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Abstract. Spin relaxation has been at the core of many studies since the early days of NMR, and the undelying theory worked

out by its founding fathers. However, this theory has been recently questioned (Bengs and Levitt (2020)) in the light of Linblad

theory of quantum Markovian master equations. In this article, we review the conventional approach of quantum mechanical

theory of NMR relaxation and show that under the usual assumptions, it is equivalent to the Linblad formulation. We also

comment on the debate over semi-classical versus quantum versions of spectral density functions involved in relaxation.5

1 Introduction

Relaxation is the process through which a system loses energy to its environment to eventually reach a state of thermal equi-

librium. Spin-lattice relaxation has been described so as to describe the way spins transfers energy to orientation degrees of

freedom. Since the early days of NMR, it was the subject of numerous studies, both theoretical and encompassing a wide

range of domains of applications. NMR relaxation theory has really been contemporary of the early days of NMR, and it was10

formalized by several of its "founding fathers" (Bloembergen et al. (1948); Bloch (1957, 1956); Abragam (1961); Redfield

(1957, 1965)). This is a rather usual approach in the theory of open systems, which has been widely used in various domains

of Physics (VanKampen (1981)). In this perspective, relaxation is the result of the dynamical coupling of a small ensemble of

spins (the "system") coupled to a large ensemble of particles, or "degrees of freedom" (the "lattice") that is at thermal (Boltz-

mann) equilibrium and is endowed with an infinite heat capacity, thereby constituting a thermal reservoir. This very general15

approach has led to many theoretical predictions with far reaching practical applications in the domain of magnetic resonance

spectroscopy. In particular, the role played by molecular motions has been put in good use to extract dynamical information on

complex molecular objects. Thus, with the development of "spin engineering" techniques, it has become possible to measure

selected relaxation rates with high accuracy in a broad range of problems, with the prospect of relating such observables to

models of molecular dynamics.20

It has been shown recently by Bengs and Levitt (Bengs and Levitt (2020)) that the formulation of relaxation currently used

by NMR spectroscopists may lead to erroneous predictions in the case of a two-spin system prepared in a singlet state. Such

an unexpected behaviour was ascribed to the fact that some of the assumptions of the theory may not be fulfilled in NMR

*This paper is dedicated to Prof. Geoffrey Bodenhausen on the occasion of his 70th birthday.
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systems, and the authors solved the problem by making use of the Lindblad operator, which is commonly used in the theory

of open quantum systems to account for dissipative Markovian phenomena, i.e., relaxation processes. Among other properties,25

the structure of the Lindblad operator ensures that the fundamental properties of the density operator ρ (ρ is hermitian and

definite positive, and Tr(ρ) = 1) are preserved (Lindblad (1976); Alicki and Lendi (2007)). This article has sparked renewed

interest regarding the general theory of relaxation, as first elaborated by Bloch, and its connection with the Linblad theory of

quantum dissipative systems (Barbara (2021)).

The traditional description of NMR relaxation relies on the description of both the spin system and the lattice as quantum30

systems, an approach that leads to the celebrated Redfield equation (Bloch (1956); Redfield (1965); Hubbard (1961)). As far

as the description of the lattice is concerned, this approach is challenging, and actually untractable, as a quantized description

of the degrees of freedom involved in molecular motions (multiple bond rotations, overall tumbling of a molecule,...) is not

manageable in practice, even for small molecular systems. For this reason, an alternative relaxation theory where the spins are

treated as quantum objects and the lattice is described with classical functions of the lattice degrees of freedom was developed.35

This semi-classical approach has far reaching practical consequences, as spin relaxation can then in principle be described using

classical models of dynamics for molecular motions, and has been extensively used over the years to describe and interpret

spin relaxation experiments. However, this "semi-classical" theory predicts a non-Boltzmann equilibrium density operator,

which requires an ad hoc thermal correction to the relaxation equations (Redfield (1965); Abragam (1961)). More elaborate

attempts have been made to overcome this limitation by modifying the relaxation operator itself and to enforce a Boltzman40

equilibrium of the density operator (Jeener (1982); Levitt and Bari (1992)). However, in the traditional "semi-classical" NMR

relaxation approach and its later modifications, the spin-lattice interactions are accounted for by a stochastic, "fluctuating",

hamiltonian, the statistical properties of which are not constrained by a fluctuation-dissipation kind of theorem that would

enforce a Boltzman equilibrium distribution. Finally, another major difference between the quantum and classical theories

of spin relaxation is related to the non commutation of quantum operators, and is therefore of quantum origin. It is worth45

mentioning that both aspects, quantum and statistical, are entangled.

In this paper, we will re-investigate these old questions and show that the traditional approach to relaxation developed in the

early days of NMR actually yields the Lindblad operator as the relaxation operator obtained by Redfield’s theory, as expected.

Besides, relations between quantum and classical correlation functions will be discussed.

2 Theory of spin relaxation in a thermal bath: a short review50

2.1 Derivation of the master equation

The derivation follows the lines of Refs. (Abragam (1961); Bloch (1956); Redfield (1957); Hubbard (1961)). Consider a spin

system in its environment. The hamiltonian of the spin system HS accounts for the interaction of the spins with the magnetic

fields (Zeeman interaction and interaction with a rf field), as well as non dissipative spin-spin interactions (scalar J coupling,

dipolar coupling, ...). The dynamics of the lattice (the bath) is described by HB, and the spin-bath interaction hamiltonian is55
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H1:

HT =HS +HB +H1 (1)

Thus, the dynamics of the {spin-bath} system is described by the Liouville equation:

ρ̇(t) =−i[HS +HB +H1,ρ(t)] (2)

Alternatively, it can be written as:60

ρ̇(t) = LTρ(t) (3)

where the operator LT =−i[HT, ·] is the total Liouvillian. Introducing the interaction representation of the density operator

ρ∗(t) = eL0tρ(t), where L0 = LS +LB is the unperturbed liouvillian, one has:

d

dt
ρ∗(t) =−i[HT(t),ρ∗(t)] = L1(t)ρ∗(t) (4)

The Liouville equation is integrated to second order:65

ρ∗(t) = ρ∗(0) +

t∫

0

dt1L∗1(t1)ρ∗(0) +

t∫

0

dt1

t1∫

0

dt2L∗1(t1)L∗1(t2)ρ∗(0) + . . . (5)

