

1 **Localising individual atoms of tryptophan side chains in the metallo- β -lactamase IMP-1**
2 **by pseudocontact shifts from paramagnetic lanthanoid tags at multiple sites**

3 Henry W. Orton,^{a,*} Iresha D. Herath,^{b,*} Ansis Maleckis,^c Shereen Jabar,^b Monika Szabo,^d Bim
4 Graham,^d Colum Breen,^e Lydia Topping,^e Stephen J. Butler,^e Gottfried Otting^a

5
6 ^a ARC Centre of Excellence for Innovations in Peptide & Protein Science, Research School of
7 Chemistry, Australian National University, Canberra, ACT 2601, Australia

8 ^b Research School of Chemistry, The Australian National University, Sullivans Creek Road,
9 Canberra ACT 2601, Australia

10 ^c Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia

11 ^d Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052,
12 Australia

13 ^e Department of Chemistry, Loughborough University, Epinal Way, Loughborough, LE11
14 3TU, United Kingdom

18
19 Correspondence: Gottfried Otting (gottfried.ötting@anu.edu.au)

20 * These authors contributed equally to this work.

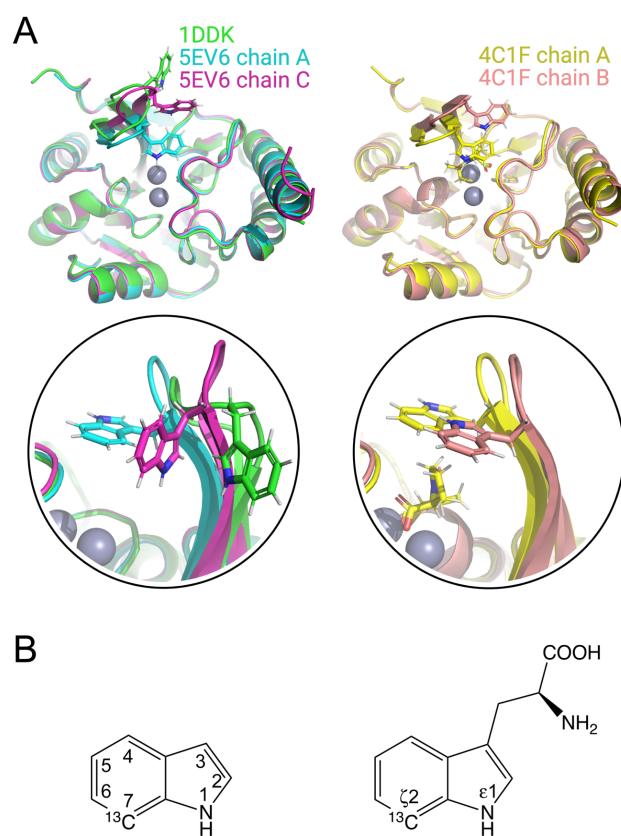
21
22 **Abstract**

23 The metallo- β -lactamase IMP-1 features a flexible loop near the active site that assumes
24 different conformations in single crystal structures, which may assist in substrate binding and
25 enzymatic activity. To probe the position of this loop, we labelled the tryptophan residues of
26 IMP-1 with $7\text{-}^{13}\text{C}$ -indole and the protein with lanthanoid tags at three different sites. The
27 magnetic susceptibility anisotropy ($\Delta\chi$) tensors were determined by measuring pseudocontact
28 shifts (PCS) of backbone amide protons. The $\Delta\chi$ tensors were subsequently used to identify
29 the atomic coordinates of the tryptophan side chains in the protein. The PCSs were sufficient
30 to determine the location of Trp28, which is located in the active site loop targeted by our
31 experiments, with high accuracy. Its average atomic coordinates showed barely significant
32 changes in response to the inhibitor captopril. It was found that localisation spaces could be
33 defined with better accuracy by including only the PCSs of a single paramagnetic lanthanoid
34 ion for each tag and tagging site. The effect was attributed to the shallow angle with which

35 PCS isosurfaces tend to intersect if generated by tags and tagging sites that are identical except
36 for the paramagnetic lanthanoid ion.

37

38 **1 Introduction**


39 The metallo- β -lactamase IMP-1 is an enzyme that hydrolyses β -lactams, thus conferring
40 penicillin resistance to bacteria. First identified 30 years ago in the Gram-negative bacteria in
41 early 1990s from *Pseudomonas aeruginosa* and *Serratia marcescens* (Bush 2013), IMP-1 has
42 become a serious clinical problem due to horizontal gene transfer by a highly mobile gene
43 (bla_{IMP-1}) located on an integron (Arakawa et al., 1995), as the bla_{IMP-1} gene has been detected
44 in isolates of *Klebsiella pneumoniae*, *Pseudomonas putida*, *Alcaligenes xylosoxidans*,
45 *Acinetobacter junii*, *Providencia rettgeri*, *Acinetobacter baumannii* and *Enterobacter*
46 *aerogenes* (Ito et al., 1995; Laraki et al., 1999a; Watanabe et al., 1991). Critically, IMP-1
47 confers resistance also to recent generations of carbapenems and extended-spectrum
48 cephalosporins (Laraki et al., 199b; Bush et al., 2010; van Duin et al., 2013).

49 Multiple crystal structures have been solved of IMP-1, free and in complex with various
50 inhibitors (Concha et al., 2000; Toney et al., 2001; Moali et al., 2003; Hiraiwa et al., 2014;
51 Brem et al., 2016; Hinchliffe et al., 2016; 2018; Wachino et al., 2019; Rossi et al., 2021). IMP-
52 1 belongs to the subclass B1 of metallo- β -lactamases, which contain two zinc ions bridged by
53 the sulfur atom of a cysteine residue in the active site (Concha, 2000). One of Zn^{2+} ions can
54 readily be replaced by a Fe^{3+} ion (Carruthers et al., 2014). The active site is flanked by a loop
55 (referred to as L3 loop) that contains a highly solvent-exposed tryptophan residue surrounded
56 by glycine residues on either side. Both the loop and the tryptophan residue (Trp28 in the IMP-
57 1-specific numbering used by Concha et al. (2000) and Trp64 in the universal numbering
58 scheme by Galleni et al. (2001)) assume different conformations in different crystal structures,
59 suggesting that the loop acts as a mobile flap to cover bound substrate (Fig. 1A). The L3 loop
60 and the functional implication of its flexibility has been studied extensively for different
61 metallo- β -lactamases containing the Gly-Trp-Gly motif in the loop (Huntley et al., 2000; 2003;
62 Moali et al., 2003; Yamaguchi et al., 2015; Palacios et al., 2019; Gianquinto et al., 2020; Softley
63 et al., 2020). Flexibility of the L3 loop is a general feature also of many metallo- β -lactamases
64 without the Gly-Trp-Gly motif and is thought to contribute to the wide range of β -lactam
65 substrates that can be hydrolyzed by the enzymes (González et al., 2016; Linciano et al., 2019;
66 Salimraj et al., 2018). In the case of the metallo- β -lactamase from *B. fragilis*, which is closely
67 related to IMP-1, electron density could be detected for the Gly-Trp-Gly motif in the crystal

68 structure of the protein in the presence (Payne et al., 2003) but not absence of an inhibitor
69 (Concha et al., 1996), and an NMR relaxation study in solution confirmed the increased
70 flexibility of both the L3 loop and, in particular, the sidechain of the tryptophan residue
71 (Huntley et al., 2000). A similar situation prevails in the case of the IMP-1 variant IMP-13,
72 where different crystal structures of the ligand-free protein show the L3 loop in very different
73 conformations, sometimes lacking electron density, while NMR relaxation measurements
74 confirmed the increased flexibility of the loop (Softley et al., 2020).

