. B2:480

1

L

∑
f,f ′

|〈f |B−q|f ′〉|2e−βfδ(f − f ′−ωqp) =
1

L

∑
f,f ′

|〈f ′|Bq|f〉|2e−βfδ(f − f ′−ωqp)

=
1

L

∑
f,f ′

|〈f |Bq|f ′〉|2e−βf
′
δ(f ′− f −ωqp) =

1

L

∑
f

|〈f |Bq|f +ωqp〉|2e−β(f+ω
q
p)

= e−βω
q
p
1

L

∑
f

|〈f |Bq|f +ωqp〉|2e−βf = e−βω
q

J R(ωqp) (B2)

Besides, it immediately follows from the definitions of JqR (ω) and JqL (ω) that:

JqR (−ω) = J−qR (ω) (B3)485

Appendix C: Eigenoperators for a homonuclear coupled spin 1/2 pair

The case of homonuclear spin pair the main hamiltonian is defined as:

HZ = ω0 (I1z + I2z) , (C1)

where ω0 =−γB, and γ is the magnetogyric ratio andB is the field strength. The eigenoperators for this hamiltonain are summarized in the

table C1. The eigenoperators are denoted by T (ij)
λµ . The superscript (ij) indicates angular momentum coupling of spins Ii and Ij resulting490

in a spherical tensor operator of total angular momentum λ and z−angular momentum µ

Table C1. Eigenoperators of hamiltonian for a homonuclear coupled spin-1/2 pair

µ\λ 2 1

± 2 1
2
I±1 I

±
2 –

± 1 ∓
(
I±1 I

z
2 + I1zI

±
2

)
∓ 1√

2
I±j

0 − 1

2
√
6

(
I+1 I

−
2 + I−1 I

+
2 − 4I1zI2z

)
Ijz

Appendix D: Expansion coefficient for the magnetization evolution solution

The coefficient from the equation 77 are in fact temperature dependent:

A1(β) =A1 +C1β
2 +O(β4)

AS(β) =AS +CSβ
2 +O(β4)

(D1)

where the coefficients A1 and AS was shown before in the main text, and the coefficients C1 and CS is defined as:495

C1=ω
2
0

RS(600R3
1−20R2

1(4416Rdd1 +35RS)−5Rs(17280(R
dd
1 )2+2958Rdd1 Rs+5R2

S)+2R1(43488(Rdd1 )2+51120Rdd1 RS+125R2
S)

5760R1(150R1−149Rdd1 −25RS)(R1−RS)2

CS=−C1

(D2)
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