Taking the derivative (and renaming time indices), one gets:

d

dt
ρ∗(t) = L∗1(t)ρ∗(0) +

t∫

0

dt′L∗1(t)L∗1(t′)ρ∗(0) = L∗1(t)ρ∗(0) +

t∫

0

dτL∗1(t)L∗1(t− τ)ρ∗(0) (6)

The dynamics restricted to the spin system is obtained by eliminating the bath variables. This is achieved by performing a

partial trace over the bath degrees of freedom:70

σ(t) = TraceB {ρ(t)}= TraceB

{
e−iHTtρ(0)eiHTt

}
= TraceB

{
eLTtρ(0)

}
(7)

Hence, the spin density operator in the interaction representation:

σ∗(t) = TraceBρ
∗(t) (8)

obeys:

d

dt
σ∗(t) = TraceB {L∗1(t1)ρ∗(0)}+

t∫

0

dt′TraceB {L∗1(t)L∗1(t′)ρ∗(0)} (9)75

Initially, the system and the bath are assumed to be completely decorrelated:

ρ(0) = ρeB ×σ(0) (10)
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where, the exact ρeB denotes the bath density operator in thermal equilibrium. With these assumptions, one has:

d

dt
σ∗(t) = TraceB {L∗1(t1)ρ∗(0)}+

t∫

0

dt′TraceB {L∗1(t)L∗1(t′)ρeB}σ∗(0) (11)

In the latter expression, the term TraceB {L∗1(t1)ρ∗(0)} may be assumed to be zero or can be incorporated in the main system80

liouvillian LS (Abragam (1961); Redfield (1957)). If the spin density operator is assumed to only moderately depart from its

initial state,

σ(t)−σ(0)
σ(0)

� 1 (12)

the zero-order approximation σ(t)≈ σ(0) can be retained, so that σ(0) can be replaced by σ(t) in Eq. 11 (Abragam (1961);

Redfield (1957)):85

d

dt
σ∗(t) =

t∫

0

dt′TraceB {L∗1(t)L∗1(t′)ρeB}σ∗(t) (13)

This evolution equation can be transformed back to the Schrödinger representation. Since:

d

dt
σ∗(t) =

d

dt
e−LStσ(t) =−LSe

−LStσ(t) + e−LSt
d

dt
σ(t) (14)

=

t∫

0

dt′TraceB {L∗1(t)L∗1(t′)ρeB}σ∗(t) (15)

we have:90

d

dt
σ(t) = LSσ(t) + eLSt

t∫

0

dt′TraceB {L∗1(t)L∗1(t′)ρeB}σ∗(t) (16)

Thus, using the property:

etLSTraceB {L∗1(t)L∗1(t′)ρeB} = TraceB

{
eLStL∗1(t)L∗1(t′)ρeB

}
(17)

= TraceB

{
L∗1(t)L∗1(t′)ρeBe

LSt
}

(18)

and using the definition eLStσ∗(t) = σ(t), one obtains the master equation in the Schrödinger representation:95

d

dt
σ(t) = LSσ(t) +

t∫

0

dt′TraceB {L∗1(t)L∗1(t′)ρeB}σ(t) (19)

The term TraceB {L∗1(t)L∗1(t′)ρeB} in equation 19 is a correlation operator acting on the spin system. It projects the system-bath

(spin-lattice) coupling onto the bath degrees of freedom. This spin operator therefore carries the statistical properties of the

bath, described by its equilibrium, stationary, density operator. Finally, assuming that the correlation operator decays to zero in

4
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a time τc much shorter than the period over which the density matrix varies significantly, the upper limit of the integral can be100

extended to +∞ and:

d

dt
σ(t) = LSσ(t) +

+∞∫

0

dτTraceB {L∗1L∗1(t− τ)ρeB}σ(t) (20)

or, in the hamiltonian representation:

d

dt
σ(t) =−i[HS,σ(t)]−

+∞∫

0

dτTraceB {[H1, [H∗1 (t− τ),ρeBσ(t)]]} (21)

One therefore obtains a master equation of the Redfield kind:105

d

dt
σ(t) =−i[HS,σ(t)] +Rσ(t) (22)

whereR •=−
+∞∫

0

dτTraceB {[H1, [H∗1 (t− τ),ρeB •]]} is the Redfield (relaxation) operator.

2.2 Formulation of the master equation in operator form

In spin relaxation theory, it is customary to express the relaxation equation in operator form, which often provides a clearer

representation of the spin-bath coupling dynamics. Here, the coupling Hamiltonian is assumed to have the form of a sum of110

terms, each of which factorizes into a product of lattice Bq and spin Sq operators.

H1 =
∑

q

SqBq, (23)

with the interaction representation:

Bq(t) = eiHBtBqe−iHBt (24)

Sq(t) = eiHStSqe−iHSt (25)115

Using results of the preceding section, the Redfield equation writes:

σ̇∗S (t) =−
∑

q,q′

TrB

+∞∫

0

dt′[Sq(t)Bq(t), [Sq
′
(t′)Bq

′
(t′),ρeBσ

∗
S (t)]] (26)

Each term in the sum writes:

TrB [Sq(t)Bq(t), [Sq
′
(′)Bq

′
(t′),ρeBσ

∗
S (t)]] =

[Sq(t),Sq
′
(t′)σ∗S (t)]〈Bq(t)Bq′(t′)〉e + [σ∗S (t)Sq

′
(t′),Sq(t)]〈Bq′(t′)Bq(t)〉e (27)120

where the notation:

〈Bq(t)Bq′(t′)〉e = TrB

{
Bq(t)Bq

′
(t′)ρeB

}
(28)
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has been introduced. The 〈Bq(t)Bq′(t′)〉e are the bath (lattice) correlation functions, and in contrast to equation 20, these

denote functions rather than operators.