75 Due to the rigidity of their sidechains, tryptophan residues frequently contribute to the
76 structural stability of three-dimensional protein folds and it is unusual to observe tryptophan
77 sidechains fully solvent-exposed as in the Gly-Trp-Gly motif of substrate-free IMP-1. The
78 functional role of Trp28 in IMP-1 was assessed in an early mutation study by mutating Trp28
79 to alanine and, in a different experiment, eliminating the L3 loop altogether. Enzymatic activity
80 measurements revealed an increase in the Michaelis constant K_m and a decrease in k_{cat}/K_m ratios
81 for all β -lactams tested, illustrating the importance of the Trp28 sidechain for catalytic activity.
82 Complete removal of the L3 loop reduced the k_{cat}/K_m ratios even further, but without
83 completely abolishing the enzymatic activity (Moali et al., 2003).

84
85

86

87 **Figure 1.** Crystal structures of IMP-1 with different conformations of the loop L3 and chemical
88 structures of indole and tryptophan with atom names. (A) Superimposition of crystal structures
89 of IMP-1 highlighting structural variations of Trp28 and the associated loop L3. The structures
90 shown are of the Zn²⁺/Zn²⁺ complex without inhibitor (green, PDB ID 1DDK, Concha et al.,
91 2000; cyan for chain A and magenta for chain C, PDB ID 5EV6, Hinchliffe et al., 2016), with
92 bound L-captopril (yellow for chain A and salmon for chain B, PDB ID 4C1F, Brem et al.,
93 2016). Zn²⁺ ions are represented by grey spheres and bound captopril is shown in the structure
94 4C1F chain A. (B) Chemical structures of indole and tryptophan with selected ring positions
95 labelled according to IUPAC conventions. The present work used indole synthesised with a
96 ¹³C-¹H group in position 7 and deuterium in the ring positions 2, 3, 4, 5 and 6 (Maleckis et al.,
97 2021).

98

99 In the crystalline state, the conformation of a solvent-exposed loop is easily impacted
100 by crystal packing forces. Therefore, it is unclear what the actual conformation of the L3 loop
101 is in solution. To address this question, we used solution NMR spectroscopy to assess the
102 location of Trp28 in IMP-1 both in the absence and presence of the inhibitor L-captopril, which
103 inhibits metallo-β-lactamases by binding to the active-site zinc ions (Brem et al., 2016). The
104 analysis was hindered by incomplete backbone resonance assignments of IMP-1 attributed to
105 conformational exchange processes in parts of the protein (Carruthers et al., 2014). As it is
106 difficult to accurately position the atoms of a solvent-exposed polypeptide loop in solution by
107 nuclear Overhauser effects (NOE), we used pseudocontact shifts (PCS) generated by
108 lanthanoid ions attached at different sites of IMP-1 to determine the location of Trp28 relative
109 to the core of the protein. PCSs generated by multiple different paramagnetic metal ions or the
110 same metal ion attached at different sites of a protein have previously been shown to allow
111 localising atoms at remote sites of interest, such as in specific amino acid side chains (Pearce
112 et al., 2017; Lescanne et al., 2018), bound ligand molecules (Guan et al., 2013; Chen et al.,
113 2016) or proteins (Pintacuda et al., 2006; Keizers et al., 2010; de la Cruz et al., 2011;
114 Kobashigawa et al., 2012; Brewer et al., 2015) or for 3D structure determinations of proteins
115 (Yagi et al., 2013; Crick et al., 2015; Pilla et al., 2017).

116 IMP-1 contains six tryptophan residues, each containing several aromatic hydrogens
117 with similar chemical shifts. To increase the spectral resolution in the 2D NMR spectra
118 recorded for PCS measurements, we labelled each tryptophan sidechain with a single ¹³C atom
119 by expressing the protein in the presence of 7-¹³C-indole (Fig. 1B; Maleckis et al., 2021). The

120 results show that the localisation spaces defined by the tryptophan PCSs fully agree with
121 previously determined crystal structures of IMP-1 for all tryptophan residues. They suggest
122 little change in the average conformation of the L3 loop upon binding of captopril. The results
123 illustrate the accuracy with which the positions of individual atoms can be determined by PCSs
124 from lanthanoid tags even in proteins of limited stability.

125

126 **2 Experimental procedures**

127 **2.1 Production, purification and tagging of proteins**

128 **2.1.1 Plasmid constructs and ^{13}C -labelled indole**

129 Three different cysteine mutations (A53C, N172C and S204C) were introduced into the *bla_{IMP1}*
130 gene in the pET-47b(+) plasmid using a modified QuikChange protocol (Qi and Otting, 2019).
131 Deuterated 7- ^{13}C -indole was synthesized as described with deuteration in all positions other
132 than position 7 (Maleckis et al., 2021). The amino acid sequence of the protein was that
133 reported in the crystal structure 4UAM (Carruthers et al., 2014), except that the N-terminal
134 alanine residue was substituted by a methionine to avoid heterogeneity by incomplete
135 processing by amino peptidase.

136

137 **2.1.2 Protein production**

138 Uniformly ^{15}N -labelled samples of the cysteine mutants of IMP-1 were expressed in *E. coli*
139 BL21(DE3) cells. The cells were grown at 37 °C in Luria–Bertani (LB) medium containing 50
140 mgL⁻¹ kanamycin until the OD₆₀₀ reached 0.6–0.8 and were then transferred to 300 mL of M9
141 medium (6 gL⁻¹ Na₂HPO₄, 3 gL⁻¹ KH₂PO₄, 0.5 gL⁻¹ NaCl, pH 7.2) supplemented with 1 gL⁻¹
142 of $^{15}\text{NH}_4\text{Cl}$. After induction with isopropyl- β -D-thiogalactopyranoside (IPTG, final
143 concentration 1 mM), the cells were incubated at room temperature for 16 hours. Following
144 centrifugation, the cells were resuspended in buffer A (50 mM HEPES, pH 7.5, 100 μM ZnSO₄)
145 for lysis by a homogeniser (Avestin Emulsiflex C5). The supernatant of the centrifuged cell
146 lysate was loaded onto a 5 mL SP column, the column was washed with 20 column volumes
147 buffer B (same as buffer A but with 50 mM NaCl) and the protein was eluted with a gradient
148 of buffer C (same as buffer A but with 1 M NaCl).

149 IMP-1 samples containing 7- ^{13}C -tryptophan were produced by continuous exchange
150 cell-free protein synthesis (CFPS) from PCR-amplified DNA with eight-nucleotide single-
151 stranded overhangs as described (Wu et al., 2007), using 7- ^{13}C -indole as a precursor for the *in*
152 *vitro* production of tryptophan (Maleckis et al., 2021). The CFPS reactions were conducted at
153 30 °C for 16 h using 1 mL inner reaction mixture and 10 mL outer buffer. Tryptophan was

154 omitted from the mixture of amino acids provided and deuterated 7-¹³C-indole was added from
155 a stock solution in 50 % DMSO/50 % H₂O to the inner and outer buffers at a final concentration
156 of 0.75 mM. The protein samples were purified as described above. About 5 mg of the indole
157 was required for preparing each NMR sample.

158

159 **2.1.3 Ligation with C2-Ln³⁺ tag**

160 To ensure the reduced state of cysteine thiol groups, the protein samples were treated with 2
161 mM dithiothreitol (DTT) for 1 hour. Subsequently, the DTT was removed using an Amicon
162 ultrafiltration centrifugal tube with a molecular weight cut-off of 10 kDa, concentrating the
163 protein samples to 50 μ M in buffer A. The samples were incubated overnight at room
164 temperature with shaking in the presence of five-fold molar excess of C2 tag (Graham et al.,
165 2011; de la Cruz et al., 2011) loaded with either Y³⁺, Tb³⁺ or Tm³⁺. Following the tagging
166 reaction, the samples were washed using an Amicon centrifugal filter unit to remove unbound
167 tag and the buffer was exchanged to NMR buffer (20 mM MES, pH 6.5, 100 mM NaCl).