σ̇∗S (t) = −
∑

q,q′

+∞∫

0

dt′[Sq(t),Sq
′
(t′)σ∗S (t)]〈Bq(t)Bq′(t′)〉e125

−
∑

q,q′

+∞∫

0

dt′[σ∗S (t)Sq
′
(t′),Sq(t)]〈Bq′(t′)Bq(t)〉e (29)

Using the conventional decomposition of the spin operators into a sum of eigenoperators of the liouvillian LS = [HS,•]:

[HS,S
q
p ] = ωqpS

q
p (30)

one has:

Sq(t) = eiHStSqe−iHSt =
∑

p

Sqpe
iωqpt (31)130

one obtains from equation 29:

σ̇∗S (t) = −
∑

q,q′,p,p′

e
i(ωqp+ω

q′
p′ )t

+∞∫

0

dτ [Sqp ,S
q′

p′σ
∗
S (t)]〈Bq(t)Bq′(t− τ)〉ee−iω

q′
p′τ

−
∑

q,q′,p,p′

e
i(ωqp+ω

q′
p′ )t

+∞∫

0

dτ [σ∗S (t)Sq
′

p′ ,S
q
p ]〈Bq′(t− τ)Bq(t)〉ee−iω

q′
p′τ (32)

Intoducing the secular approximation ωqp +ωq
′

p′ = 0, so that p= p′, q =−q′, and renaming indices, this reduces to:

σ̇∗S (t) = −
∑

p,q

+∞∫

0

dτ [S−qp ,Sqpσ
∗
S (t)]〈B−q(t)Bq(t− τ)〉ee−iωqpτ135

−
∑

p,q

+∞∫

0

dτ [σ∗S (t)Sqp ,S
−q
p ]〈Bq(t− τ)B−q(t)〉ee−iωqpτ (33)

The assumption that the bath is in a stationary state, [F ,ρeB , ] = 0, confers some properties to the correlation functions. Thus,

the bath correlation functions are also stationary. Indeed, one has:

〈Bq(t)B−q(t+ τ)〉e = TrB{eiHBtBqe−iHBteiHB(t+τ)B−qe−iHB(t+τ)ρeB}

= TrB{eiHB(t−τ)Bqe−iHB(t−τ)eiHBtB−qe−iHBtρeB}140

= 〈Bq(t− τ)B−q(t)〉e (34)

In addition, because Tr(AB)∗ = Tr(B†A†), it is easy to show that:

〈Bq(t− τ)B−q(t)〉e∗ = 〈Bq(t)B−q(t− τ)〉e (35)
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Besides, using the property that B−q =Bq†:

〈B−q(t)Bq(t− τ)〉e =
1
L

∑

f,f ′

〈f |eiHBtB−qe−iHBt|f ′〉〈f ′|eiHB(t−τ)Bqe−iHB(t−τ)e−~HB/kT |f〉145

=
1
L

∑

f,f ′

〈f |B−q|f ′〉eifte−if ′t〈f ′|Bq|f〉eif ′(t−τ)e−if(t−τ)e−~f/kT

=
1
L

∑

f,f ′

〈f |B−q|f ′〉〈f ′|Bq|f〉e−i(f ′−f)τe−~f/kT

=
1
L

∑

f,f ′

|〈f ′|Bq|f〉|2e−i(f ′−f)τe−~f/kT (36)

3 The Redfield equation is equivalent to the Lindblad form of the relaxation equation

It is now straightforward to show that the conventional Bloch-Redfield-Abragam perturbative approach of relaxation is equiv-150

alent to the Lindblad formulation of dissipative systems. Indeed, changing indices in the first term and using the property

ω−qp =−ωqp), and setting τ →−τ one has, from Eq. 33:

σ̇∗S (t) = −
∑

p,q

0∫

−∞

dτ [Sqp ,S
−q
p σ∗S (t)]〈Bq(t)B−q(t+ τ)〉ee−iωqpτ

−
∑

p,q

+∞∫

0

dτ [σ∗S (t)Sqp ,S
−q
p ]〈Bq(t− τ)B−q(t)〉ee−iωqpτ (37)

Using the stationarity property (equation 34) of the bath correlation functions leads to:155

σ̇∗S (t) = −
∑

p,q

0∫

−∞

dτ [Sqp ,S
−q
p σ∗S (t)]〈Bq(t− τ)B−q(t)〉ee−iωqpτ

−
∑

p,q

+∞∫

0

dτ [σ∗S (t)Sqp ,S
−q
p ]〈Bq(t− τ)B−q(t)〉ee−iωqpτ (38)

σ̇∗S (t) ≈ −1
2

∑

p,q

+∞∫

−∞

dτ [Sqp ,S
−q
p σ∗S (t)]〈Bq(t− τ)B−q(t)〉ee−iωqpτ

− 1
2

∑

p,q

+∞∫

−∞

dτ [σ∗S (t)Sqp ,S
−q
p ]〈Bq(t− τ)B−q(t)〉ee−iωqpτ (39)160
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so that:

σ̇∗S (t) ≈ −1
2

∑

p,q

[Sqp ,S
−q
p σ∗S (t)]Jq,−qR (ωqp)−

1
2

∑

p,q

[σ∗S (t)Sqp ,S
−q
p ]Jq,−qR (ωqp)

=
∑

p,q

Jq,−qR (ωqp)
(
S−qp σ∗S (t)Sqp −

1
2
{
SqpS

−q
p ,σ∗S (t)

})
(40)

where the "right" spectral density Jq,−qR (ωqp) of the bath is given by:

Jq,−qR (ωqp) =

+∞∫

−∞

dτ〈BqB−q(τ)〉e−iωqpτ =

+∞∫

−∞

dτCq,−qR (τ)e−iω
q
pτ (41)165

{·, ·} denotes the anti-commutator. The operator appearing in the right handside of Eq. 40 is the Lindblad dissipation superop-

erator as:

ˆL D [A,B] =A •B− 1
2

(BA •+ •BA) , (42)

so that equation 40 writes:

σ̇∗S (t) =
∑

p,q

Jq,−qR (ωqp) ˆL D [S−qp ,Sqp ]σ∗S (t). (43)170

Equation 43 (as well as 40) is a Lindblad equation (Lindblad (1976); Alicki and Lendi (2007)), which is thus derived from the

usual quantized theory of relaxation (Bloch (1957); Redfield (1957); Hubbard (1961); Abragam (1961)).

In principle, one should not expect the perturbative approach to yield an irreversible dissipative operator that is equivalent

to a Lindblad operator. Indeed, this equivalence requires the Markovian and the short correlation time assumptions that make

the evolution equation depend on the density operator at the present time t only, not on its previous history. Moreover, it also175

requires the secular approximation that eliminates the time dependence of the spin operators of the coupling hamiltonian in

Eq. 29, leading to Eq. 33. The combination of these conditions lead to the semi-group property and the Lindblad form of the

relaxation operator.

3.1 An alternative formulation (equivalent to Lindblad)

It is possible to obtain an alternative and completely equivalent form of the Redfield equation. Expanding Eq. 33, one gets:180

σ̇∗S (t) = −
∑

q

∞∫

0

dτS−qp Sqpσ
∗
S (t)〈B−q(τ)Bq〉e−iωqpτ

+
∑

q

∞∫

0

dτS−qp σ∗S (t)Sqp〈BqB−q(τ)〉e−iωqpτ

+
∑

q

∞∫

0

dτSqpσ
∗
S (t)S−qp 〈B−q(τ)Bq〉e−iωqpτ

−
∑

q

∞∫

0

dτσ∗S (t)SqpS
−q
p 〈BqB−q(τ)〉e−iωqpτ (44)
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As above, the "left-sided" spectral density function is defined as:185

J−q,qL (ω) =

∞∫

−∞

dτ〈B−q(τ)Bq〉e−iωτ =

∞∫

−∞

dτC−q,qL (τ)e−iωτ = e−βωJq,−qR (ω) (45)

where β = ~/kT . The latter equations express a Kubo kind of relation (Kubo (1957)): J−q,qL (ω) = e−βωJq,−qR (ω). A proof is

given in the Appendix (see Eqs A1 and A2). After some straightforward manipulations one obtains:

σ̇∗S (t) = −1
2

∑

q

S−qp Sqpσ
∗
S (t)e−βω

q
pJq,−qR (ωqp) +

1
2

∑

q

S−qp σ∗S (t)SqpJ
q,−q
R (ωqp)

+
1
2

∑

q

Sqpσ
∗
S (t)S−qp e−βω

q
pJq,−qR (ωqp)−

1
2

∑

q

σ∗S (t)SqpS
−q
p Jq,−qR (ωqp) (46)190

Thus, collecting and rearranging terms, one gets:

σ̇∗S (t) =
1
2

∑

q

Jq,−qR (ωqp)
(

[S−qp ,σ∗S (t)Sqp ]− [S−qp ,Sqpσ
∗
S (t)]e−βω

q
p

)
(47)

The Boltzmann factor can be expanded in series:

σ̇∗S (t) =−1
2

∑

q

Jq,−qR (ωqp)[S
−q
p , [Sqp ,σ

∗
S (t)]]− 1

2

∑

q

Jq,−qR (ωqp)[S
−q
p ,Sqpσ

∗
S (t)

∞∑

n=1

1
n!

(−βωqp)n] (48)

The first term on the right hand side of this equation is the usual double commutator, while the second term represents the195

thermal effect of the Boltzmann equilibrium of the lattice. This term, equal to 1−exp(−βωqp), vanishes for infinite temperature.

4 A Pseudo-classical version of the Redfield equation

A pseudo-, or semi-classical version of the master equation can be extremely useful, allowing one to make use of models

derived in the framework of classical mechanics to calculate spectral density functions. A general definition of the classical

correlation function of two dynamical variables A and B is (Evans and Moriss (2008)):200

CAB(t) = 〈A(t)B∗〉 (49)

where the brackets indicate classical ensemble average.In the case of stationary processes, the following properties of a corre-

lation functions can be deduced. Its complex conjugate C∗AB(t) is therefore (Evans and Moriss (2008)):

C∗AB(t) = 〈A(t)B∗〉∗ = 〈A∗(t)B〉= 〈A∗B(−t)〉= CBA(−t) (50)

For an autocorrelation function of A, CAA(t), one has:205

CAA(t)∗ = CAA(−t). (51)

Eq. 51 shows that, in the general case where the autocorrelation function is complex: CAA(t) = CrAA(t) + iCiAA(t), with

CrAA(t) =Re(CAA(t)) andCiAA(t) = Im(CAA(t)) are even and odd functions of time, sinceC∗AA(t) = CrAA(t)−iCiAA(t) =

9
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CrAA(−t) + iCiAA(−t). This implies that the associated spectral density, J(ω) =
∫ +∞
−∞ CAA(t)e−iωtdt is real and J(ω) =

JeAA(ω) +JoAA(ω) JeAA(ω) =
∫ +∞
−∞ CrAA(t)e−iωtdt JoAA(ω) = i

∫ +∞
−∞ CiAA(t)e−iωtdt are real, and respectively even and210

odd functions.

A semi-classical relaxation theory should provide spectral density functions obeying the general classical mechanics require-

ments detailed above. It is clear, however, that in the quantum case, where A and B are in general non commuting operators,

the above symmetry relations do no apply. It is nevertheless possible to define a symmetrized correlation function as:

CAB(t) =
1
2
{
〈A†B(t)〉+ 〈B†A(−t)〉

}
(52)215

which is real (when CAB(t) is stationary). Note also that the bath operator correlation functions have the property:

〈BqBq′(τ)〉∗ = Trace{BqeiHBτBq
′
e−iHBτρe}∗ = Trace{ρeeiHBτBq

′†e−iHBτBq†}

= 〈Bq′†(τ)Bq†〉= 〈Bq′†Bq†(−τ)〉 (53)

(correlation functions are assumed stationary), so that:

〈BqB−q(τ)〉∗ = 〈Bq(τ)B−q〉= 〈BqB−q(−τ)〉 (54)220

〈B−qBq(τ)〉∗ = 〈B−q(τ)Bq〉= 〈B−qBq(−τ)〉 (55)

Using the definitions C−q,qL (τ) = 〈B−q(τ)Bq〉 and Cq,−qR (τ) = 〈BqB−q(τ)〉, the relations Eqs. 54 and 55 show that the aver-

age Cq(τ) = 1
2 (C−q,qL (τ) +Cq,−qR (τ)) obey the classical correlation function property Cq∗(τ) = Cq(−τ).