168

169 **2.1.4 Ligation with C12-Ln³⁺ tag**

170 The ligation reaction of IMP-1 N172C with the C12-Ln³⁺ tag loaded with either Y³⁺, Tb³⁺ or
171 Tm³⁺ (Herath et al., 2021) was conducted in the same way as with the C2-Ln³⁺ tags, except that
172 the reactions were carried out in buffer A with the pH adjusted to 7.0.

173

174 **2.2 NMR spectroscopy**

175 All NMR data were acquired at 37 °C on Bruker 600 and 800 MHz NMR spectrometers
176 equipped with TCI cryoprobes designed for 5 mm NMR tubes, but only 3 mm NMR tubes were
177 used in this project. Protein concentrations were 0.6 mM and 0.2 mM for ¹⁵N-HSQC spectra
178 of samples labelled with the C2 and C12 tag, respectively. The protein concentrations were 0.4
179 mM for ¹³C-HSQC and NOE-relayed ¹³C-HSQC spectra. ¹⁵N-HSQC spectra were recorded at
180 a ¹H-NMR frequency of 800 MHz with $t_{1\max} = 40$ ms, $t_{2\max} = 170$ ms, using a total recording
181 time of 3 h per spectrum. ¹³C-HSQC spectra were recorded with a S³E filter to select the low-
182 field doublet component due to the ¹J_{HC} coupling of the ¹³C-labelled tryptophan side chains.
183 The pulse sequence is shown in Fig. S9 and the spectra were recorded at a ¹H-NMR frequency
184 of 600 MHz using $t_{1\max} = 20\text{--}50$ ms, $t_{2\max} = 106$ ms and total recording times of 2 h per
185 spectrum. ¹³C-HSQC spectra with NOE relay were recorded without decoupling in the ¹³C-
186 dimension, relying on relaxation and ¹³C equilibrium magnetisation to emphasize the narrow

187 doublet component. The NOE mixing time was 150 ms and the total recording time 3 h per
188 spectrum. The pulse sequence is shown in Fig. S10.

189 To account for uncertainties in concentration measurements, samples with L-captopril
190 were prepared with a nominal ratio of captopril to protein of 1.5:1. In the case of samples
191 tagged with the C2 tag, however, this lead to gradual release of some of the tag, as captopril
192 contains a free thiol group and the disulfide linkage of the C2 tag is sensitive to chemical
193 reduction. To limit this mode of sample degradation, the NOE-relayed [¹³C, ¹H]-HSQC spectra
194 were recorded with a smaller excess of captopril.

195

196 **2.3 $\Delta\chi$ -tensor fits**

197 The experimental PCSs ($\Delta\delta^{\text{PCS}}$) were measured in ppm as the amide proton chemical shift
198 observed in NMR spectra recorded for the IMP-1 mutants A53C, N172C and S204C tagged
199 with Tm³⁺ or Tb³⁺ tags minus the corresponding chemical shift measured of samples made with
200 Y³⁺ tags. The resonance assignments of the wild-type Zn₂ enzyme (BMRB entry 25063) were
201 used to assign the ¹⁵N-HSQC cross-peaks in the diamagnetic state. The program Paramagpy
202 (Orton et al., 2020) was used to fit magnetic susceptibility anisotropy ($\Delta\chi$) tensors to crystal
203 structures of IMP-1 solved in the absence and presence of the inhibitor captopril.

204

205 **3 Results**

206 **3.1 Protein production**

207 Three cysteine mutants of uniformly ¹⁵N-labelled IMP-1 were produced *in vivo*, where cysteine
208 residues replaced Ala53, Asn172 and Ser204, respectively. The purified proteins were tagged
209 with C2 tags containing Tb³⁺ or Tm³⁺ as the paramagnetic ions and Y³⁺ as the diamagnetic
210 reference. Samples of the uniformly ¹⁵N-labelled mutant N172C were also ligated with C12
211 tags containing the same set of metal ions. The chemical structures of the tags are depicted in
212 Fig. S1. To record ¹³C-¹H correlation spectra of the tryptophan side chains with minimal
213 spectral overlap, additional samples of the cysteine mutants were produced with selectively
214 ¹³C-labelled tryptophan residues. These samples were produced by cell-free protein synthesis
215 in the presence of 7-¹³C indole, deuterated except at the 7 position, with the omission of
216 tryptophan, using a recently established protocol (Maleckis et al., 2021). The residual activity
217 of tryptophan synthase in the cell-free extract was sufficient to produce tryptophan from the
218 added ¹³C-labelled indole. The resulting tryptophan residues contained a ¹³C-¹H group in
219 position 7 (¹³C^{β2} and ¹H^{β2} in IUPAC nomenclature; Markley et al., 1998) and deuterons at all

220 other hydrogen positions of the indole ring except for the H^N atom (H^{ε1} in IUPAC
221 nomenclature). The cell-free expression yielded about 2 mg of purified protein per millilitre of
222 inner cell-free reaction mixture. Mass spectrometry indicated that the tryptophan residues of
223 IMP-1 were ¹³C/²H-labelled with about 80 % labelling efficiency at each of the six tryptophan
224 positions (Fig. S2). The purified proteins were ligated with C2-Ln³⁺ tags containing either Tb³⁺,
225 Tm³⁺ or Y³⁺ as in the case of the ¹⁵N-labelled samples. Ligation yields with the C2 tags were
226 practically complete as indicated by mass spectrometry (Fig. S2). The ligation yield of the
227 N172C mutant with C12 tags was about 90 % (Herath et al., 2021).

228

229 **3.2 NMR experiments and resonance assignments**

230 [¹⁵N,¹H]-HSQC spectra were measured of the tagged proteins in the free state and in the
231 presence of L-captopril (Fig. S3–S8). ¹H PCSs of backbone amide protons measured in these
232 spectra were used to establish the $\Delta\chi$ tensors relative to the protein. The resonance assignment
233 of the [¹⁵N,¹H]-HSQC spectra in the presence of inhibitor was transferred from the
234 corresponding spectra recorded in the absence of inhibitor. As no resonance assignments could
235 reliably be made in this way in areas of spectral overlap, fewer resonance assignments were
236 available in the presence than absence of inhibitor. Furthermore, due to captopril releasing
237 some of the C2 tags from the protein by breaking the disulfide bridge of the tag attachment,
238 spectra recorded in the presence of captopril contained additional cross-peaks from
239 diamagnetic protein.

240 To obtain tagged protein that is inert against chemical reduction, we also attached the
241 C12 tag to the mutant N172C. This tag, however, caused the appearance of additional peaks in
242 the [¹⁵N,¹H]-HSQC spectra (Fig. S7). The additional peaks appeared in different sample
243 preparations, indicating sample degradation or perturbation of the local protein structure by the
244 tag. We therefore based the rest of the work mainly on the PCSs obtained with the C2 tags.
245 Tables S1 and S2 list the PCSs of the backbone amides measured in the absence and presence
246 of captopril.