A semi-classical version of the Redfield equation is thus obtained by using the spectral density function Jq(ω) obtained

from the Fourier transform of the symmetrized correlation function Cq(τ):225

Jq(ω) =
1
2

(Jq,−qR (ω) +J−q,qL (ω)) =
1
2

(Jq,−qR (ω) + e−βωJq,−qR (ω)) =
1 + e−βω

2
Jq,−qR (ω) (56)

Using Eqs. 56 and 46, it is therefore possible to derive an alternative expression of the master equation. This gives:

σ̇∗S (t) = −
∑

q

S−qp Sqpσ
∗
S (t)

e−βω
q
p

1 + e−βω
q
p
Jq(ωqp) +

∑

q

S−qp σ∗S (t)Sqp
1

1 + e−βω
q
p
Jq(ωqp)

+
∑

q

Sqσ∗S (t)S−qp
e−βω

q
p

1 + e−βω
q
p
Jq(ωqp)−

∑

q

σ∗S (t)SqpS
−q
p

1
1 + e−βω

q
p
Jq(ωqp) (57)

or:230

σ̇∗S (t) = −
∑

q

S−qp Sqpσ
∗
S (t)

1
1 + eβω

q
p
Jq(ωqp) +

∑

q

S−qp σ∗S (t)Sqp
1

1 + e−βω
q
p
Jq(ωqp)

+
∑

q

Sqpσ
∗
S (t)S−qp

1
1 + eβω

q
p
Jq(ωqp)−

∑

q

σ∗S (t)SqpS
−q
p

1
1 + e−βω

q
p
Jq(ωqp) (58)

Finally, collecting and rearranging terms, one gets:

σ̇∗S (t) =
1
2

∑

q

Jq(ωqp)
(

[S−qp ,σ∗S (t)Sqp ]
1

1 + e−βω
q
p
− [S−qp ,Sqpσ

∗
S (t)]

1
1 + eβω

q
p

)
(59)
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The final relaxation superoperator, which defines the relaxation of density matrix as σ̇∗S (t) = Γ̂σ∗(t), may be written as:235

Γ̂ =−1
4

∑

q,p

Jq(ωpq )D̂β(ωqp)[S
−q
p ,Sqp ] (60)

Here D̂β is the thermalized double commutator superoprator, that composes the superoperator from the the two operators

A,B in the way:

D̂β(ω) [A,B] = [A,fβ(ω)B •−•Bfβ(−ω)] , (61)

where fβ(ω) = 2
1+eβω

, and the dot is the place for operator on which superoperator is applied. It is easy to see that when240

T →∞, then fβ(ω)→ 1 and the D̂β(ω) becomes a double commutator superoperator, and the equation 60 becomes a standard

sum of double commutator superoperators. This equation is completely equivalent to Eqs 43 and 48. Nevertheless, the form

Lindblad dissipator is still easily recognizable, as one may substitute 56 to 43 and get:

σ̇∗S (t) =
∑

p,q

fβ(ωqp)J
q,−q(ωqp) ˆL D [S−qp ,Sqp ]σ∗S (t).

Equation 59 partially decouples the statistical and the dynamical properties of the heat reservoir. Statistical properties, unre-245

lated to the dynamics, which are functions of the temperature, are contained in the temperature factors, whereas the information

about quantum-mechanical bath dynamics is contained in the Fourier transform of the symmetrized (here 1
2 (Jq,−qR + J−q,qL ))

correlation functions. However, the latter still implicitly depend on the temperature through the trace over the bath degrees of

freedom.

The case of real correlation functions250

The above form of the relaxation master equation (Eqs. 59-60) is suitable for semi-classical approximations of relaxation where

classical correlation functions can be used instead of quantum ones that are in general impossible to calculate or compute. It

is often the case that the classical correlation functions, calculated from classical models of dynamics, such as diffusion,

jumps, ... are real functions of time. The condition of Eq. 51 then implies that the spectral density function Jq(ω) is even:

Jq(−ω) = Jq(ω).255

5 Simplifications in the high temperature approximation

When the largest eigenvalue of the operators Sqp is such that max(βωqp)� 1, Eq. 59 takes the simpler form:

σ̇∗S (t) =
1
4

∑

q

−Jq(ωqp)[S−qp , [Sqp ,σ(t)]] +
βωqp

2
Jq(ωqp)[S

−q
p ,{Sqp ,σ(t)}] (62)

where {., .} denotes the anticommutator.
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The "low order" approximation260

The assumption that the density operator is always close to the fully disordered state: ||σ− 1
A || � 1, where A is the dimension

of the density operator, was made by Redfield (Redfield (1957)). Limiting the expansion to zeroth order, Eq. 62 becomes

(Hubbard (1961)):

σ̇∗S (t) =
1
4

∑

q

−Jq(ωqp)[S−qp , [Sqp ,σ(t)]] +
βωqp
A

Jq(ωqp)[S
−q
p ,Sqp ] (63)

Moreover, using the property, Eq. 30, and the Taylor expansion of the exponential, it is straighforward to show that:265

e−βHSSqpe
βHS = e−βω

q
pSqp (64)

Therefore, when the density operator is in thermal equilibrium determined by the hamiltonianHS, σeq = Trace(exp−βHS )−1 exp−βHS ,

one can show that Rσeq = 0, where R is defined by Eq. 59. Then, discarding terms that are second order or higher in

max(βωqp)� 1, in Eq. 62, one gets the semi-classical formulation of the Redfield equation (Abragam (1961)):

d

dt
(σ∗S (t)−σeq) =−1

2

∑

q,p

Jq(ωqp)[S
−q
p , [Sqp ,σ(t)−σeq]] (65)270

The evolution of the expected value of an operator is given by the alternative master equation:

d

dt
〈O〉=

1
4

∑

q

−Jq(ωqp)〈[Sqp , [S−qp ,O]]〉+βωqp
∑

q

Jq(ωqp)〈{Sqp , [O,S−qp ]}〉 (66)

In this expression, the second term on the right hand side contains the "thermal" contributions to relaxation, and can be

selectively neglected for terms that are higher than first order in
~ωqp
kT . That is, each term in the development such that:

Trace
(
{Sqp , [O,S−qp ]}σ(t)

)
�min(Trace

(
[Sqp , [S

−q
p ,O]]σ(t)

)
) (67)275

at all times can be discarded. Eq. 67 is in principle a less stringent condition and may provide criteria for the quasi-, pseudo-

classical approximation - a test that can be verified a posteriori. It may thus provide a way to select which parts of the density

operator can be discarded (neglected) and which must be retained in order to get an approximate analytical solution.

The simple case of a two-spin system

"Double commutator" versus "thermal" contributions280

The differences of contributions between the first ("double commutator") and the second ("thermal") series of terms in equation

66 are illustrated in Figures 1 and 2 in the case of a pair of like spins 1
2 subject to relaxation caused by a mutual dipolar

(dipole-dipole - DD) interaction and the presence of a randomly fluctuating field (ran). Simulations were performed assuming

Lorentzian spectral density functions:

JclDD,ran(ω) =
2τC,ran

1 +ω2τ2
C,ran

(68)285
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with correlation times τran = 60 ps and τC = 8 ps, for the random field and dipolar interactions, respectively. The dipolar

coupling constant b12 =−(µ0/4π)γ2
I~r
−3
12 refers to the dipole-dipole coupling constant, γI the gyromagnetic ratio and r12 the

internuclear distance. In these simulations, b12 = 35 · 103 Hz. These values were chosen to give T1 ≈ 2 s and TS ≈ 20 s.