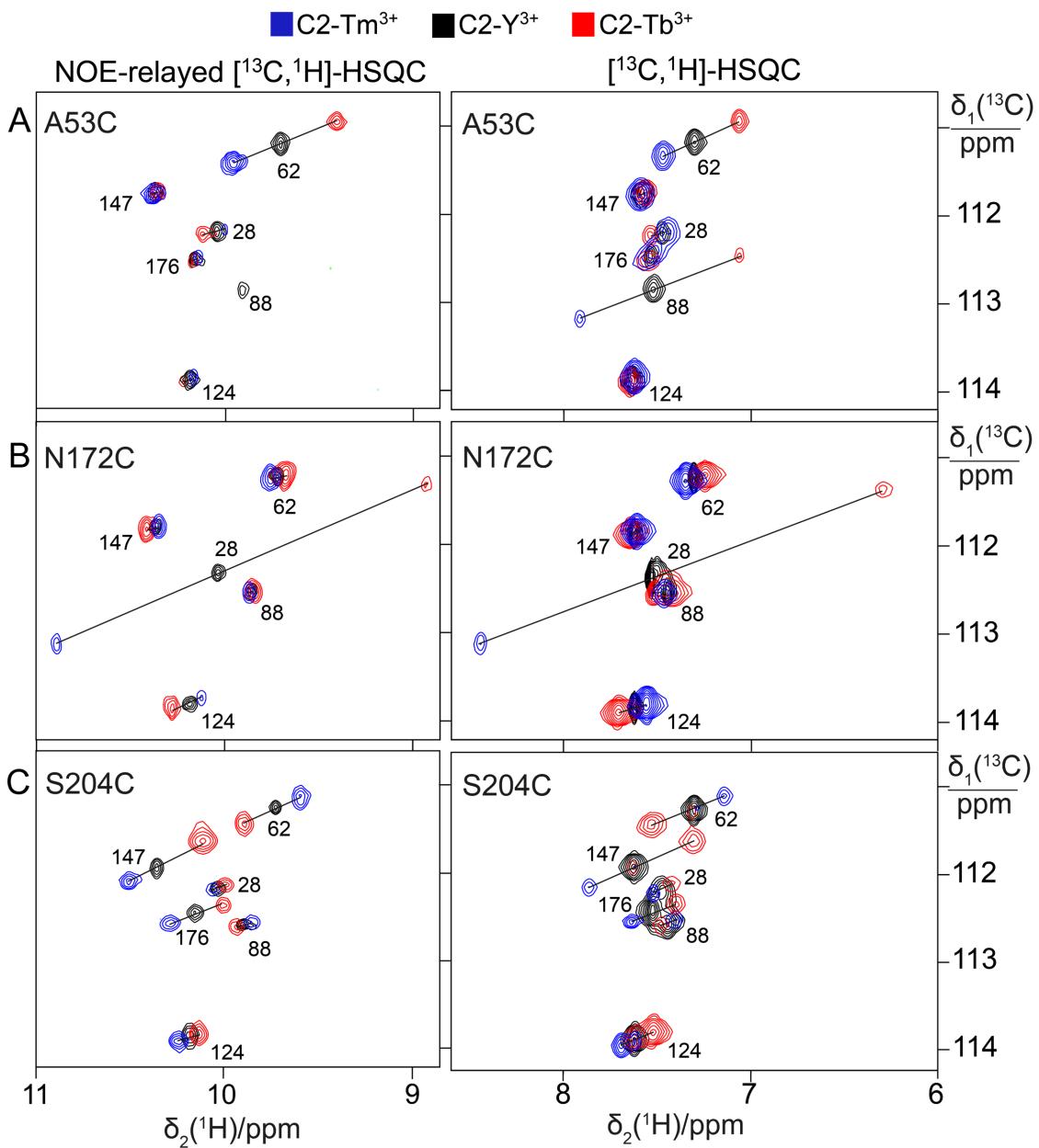
247 ¹H PCSs of the tryptophan H^{ε2} protons were measured in [¹³C,¹H]-HSQC spectra
248 recorded with S³E spin-state selection element (Meissner et al., 1997) in the ¹³C dimension to
249 select the slowly relaxing components of the doublets split by ¹J_{HC} couplings. Cross-peaks were
250 observed for all six tryptophan residues except for the mutant N172C, which displayed cross-
251 peaks of only five tryptophan indoles (Fig. 2). The missing signal was attributed to Trp176
252 because of its close proximity to the tagging site. The indole H^{ε1} proton is located within 2.9 Å

253 of the $\text{H}^{\zeta 2}$ proton and the NOE between both protons was readily observed in a $[\text{C}^{13}, \text{H}]$ -HSQC
254 experiment with NOE relay (Fig. 2). The $\text{H}^{\varepsilon 1}$ chemical shifts afforded better spectral resolution
255 than the $\text{H}^{\zeta 2}$ resonances. Comparison of the predicted and observed PCSs yielded resonance
256 assignments of all tryptophan $\text{H}^{\varepsilon 1}$ cross-peaks with particular clarity in the NOE-relayed
257 $[\text{C}^{13}, \text{H}]$ -HSQC spectrum (Fig. 2). In addition, the assignment was supported by paramagnetic
258 relaxation enhancements (for example, Trp88 is near residue 53 and therefore its cross-peaks
259 were strongly attenuated in the paramagnetic samples of the A53C mutant). Different PCSs
260 were observed for all six tryptophan sidechains and different PCSs were observed for the $\text{H}^{\zeta 2}$
261 and $\text{H}^{\varepsilon 1}$ protons within the same indole sidechain. Each of the tryptophan sidechains showed
262 PCSs in most, if not all, of the mutants. As the L3 loop is near residue 172, the mutant N172C
263 endowed Trp28 with particularly large PCSs. Tables S3 and S4 report the PCSs measured in
264 this way for the samples labelled with C2 tags.

265 In contrast, assigning the indole N-H groups in the $[\text{N}^{15}, \text{H}]$ -HSQC spectra was much
266 more difficult because IMP-1 is a protein prone to showing more than a single peak per proton
267 (Figs S5 and S6). In particular, the $[\text{N}^{15}, \text{H}]$ -HSQC spectrum of wild-type IMP-1 selectively
268 labelled with N^{15} -tryptophan displayed six intense and at least three weak $\text{N}^{\varepsilon 1}-\text{H}^{\varepsilon 1}$ cross-peaks
269 (Fig. S6; Carruthers et al., 2014) and the $[\text{N}^{15}, \text{H}]$ -HSQC spectra of the tagged cysteine mutants
270 showed evidence of heterogeneity too (Fig. S5). Nonetheless, the six most intense $\text{N}^{\varepsilon 1}-\text{H}^{\varepsilon 1}$
271 cross-peaks could be assigned by comparison to the PCSs observed in the NOE-relayed
272 $[\text{C}^{13}, \text{H}]$ -HSQC spectrum and this assignment was used to measure the PCSs of the tryptophan
273 $\text{H}^{\varepsilon 1}$ resonances in the mutant N172C tagged with C12 tag (Fig. S8; Table S4).

274 Spectra recorded in the presence of L-captopril were very similar to those recorded
275 without the inhibitor, except that some new, narrow C-H cross-peaks appeared in the $[\text{C}^{13}, \text{H}]$ -
276 HSQC spectra of the mutants A53C and S204C, which were suggestive of protein degradation
277 (Fig. 3). We consequently used the better-resolved indole H^{N} cross-peaks to identify the correct
278 parent C-H cross-peaks. The chemical shifts of the tryptophan sidechains changed very little
279 in response to the presence of L-captopril, except for the C^{13} -chemical shift of Trp28, which is
280 nearest to the ligand binding site. The PCSs of the indole protons measured in the presence of
281 the inhibitor are listed in Tables S5 and S6.

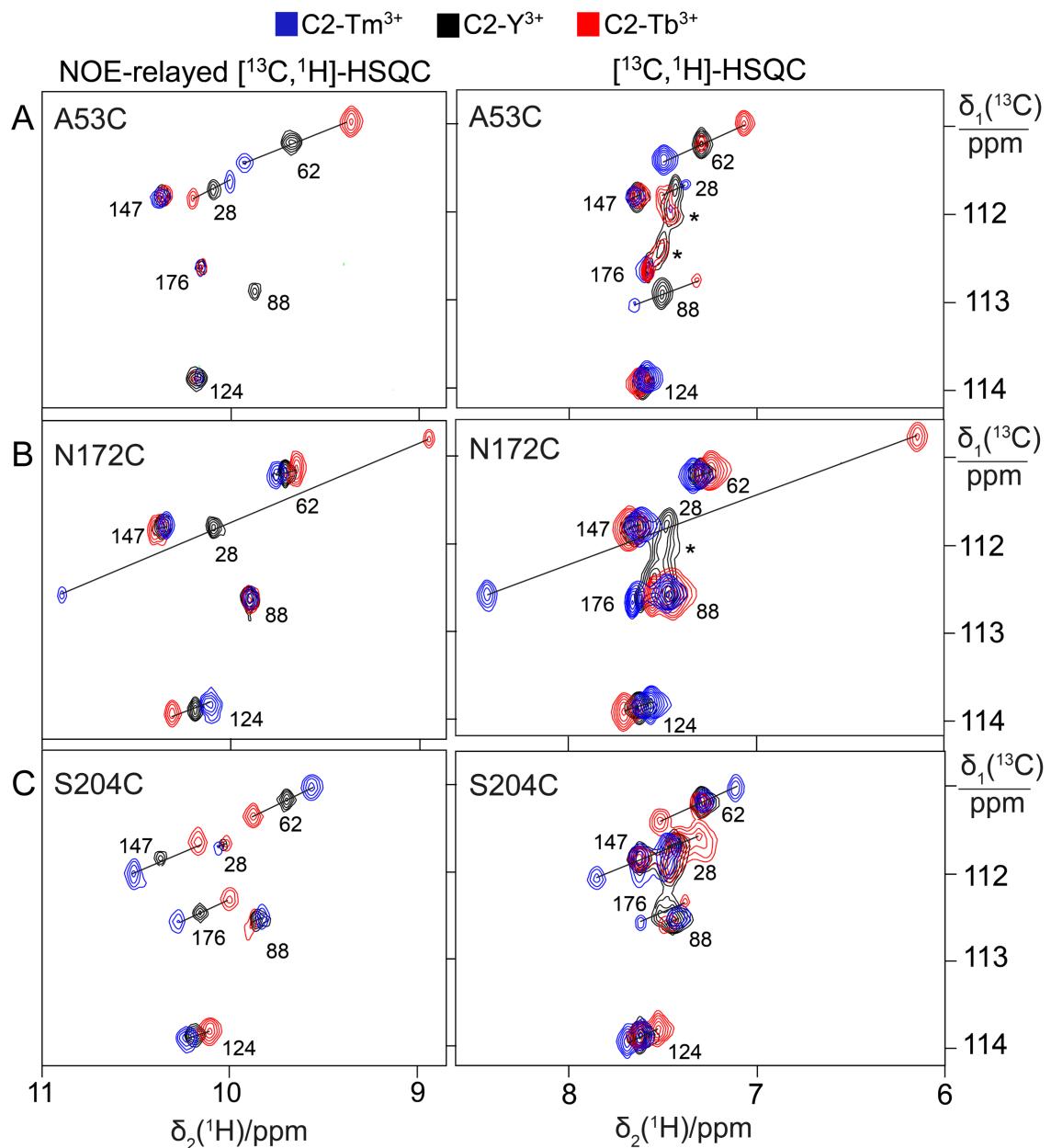
282


283 **3.2 $\Delta\chi$ -tensor fits**

284 The $\Delta\chi$ -tensor parameters were determined using the program Paramagpy (Orton et al., 2020),
285 using all available ^1H PCSs measured of backbone amides. Comparing the $\Delta\chi$ tensor fits to the

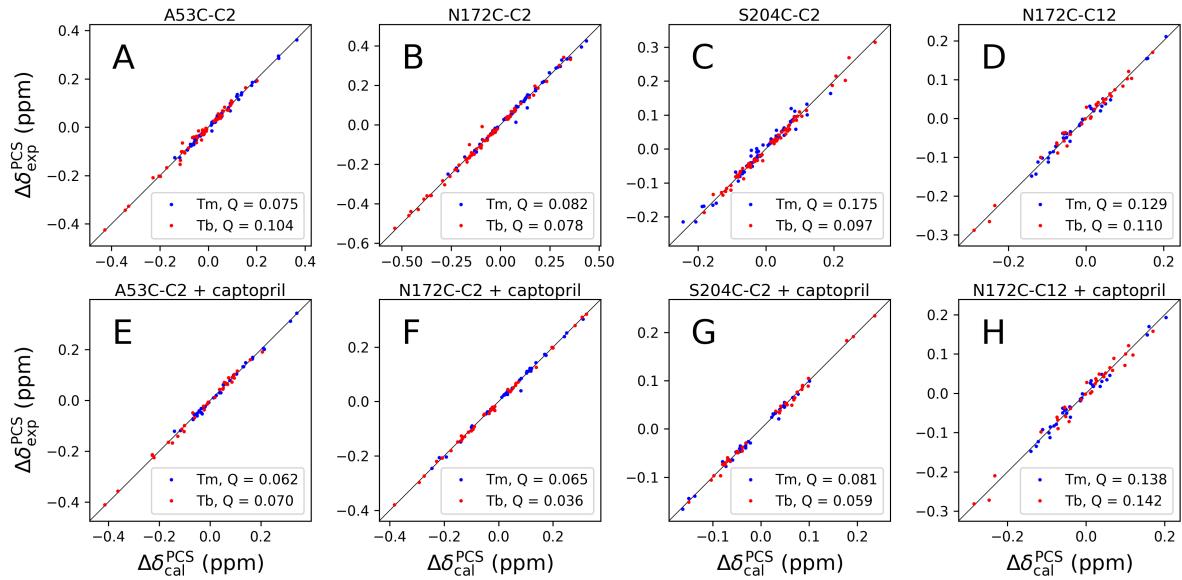
286 crystal structures 5EV6 chains A and C (Hinchliffe et al., 2016) and 1DDK (Concha et al.,
287 2000) of the free protein, the chain A of the structure 5EV6 proved to produce the smallest Q
288 factor by a small margin (Fig. S11) and was used as the reference structure of the free protein
289 for the subsequent evaluation. Similarly, chain A of the co-crystal structure published with the
290 inhibitor L-captopril (PDB ID: 4C1F; Brem et al., 2016) on average delivered better fits than
291 chain B and was used as the reference structure for the NMR data recorded in the presence of
292 L-captopril. The $\Delta\chi$ -tensor fits of each mutant and tag used a common metal position for the
293 data obtained with the Tb^{3+} and Tm^{3+} tags. The fits positioned the paramagnetic centres at
294 distances between 8.2 and 9.4 Å from the C^β atom of the tagged cysteine residues, which is
295 compatible with the chemical structure of the C2-tag. Figure 4 shows the correlations between
296 back-calculated and experimental PCSs and Table S7 reports the fitted $\Delta\chi$ tensor parameters.
297 Very similar Q factors were obtained when using the PCSs measured in the absence of inhibitor
298 to fit the $\Delta\chi$ tensor to the co-crystal structure 4C1F or the PCSs measured in the presence of
299 inhibitor to fit the $\Delta\chi$ tensor to the crystal structure of the free protein. This indicates that the
300 protein structure did not change very much in response to inhibitor binding. This conclusion
301 was also indicated by the similarity between the backbone PCSs observed with and without
302 inhibitor (Fig. S12).

303 The $\Delta\chi$ tensors obtained with the Tb^{3+} tags were larger than those obtained with the
304 Tm^{3+} tags, which is also reflected by the consistently larger PCSs observed in the ^{13}C - ^1H
305 correlation spectra of Fig. 2 and 3. The fits of $\Delta\chi$ tensors to the protein backbone also yielded
306 better Q factors for PCSs generated by Tb^{3+} than Tm^{3+} ions. Therefore, we determined the
307 localisation spaces of the tryptophan sidechains in the first instance by using their ^1H PCSs
308 measured with Tb^{3+} tags only.