Contributions from both relaxation mechanisms to the expected values in Eq. 66 were computed, for the spins prepared

either in a singlet state, or inverted from thermal equilibrium. The individual terms entering the first and second sums in the290

rhs of Equation 66 are depicted for the case of the magnetization O = Iz +Sz (Fig. 1) and singlet state O = 1
41− I ·S (Fig.

2) operators. The time evolutions of all the contributions to the rate of change of the expected value of the operator O(t) are

depicted. When the spins are initially prepared in the state −(Iz +Sz), the thermal contribution (blue curve) to the rate of

change of the magnetization has no effect and the only contribution to d〈O〉(t)
dt comes from the double commutator (red curve).

This is the case for both relaxation, dipolar and random field fluctuations, mechanisms (Figs 1(a) and (b)). Moreover, the values295

chosen for the simulation imply that the dipolar contribution (of the double commutator in this case) to the total relaxation rate

< Ȯ > (t) is much larger than than the one of the random field.

The situation is strikingly different when the spins are initially prepared in a singlet order. Here, the thermal correction (blue)

is negligible with respect to the double commutator (red) contribution to the rate of change< Ȯ > (t) only for the dipole-dipole

mechanism (Fig. 1(c)). In contrast, for terms originating from random field relaxation, both thermal and dipolar terms are of300

comparable orders of magnitude (Fig. 1(c)). These are the terms that cannot be neglected in an approximate solution of Eq. 66.

Fig. 1(c) also shows that the dipolar contribution to < Ȯ > (t) increases with time, which is consistent with the progressive

depletion of the singlet order (immune to dipolar relaxation). And for random relaxation, which mainly affects the singlet order

in this example, Fig. 1(d) illustrates the fact that the weight of the thermal contribution decays with time, with the concomitant

increase of the double commutator term, which is also due to the progressive depletion of the singlet order.305

The situation depicted in Fig. 2 is different, and shows the the rate of change of the expected value <O > (t) where O =
1
4 (I ·S), for the same initial state conditions as above. In this case, the dipole-dipole simply does not contribute to< Ȯ > (t), as

expected from symmetry considerations. This is of course the case whatever the initial state (inverted magnetization (Fig.2(a))

or singlet order (Fig.2 (c)). This illustrates the known fact that singlet state is immune to dipolar relaxation for symmetry

reasons.310

Alternatively, when the spins are prepared in the −(Iz +Sz) state, both thermal and double commutators contribute, albeit

to a negligible amount, showing that the spins evolve mostly towards magnetization (compare the scales with Fig. 1(b)), and

that only a negligible part is transferred to singlet order.

Interestingly, Fig. 2(d) shows that there is no thermal contribution (blue) to the rate < Ȯ > (t), and that, starting from a

singlet order, its evolution can be predicted by discarding the thermal thermal terms of Eq. 66, and therefore retaining the315

simple, double commutator, expression for the relaxation master equation.

Singlet-triplet conversion

The recent achievement of the Lindblad approach was the description of the magnetization relaxation of a two-spin system

prepared in a singlet state (Bengs and Levitt (2020)). In that paper, detailed balance was enforced through the Schofield
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Figure 1. Expected values of magnetization spin operatorO = Iz+Sz: contributions of the "double commutator" (red curves) and "thermal"

(blue curves) parts of the Redfield relaxation operator to the magnetization from the different operators Sqp (see Table B1). (a) and (b)

correspond respectively to the dipolar and random field relaxation of spins inverted from a Boltzmann equilibrium; (c) and (d) correspond

respectively to the dipolar and random field relaxation of spins initially prepared in a singlet state.

procedure (Schofield (1960)), whereby spectral density functions are built from classical ones through the transformation:320

J(ω)L,R→ Jcl(ω)e−
βω
2 , (69)

where Jcl(ω) refers to the classical spectral density function. Eq. 69 is one among several that have been proposed to make

classical spectral density functions asymmetric so as to obey the detailed balance condition (White et al. (1988); Egorov and

Skinner (1998); Egorov et al. (1999); Ramirez and López-Ciudad (2004); Frommhold (1993)). In Ref. (Bengs and Levitt

(2020)), J(ω) was assumed to be any kind of spectral density function obtained through classical models, such as diffusion325

jumps, etc. The distinction between left and right spectral densities that appears in the course of the conventional perturbative

derivation of the master equation, was not made there. Moreover, the detailed balance condition appears as an additional

requirement, as this condition is not implied by Linblad’s approach that merely provides the general mathematical structure
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Figure 2. Same as Fig. 1 for expected value of the singlet operator O = 1
4
1− I ·S.

of the evolution equation obeyed by the density operator that complies with the requirements of quantum mechanics, in the

presence of a Markovian dissipative process (Lindblad (1976); Alicki and Lendi (2007)).330

In the following, we derive the evolution of the magnetization of a two-spin system using the singlet-triplet population basis

and compare results obtained by both approaches. As above (and in Ref. (Bengs and Levitt (2020)) the relaxation superoperator

Γ̂ is the sum of contributions from mutual dipole-dipole relaxation (Γ̂DD) and the interaction with a partially correlated random

field (Γ̂ran):

Γ̂ = Γ̂DD + Γ̂ran, (70)335
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The irreducible tensor operator Tλµ representation is better suited to derive analytical solutions for the problem at hand, where

Γ̂ is expressed, according to Eq. 61, as:

Γ̂DD =
6
5
b212

µ=2∑

µ=−2

JclDD(µω0)D̂β(µω0)[T (12)†
2µ ,T

(12)
2µ ],

Γ̂ran =
2∑

i,j=1

κijω
(i)
rmsω

(j)
rms

µ=1∑

µ=−1

Jclran(µω0)D̂β(µω0)[T (i)†
1µ ,T

(j)
1µ ].