309

310
311 **Figure 2.** PCSs observed in ^{13}C - ^1H correlation spectra of 0.4 mM solutions of IMP-1 mutants
312 tagged with C2-Ln $^{3+}$ tags and containing selectively isotope-labelled tryptophan produced from
313 7- ^{13}C -indole deuterated in the positions 2, 4, 5 and 6. The plots show superimpositions of
314 spectra recorded with diamagnetic (C2-Y $^{3+}$, black) or paramagnetic (C2-Tb $^{3+}$, red; C2-Tm $^{3+}$,
315 blue) tags. All spectra were recorded with spin-state selection in the ^{13}C -dimension to record
316 the narrow low-field component of each ^{13}C -doublet. Right panels: ^{13}C , ^1H]-HSQC spectra.
317 Left panels: NOE-relayed ^{13}C , ^1H]-HSQC spectra (150 ms NOE mixing time) to record the $\text{H}^{\varepsilon 1}$
318 resonances of the tryptophan side chains. PCSs are indicated by lines connecting the peaks of
319 paramagnetic and diamagnetic samples. The cross-peaks are assigned with the residue number
320 of the individual tryptophan residues. (A) Mutant A53C. (B) Mutant N172C. (C) Mutant

321 S204C.


322

323

324 **Figure 3.** Effect of the presence of L-captopril on the PCSs observed in ^{13}C - ^1H correlation
325 spectra of 0.4 mM solutions of IMP-1 mutants. Protein preparations and experimental
326 parameters were the same as in Fig. 2. Spectra recorded with diamagnetic (C2-Y $^{3+}$, black) or
327 paramagnetic (C2-Tb $^{3+}$, red; C2-Tm $^{3+}$, blue) tags are superimposed. Right column: ^{13}C - ^1H -
328 HSQC spectra. Left column: NOE-relayed ^{13}C - ^1H -HSQC spectra recorded with 150 ms NOE
329 mixing time. Stars mark cross-peaks of species putatively attributed to protein degradation. (A)
330 Mutant A53C. (B) Mutant N172C. (C) Mutant S204C.

331

332

333 **Figure 4.** Correlations between back-calculated and experimental ^1H PCSs measured of
 334 backbone amides of IMP-1 with C2 tags at three different sites (positions 53, 172 and 204) and
 335 the C12 tag in position 172. Red and blue data points correspond to the PCS data obtained with
 336 Tb^{3+} and Tm^{3+} tags, respectively. (A) Mutant A53C with C2 tag. (B) Mutant N172C with C2
 337 tag. (C) Mutant S204C with C2 tag. (D) Mutant N172C with C12 tag. (E) Same as (A) but in
 338 the presence of captopril. (F) Same as (B) but in the presence of captopril. (G) Same as (C) but
 339 in the presence of captopril. (H) Same as (D) but in the presence of captopril. PCS data in (A)–
 340 (D) were used to fit $\Delta\chi$ tensors to the structure 5EV6. PCS data in (E)–(F) were used to fit $\Delta\chi$
 341 tensors to the structure 4C1F.

342

3.3 Determining the localisation spaces of tryptophan sidechains

344 The $\Delta\chi$ tensors determined of backbone amides not only enabled the resonance assignment of
 345 the tryptophan sidechains by comparing back-calculated with experimental PCSs, but also
 346 allowed translation of the indole PCSs into restraints that define the locations of the tryptophan
 347 H^{C2} and H^{E1} atoms with respect to the rest of the protein. The concept of localising nuclear spins
 348 by PCSs that are generated by lanthanoid tags at different sites is well-established (see, e.g.,
 349 Yagi et al., 2013; Lescanne et al., 2018; Zimmermann et al., 2019). It can be visualised by
 350 representing each PCS restraint by the corresponding PCS isosurface, which comprises all
 351 points in space where this PCS value is generated by the $\Delta\chi$ tensor (Fig. 5). With PCS restraints
 352 from two different metal sites, the intersection between the respective isosurfaces defines a
 353 line. The intersection of this line with the PCS isosurface from a third $\Delta\chi$ tensor defines two
 354 points. While a fourth $\Delta\chi$ tensor could unambiguously produce a single solution, a fourth tensor

355 may not be required if one of these two points is incompatible with the covalent structure of
356 the protein. In favourable circumstances, the constraints imposed by the covalent structure may
357 even allow the accurate positioning of nuclear spins by PCSs generated from only two different
358 $\Delta\chi$ tensors (Pearce et al., 2017). Therefore, the present study was successful with only three
359 different tagging sites. Figure S13 illustrates the concept for the Trp28 $H^{\varepsilon 1}$ atom.

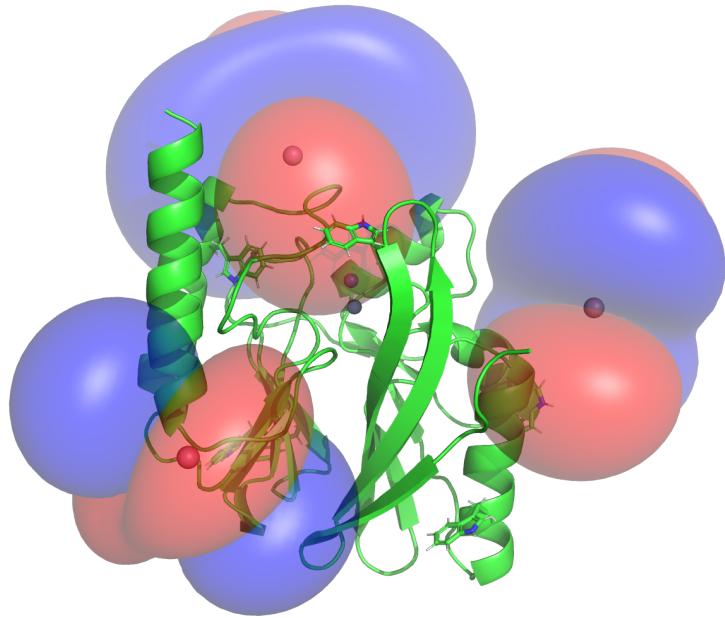
360 The spatial definition of the intersection point defined by the PCS isosurfaces depends
361 on the experimental uncertainties in a non-isotropic way, as the PCS isosurfaces rarely intersect
362 in an orthogonal manner and the PCS gradients differ for each $\Delta\chi$ tensor. To capture a
363 localisation space, which allows for the experimental uncertainty in the measured PCS data
364 and fitted $\Delta\chi$ tensors, we mapped the spatial field of root-mean-squared deviations (RMSD)
365 between experimental and calculated PCS values and defined the boundary of the localisation
366 space by a maximal RMSD value. In addition, uncertainties in the $\Delta\chi$ tensors were propagated
367 by averaging over the results from 20 $\Delta\chi$ -tensor fits performed with random omission of 20 %
368 of the backbone PCS data. In the present work, the routine for defining the localisation space
369 was implemented as a script in the software Paramagpy (Orton et al., 2020). Figure 6 shows
370 the resulting localisation spaces for the $H^{\varepsilon 1}$ and $H^{\varepsilon 2}$ atoms of Trp28, using the PCS data
371 obtained for the three cysteine mutants A53C, N172C and S204C with the C2-Tb³⁺ tag as well
372 as the N172C mutant with the C12-Tb³⁺ tag.