(71)

The Tλµ are eigenoperators of the main Zeeman Hamiltonian and their expressions are shown in Appendix B. ω(i)
rms is the root

mean square fluctuation of the random field acting on spin Ii, and in the isotropic case considered here, is identical for both340

nuclei, so that ω(1)
rms = ω

(2)
rms. The coefficient −1≤ κ12 ≤ 1 describes the degree of correlation of random field fluctuations on

the 1 and 2 nuclei. By definition, κ11 = κ22 = 1. In order to simplify the notations, we will henceforth drop the subscript

(κ12→ κ).

In the extreme narrowing regime where ωτC,ran� 1, the spectral densities become frequency independent and J(ω)≈ 2τ .

The dipole-dipole and random field contributions to the longitudinal relaxation rate constant R1 =RDD
1 +Rran

1 are given by,345

according to Eq. 61:

RDD
1 = − (Iz|Γ̂DD|Iz)

(Iz|Iz)
=

3
20
b212τC (4fβ(2ω0) + 4fβ(−2ω0) + fβ(ω0) + fβ(−ω0)) =

3
2
b212τC,

Rran
1 = − (Iz|Γ̂ran|Iz)

(Iz|Iz)
= ω2

rmsτran (fβ(ω0) + fβ(−ω0)) = 2ω2
rmsτran (72)

where fβ(ω) = 2
1+eβω

.It is interesting to note that in this model the relaxation rates do not depend on the temperature, in

contrast to Ref. (Bengs and Levitt (2020)). This is not due to any approximation, rather, it arises from the fact that fβ(ω) +350

fβ(−ω) = 2, which is explicit in equation 72. Similarly, the singlet order relaxation rate is given by:

RS =Rran
S =− (I1I2|Γ̂ran|I1I2)

(I1I2|I1I2)
= 4ω2

rmsτran(1−κ) (73)

, which does not depend on the temperature. For sake of comparison with the results of (Bengs and Levitt (2020)), we use the

singlet-triplet population basis, where the singlet and triplet states are defined as:

|S0〉 = (|α1β2〉− |β1α2〉)/
√

2, (74)355

|T+1〉 = |α1α2〉 ,

|T0〉 = (|α1β2〉+ |β1α2〉)/
√

2,

|T−1〉 = |β1β2〉 ,
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where |α〉 and |β〉 denote the Zeeman spin states of an isolated spin-1/2 nucleus with z-projection of +1/2 and –1/2. In this

representation, the population block of relaxation superoperator 71 is given by:360

[Γ̂]4×4 =



|S0〉〈S0| |T+1〉〈T+1| |T0〉〈T0| |T+1〉〈T+1|
−Σ1

1
2 (1−κ)Rran1 fβ(−ω0) 1

2 (1−κ)Rran1
1
2 (1−κ)Rran1 fβ(ω0)

1
2 (1−κ)Rran1 fβ(ω0) −Σ2

1
5
RDD1 fβ(ω0)+

1
2
Rran1 (1 +κ)fβ(ω0)

2
5R

DD
1 fβ(2ω0)

1
2 (1−κ)Rran1

1
5
RDD1 fβ(−ω0)+

1
2
Rran1 (1 +κ)fβ(−ω0)

−Σ3

1
5
RDD1 fβ(ω0)+

1
2
Rran1 (1 +κ)fβ(ω0)

1
2 (1−κ)Rran1 fβ(−ω0) 2

5R
DD
1 fβ(−2ω0)

1
5
RDD1 fβ(−ω0)+

1
2
Rran1 (1 +κ)fβ(−ω0)

−Σ4




(75)

where Σi denotes the sum of the terms alongside respective column. This matrix is very similar to one introduced in (Bengs

and Levitt (2020)), but with the substitution of term θ(ω) = exp(−βω/2) by fβ(ω).

In the high-temperature limit, both terms become approximately equal, θ(ω)≈ fβ(ω)≈ 1− βω
2 and the difference between

θ(ω) and fβ(ω) becomes significant only in case of extremely low temperatures or very high frequencies. As could be expected365

in this limit, the time evolution of the z magnetization is given by the same biexponential behavior as in Ref. (Bengs and Levitt

(2020)):

〈Iz(t)〉/〈Ieqz 〉 ≈ 1 +A1e
−R1t +ASe

−RSt (76)

with the same coefficients A1 =
RS

2(R1−Rs)
and AS =

−2R1 +RS
2(R1−Rs)

. The fact that A1 and AS are the ones found in (Bengs

and Levitt (2020)) is expected, because in this limit R1 and RS do not depend on the temperature factor. In the usual conditions370

of high but not infinite temperature, it is found that the next nonzero terms in the expansions of A1(β) and AS(β) are of degree

β2, and therefore do not contribute in the regime where ωβ� 1. These expressions can be found in Appendix C.

The foregoing discussion has shown that in the high temperature approximation, the exact "thermalization" procedure of the

spectral density function is irrelevant, as all models are equivalent in these conditions. Indeed, in a field of 23.5 T (1000 MHz

resonance proton frequency) the temperature at which ~ωH ≈ kT , where both approaches may lead to significant differences,375

is T ≈ 50 mK. These are unrealistic experimental conditions. Alternatively, the master equation of Eqs. (59-61) may well be of

use in the context of DNP to describe the electron spin-lattice relaxation outside of the high-temperature limit, through direct

spin-phonon coupling at temperatures below 4 K and at high fields, where this process is predominant.

6 Conclusion: a remark on the "semiclassical" theory

In the semiclassical viewpoint (as in Ref. (Abragam (1961)), for instance), the effect of the bath is taken into account through380

a stochastic spin hamiltonian, the spatial part of which is a function of the lattice variables and is a random function of
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time. It is usually understood that this approach does not comply with the Boltzmann equilibrium of the bath. Besides, the

stationary state reached by the spin density operator is left undetermined by the master equation so that it must be enforced

by the supplementary ad hoc assumption that the spins return to the Boltzmann distribution of the spin populations. A recent

analysis by Bengs and Levitt (Bengs and Levitt (2020)) showed that the usual semi-classical master equation was not able to385

predict the correct magnetization evolution of a two-spin system prepared in a singlet state. The authors’ interpretation was that

“thermalization” was not properly taken into account by the inhomogeneous semiclassical version of the Redfield equation,

which was ascribed to the fact that the classical approach does not comply with the detailed balance condition. In fact, detailed

balance is statistical by nature, and per se, compatible with a semiclassical approach.