373 The localisation spaces found for the $H^{\varepsilon 1}$ and $H^{\varepsilon 2}$ atoms of Trp28 were clearly different.
374 Furthermore, the distance between them corresponded closely to the distance expected from
375 the chemical structure of the indole ring (2.9 Å). The irregular shapes of the localisation spaces
376 displayed in Fig. 6 purely reflect the relative geometry of the intersecting PCS isosurfaces and
377 do not take into account any dynamic flexibility of the L3 loop or protein structure. In
378 particular, the relevant PCS isosurfaces associated with the C2 tag at sites N172C and S204C
379 intersect at a shallow angle, which leads to the elongated shape of the localisation space for the
380 Trp28 $H^{\varepsilon 2}$ atom (Fig. S13). For the nitrogen-bound $H^{\varepsilon 1}$ atom, the localisation space was
381 restricted further by the additional data obtained with the C12 tag at site N172C (Fig. 6).
382 Calculating the localisation spaces from the Tm³⁺ data yielded very similar results (Fig. S14).
383 The agreement of the localisation spaces of Trp28 with chain A of the previously published
384 crystal structure 5EV6 is excellent and they are clearly incompatible with the conformations
385 observed in chain C of the same structure or in the structure 1DDK (Fig. 1A).

386 Due to close proximity to the C2 tags in the N172C mutant, the largest PCSs were
387 observed for Trp28 $H^{\varepsilon 1}$ but, in the absence of captopril, their exact magnitude appeared about

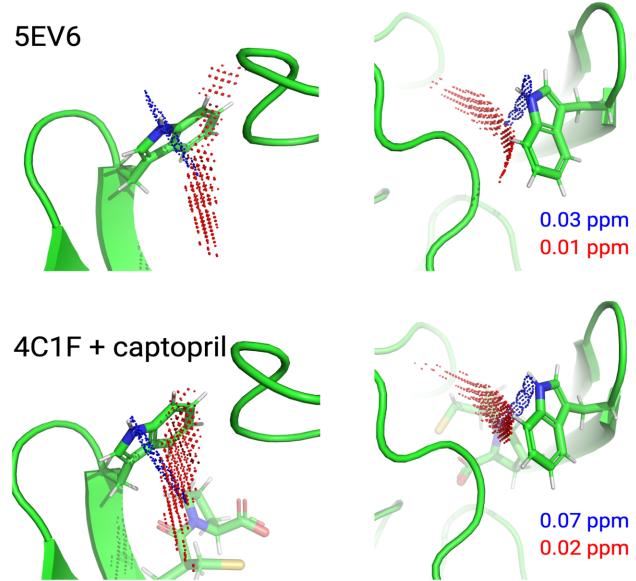
388 0.3 ppm smaller in the [¹⁵N, ¹H]-HSQC (Fig. S5b) than the NOE-relayed [¹³C, ¹H]-HSQC (Fig. 389 2B) spectrum. The centre of the localisation space of Trp28 H^{ε1} moved to a slightly more open 390 L3 loop conformation when using the smaller PCS detected in the [¹⁵N, ¹H]-HSQC spectrum 391 of the N172C mutant labelled with the C2-Tb³⁺ tag. The space still encompassed the 392 coordinates observed in the structure 5EV6, limiting the significance of this difference in PCS.

393 None of the minor additional cross-peaks observed in any of the sample preparations 394 could be attributed to alternative conformations of Trp28 either. In particular, the most extreme 395 conformation observed in the crystal structure 1DDK (green in Fig. 1) predicts PCSs > 1 ppm 396 for Trp28 H^{ε1} in the mutant N172C with C2 tags, but we observed no PCS of this magnitude 397 for any of the unassigned peaks.


398

399

400 **3.4 Defining the localisation space with one versus two lanthanoid ions in the same tag 401 and at the same site**


402 Unexpectedly, determining separate localisation spaces from the Tm³⁺ and Tb³⁺ datasets 403 yielded more plausible results than when both datasets were used simultaneously. Careful 404 inspection showed that the close alignment of the $\Delta\chi$ tensors of the Tm³⁺ and Tb³⁺ data resulted 405 in particularly shallow intersection angles of the respective PCS isosurfaces. In calculating the 406 localisation space of Trp28, the PCS isosurfaces arising from the N172C mutant carried by far 407 the greatest weight as this site is closer to residue 28 than the sites 53 and 204. Therefore, the 408 Tm³⁺ and Tb³⁺ data from the N172C mutant dominated the PCS RMSD calculation and the 409 intersection between the associated isosurfaces pulled the final localisation space to a 410 structurally implausible location, which was unstable with respect to small perturbations in $\Delta\chi$ - 411 tensor orientations associated with the tensors at site 172. In contrast, considering the Tm³⁺ and 412 Tb³⁺ datasets separately allowed the localisation spaces to be determined by the intersections 413 with PCS isosurfaces from the other sites. The resulting localisation spaces consistently were 414 compatible with crystal structures.

415

416
417
418
419
420
421

Figure 5. PCS isosurfaces of the IMP-1 mutants A53C, N172C and S204C plotted on the crystal structure 5EV6. The respective $\Delta\chi$ tensors were determined from the ^1H PCSs measured of backbone amides. Blue/red isosurfaces correspond to PCSs of +/-1.0 ppm, respectively, generated with C2-Tb $^{3+}$ tags.

422
423
424
425
426
427
428

Figure 6. Localisation space of the sidechain of Trp28 defined by the PCSs from tags in the IMP-1 mutants A53C, N172C and S204C. The left and right panels display the same results in two different orientations. Red and blue points outline localisation spaces determined for the H c^2 and H c^1 atoms, respectively. The localisation space of the H c^2 atom was defined by the PCSs and $\Delta\chi$ tensors determined for the Tb $^{3+}$ -loaded C2 tags, while the localisation space of the H c^1 atom was restricted by additional data obtained with C12-Tb $^{3+}$ tag at site N172C. The

429 boundaries of the respective localisation spaces displayed are defined by the PCS RMSD values
430 indicated in ppm. The top panel depicts the localisation spaces determined for the free protein
431 plotted on chain A of the crystal structure 5EV6 depicted in two different orientations. The
432 lower panel depicts the localisation spaces determined in the presence of captopril plotted on
433 chain A of the crystal structure 4C1F.

434

435 **3.5 L3 loop conformation in the presence of L-captopril**

436 Figure 6 shows that, within the uncertainty of the experiments, the localisation space of the
437 indole sidechain of Trp28 is invariant with respect to the presence or absence of captopril.
438 Conservation of the L3 loop conformation with and without inhibitor is supported by the close
439 similarity in all the PCSs observed for Trp28 in the NOE-relayed [¹³C,¹H]-HSQC spectra (Fig.
440 2 and 3). In the [¹H,¹⁵N]-HSQC spectra of the mutant N172C with C2 tag, however, the PCSs
441 observed for Trp28 H^{ε1} appeared somewhat smaller without than with captopril (Fig. S5b). As
442 the PCSs of backbone amides were very similar in the absence and presence of the inhibitor
443 (Fig. S12), this difference in PCS suggests a change in L3 loop conformation, contradicting the
444 observations made with the selectively ¹³C-labelled samples. As discussed above, using the
445 smaller PCS of Trp28 H^{ε1} did not sufficiently change its localisation space in the free protein
446 to render it incompatible with the coordinates of the structure 5EV6. Therefore, as far as the
447 data of the ¹⁵N-labelled samples indicate a conformational change of the L3 loop between the
448 free and bound state, it is small. We attribute the differences in PCSs observed between the
449 selectively ¹³C-labelled and uniformly ¹⁵N-labelled samples to differences in sample
450 preparation of unknown origin, which are also reflected by different numbers of weak
451 unassigned cross-peaks (Figs 2, 3, S5 and S6).