In the semi-classical theory of NMR relaxation, it is assumed without justification that the correlation function is an even390

function of the time (Abragam (1961); Redfield (1957)), which indeed implies that detailed balance is not obeyed, as in this

case the spectral density function J(ω) is an even function of frequency. If, on the other hand, detailed balance is taken into

account, so that J(−ω) = e−~ω/kTJ(ω) and the general relations Eq. 49 or 51 obeyed by correlation functions are retained, it

is easy to show from the symmetry properties of the spectral density function that the semiclassical Redfield equation (Abragam

(1961)):395

σ̇∗S (t) =−1
2

∑

q,p

J(ωqp)[S
−q
p , [Sqp ,σ(t)]] (77)

is obeyed, with this definition of J(ω). However, the expected equilibrium density operator is not a stationary state of Eq. 77 in

this case, which illustrates the (also known) fact that this condition alone is insufficient to completely determine the transition

probabilities of the bath in the absence of a dynamical model for the latter. On the other hand, it is possible to describe the

dynamics of a classical system where microscopic irreversibility, i.e., detailed balance, is ensured. This is straightforward from400

the definition of the correlation function of a phase variable in classical mechanics, 〈A(t)B∗〉=
∫
dqdpρeBeiLtA, where L

is the classical Liouvillian acting on the phase space (Evans and Moriss (2008)). In addition, general procedures have been

used that provide Fokker-Planck or master equations for diffusion that obey the detailed balance condition, yielding classical

spectral density functions that comply with the Boltzmann equilibrium distribution and the classical laws of motion of the bath

(see for instance (VanKampen (1981); Risken (1972); Wassam et al. (1980))), in particular in the context of magnetic resonance405

(Stillman and Freed (1980)). Note that in the fully quantum approach, detailed balance is ensured by assuming that the bath

is in a stationary state defined by a Boltzmann distribution of its energy states. Thus, the “irreducible” difference between the

semi-classical and the fully quantized theory lies in the fact that the bath operators do not mutually commute, which prevents

the expression in Eq. 27 to reduce to the double commutator. Both thermodynamic and quantum mechanical effects are thus

entangled in the fully quantum mechanical treatment of relaxation.410
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Appendix A: Evaluation of the terms of eq. 44

The correlation functions involved in Equation 44:415

1

2
J R(ωqp) =

∞∫
0

dτ〈BqB−q(τ)〉e−iωqτ

=

∞∫
0

dτ
1

L

∑
f,f ′
〈f |Bq|f ′〉〈f ′|B−q|f〉ei(f ′−f)τe−~f/kT e−iω

qτ =

∞∫
0

dτ
1

L

∑
f,f ′
|〈f |Bq|f ′〉|2ei(f ′−f)τe−~f/kT e−iω

qτ

≈ 1

2

1

L

∑
f,f ′
|〈f |Bq|f ′〉|2e−~f/kT

∞∫
−∞

ei(f
′−f−ωq)τdτ =

1

2

1

L

∑
f,f ′
|〈f |Bq|f ′〉|2e−~f/kT δ(f ′− f −ωq)

=
1

2

1

L

∑
f

|〈f |Bq|f +ωq〉|2e−~f/kT =
1

2
J R(ωqp) (A1)

since B−q =Bq†. Similarly, one has:420

1

2
J L(ωqp) =

∞∫
0

dτ〈B−q(τ)Bq〉e−iωqτ =
1

L

∑
f,f ′
〈f |B−q|f ′〉〈f ′|Bq|f〉e−~f/kT

∞∫
0

dτei(f−f
′)τe−iω

qτ

=
1

2

1

L

∑
f,f ′
|〈f |B−q|f ′〉|2e−~f/kT

∞∫
−∞

ei(f−f
′−ωq)τ =

1

2

1

L

∑
f,f ′
|〈f |B−q|f ′〉|2e−~f/kT δ(f − f ′−ωq)

Noting that |〈f |B−q|f ′〉|= |B−qff ′ |= |B
q†
ff ′ |= |B

q∗
f ′f |= |B

q
f ′f |, and exchanging indices f ↔ f ′, one gets, from Eq. A2:

1

L

∑
f,f ′
|〈f |B−q|f ′〉|2e−~f/kT δ(f − f ′−ωq) =

1

L

∑
f,f ′
|〈f ′|Bq|f〉|2e−~f/kT δ(f − f ′−ωq)

=
1

L

∑
f,f ′
|〈f |Bq|f ′〉|2e−~f ′/kT δ(f ′− f −ωq) =

1

L

∑
f

|〈f |Bq|f +ωq〉|2e−~(f+ωq)/kT425

= e−~ωq/kT 1

L

∑
f

|〈f |Bq|f +ωq〉|2e−~f/kT = e−~ωq/kTJ R(ωq)

Appendix B: Eigenoperators for a homonuclear coupled spin 1/2 pair

The case of homonuclear spin pair the main hamiltonian is defined as:

HZ = ω0 (I1z + I2z) , (B1)

where ω0 =−γB, and γ is the magnetogyric ratio andB is the field strength. The eigenoperators for this hamiltonain are summarized in the430

table B1. The eigenoperators are denoted by T (ij)
λµ . The superscript (ij) indicates angular momentum coupling of spins Ii and Ij resulting

in a spherical tensor operator of total angular momentum λ and z−angular momentum µ

Appendix C: Expansion coefficient for the magnetization evolution solution

The coefficient from the equation 76 are in fact temperature dependent:

A1(β) =A1 +C1β
2 +O(β4)

AS(β) =AS +CSβ
2 +O(β4)

(C1)435
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Table B1. Eigenoperators of hamiltonian for a homonuclear coupled spin-1/2 pair

µ\λ 2 1

± 2 1
2
I±1 I

±
2 –

± 1 ∓
(
I±1 I

z
2 + I1zI

±
2

)
∓ 1√

2
I±j

0 − 1

2
√

6

(
I+
1 I
−
2 + I−1 I

+
2 − 4I1zI2z

)
Ijz

where the coefficients A1 and AS was shown before in the main text, and the coefficients C1 and CS is defined as:

C1=ω2
0
RS(600R3

1−20R2
1(4416Rdd1 +35RS)−5Rs(17280(Rdd1 )2+2958Rdd1 Rs+5R2

S)+2R1(43488(Rdd1 )2+51120Rdd1 RS+125R2
S)

5760R1(150R1−149Rdd1 −25RS)(R1−RS)2

CS=−C1

(C2)
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