452 The cross-peak intensities of the Trp28 sidechain resonances are relatively weak
453 compared with those of the other tryptophan sidechains, suggesting that Trp28 is subject to
454 dynamics that broaden its resonances. Its cross-peaks appeared slightly weaker in the presence
455 than in the absence of inhibitor (Fig. 2 and 3), suggesting a change in dynamics caused by the
456 inhibitor binding. Previous NMR studies of metallo-β-lactamases reported faster $R_2(^{15}\text{N})$
457 relaxation rates of the L3-loop tryptophan sidechain in the presence than in the absence of
458 inhibitor, which was attributed to dampened dynamics (Huntley et al., 2000; Softley et al.,
459 2020). In the presence of dynamics, the localisation spaces determined in the present work
460 must be considered averages that do not report on the amplitude or direction of motions.

461

462 **3.6 Localisation spaces of tryptophan side chains other than Trp28**
463 As the tagging sites had been designed to analyse the conformation of the L3 loop, they were
464 positioned at similar distances from the L3 loop and therefore not optimal for determining
465 localisation spaces of the other tryptophan residues. Nonetheless, clear differences were
466 observed in the PCSs of the $H^{\varepsilon 2}$ and $H^{\varepsilon 1}$ atoms (Fig. 2), allowing the separation of the respective
467 localisation spaces, which also proved to be in excellent agreement with the conformations of
468 the side-chain indoles of Trp62, Trp124 and Trp147 as found in the crystal structure (Fig. S15),
469 whereas the data were insufficient to determine the sidechain conformation of Trp176.

470

471 **4 Discussion**

472 The L3 loop of metallo- β -lactamases is known to be flexible and, in the specific case of IMP-
473 1, significantly assists in substrate binding and enzymatic activity (Moali et al., 2003). As the
474 substrate is sandwiched between the di-zinc site and the L3 loop, it is tempting to think that the
475 loop opens up for substrate binding and product release while it may be closed during the
476 enzymatic reaction to hold the substrate and reaction intermediate in place. In contrast, some
477 of the conformations observed in crystal structures of IMP-1 obtained in the presence and
478 absence of the inhibitor L-captopril, revealed the loop in almost identical conformations (Brem
479 et al., 2016). This observation is inconclusive, however, as the L3 loop forms more extensive
480 intermolecular contacts with neighbouring protein molecules in the crystal lattice than
481 intramolecular contacts. In addition, other crystal structures observed the loop to move by
482 almost 3 Å in response to a different inhibitor (Concha et al., 2000). This prompted us to probe
483 its actual location in the absence of crystal packing forces in solution, a task which is difficult
484 to tackle by traditional NMR spectroscopic methods that rely on short-range NOEs.

485 Our results show that by furnishing IMP-1 with paramagnetic lanthanoid tags, the
486 coordinates of the indole sidechain of Trp28, which is a key residue near the tip of the loop,
487 can be determined with remarkable accuracy even in the free protein, where the available
488 crystal structures position the L3 loop in a conformation without any direct contacts with the
489 core of the protein. Indeed, the localisation space identified by the NMR data of the free protein
490 proved to be sufficiently well-defined to discriminate between different crystal structures of
491 IMP-1, as well as between different chains in the same asymmetric crystal unit. For example,
492 the sidechain orientation of Trp28 observed in $[Fe^{3+}, Zn^{2+}]$ -IMP-1 (4UAM; Carruthers et al.,
493 2014) proved to be in poor agreement with the PCS data, whereas the data were in full
494 agreement with chain A in the structure 5EV6 of $[Zn^{2+}, Zn^{2+}]$ -IMP-1 without inhibitor

495 (Hinchliffe et al., 2016) and chain A in the structure 4C1F with bound L-captopril (Brem et al.,
496 2016). This highlights the outstanding capacity of PCSs to assess small conformational
497 differences.

498 The approach of using PCSs for local structure determination is particularly appealing
499 in the case of difficult proteins such as IMP-1, where the sequence-specific NMR resonance
500 assignments are incomplete due to line-broadening attributable to motions in the μ s–ms time
501 range and additional signals are observed that either stem from protein degradation, misfolding
502 or alternative conformations in slow exchange with the main structure. Notably, all information
503 required to establish the $\Delta\chi$ tensors could be obtained from resolved cross-peaks observed in
504 sensitive [$^{15}\text{N},^1\text{H}$]-HSQC spectra. Similarly, the localisation information of the tryptophan
505 sidechains could be obtained from sensitive ^{13}C - ^1H and ^{15}N - ^1H correlation spectra. Positioning
506 the lanthanoid tags relatively far from the substrate binding site avoided direct interference
507 with the binding loop structure.

508 In the face of additional signals from minor species, site-selective ^{13}C -labelling of the
509 tryptophan sidechains was particularly helpful for simplifying the [$^{13}\text{C},^1\text{H}$]-HSQC spectra.
510 Gratifyingly, this could be achieved by providing suitably labelled indole without having to
511 synthesise the full amino acid (Maleckis et al., 2021).

512 It has been pointed out previously that the accuracy with which localisation spaces can
513 be determined is best when PCS isosurfaces intersect in an orthogonal manner (Pintacuda et
514 al., 2006; Lescanne et al., 2018; Zimmermann et al., 2019). In the present work, we found that,
515 counterintuitively, the provision of additional data can considerably degrade the accuracy of
516 the localisation space. This effect arises when PCS isosurfaces intersect at a shallow angle, as
517 the location of these intersections becomes very sensitive with regard to small errors in the
518 relative orientations of the underpinning $\Delta\chi$ tensors. Shallow intersection angles of PCS
519 isosurfaces are common, when two PCS datasets are from tags and tagging sites that differ only
520 in the identity of the paramagnetic metal ion in the tag. This situation commonly generates $\Delta\chi$
521 tensors of different magnitude and sign, but closely similar orientation (Bertini et al., 2001; Su
522 et al., 2008; Keizers et al., 2008; Man et al., 2010; Graham et al., 2011; Joss et al., 2018;
523 Zimmermann et al., 2019). Therefore, while the use of Tm^{3+} and Tb^{3+} tags is helpful for
524 assigning the cross-peaks in the paramagnetic state, more robust results are obtained by using
525 only one of these data sets for calculating the localisation space. Good localisation spaces were
526 thus obtained by using only PCSs measured for Tb^{3+} tags (Fig. 6) or only PCSs measured for
527 Tm^{3+} tags (Fig. S13). In contrast, however, very different tags attached at the same site, such

528 as the C2 and C12 tags installed in the mutant N172C, produced independent $\Delta\chi$ -tensor
529 orientations and therefore contributed positively to localising the Trp28 H $^{\varepsilon 1}$ atom.

530 In principle it is inappropriate to explain a set of PCSs by a single $\Delta\chi$ tensor, if they are
531 generated by a lanthanoid tag attached via a flexible linker, which positions the lanthanide ions
532 at variable coordinates relative to the protein. In this situation, fitting a single $\Delta\chi$ tensor
533 amounts to an approximation. The effective $\Delta\chi$ tensors obtained in this way, however, can
534 fulfill the PCSs remarkably well (Shishmarev and Otting, 2013), as illustrated by the low Q
535 factors obtained in this work (Fig. 4), and the localisation spaces obtained for the tryptophan
536 sidechains are correspondingly well defined.

537 The accuracy, with which localisation spaces can be determined, further depends on the
538 accuracy with which PCSs can be measured (which critically depends on the reproducibility of
539 the sample conditions between the paramagnetic and diamagnetic states), the accuracy of the
540 protein structure used to fit the $\Delta\chi$ tensors and the angle with which PCS isosurfaces of different
541 tensors intersect. To take into account the uncertainties associated with the PCS isosurfaces, it
542 is useful to think of each of them individually as a shell of a certain thickness (rather than a
543 surface) that represents a compatible localisation space. Two shells of a given thickness share
544 a smaller common space if they intersect orthogonally than if they intersect at a shallow angle.

545 The present work employed ^1H PCSs only, although PCSs were also observed in the
546 indirect dimensions of the $[^{13}\text{C}, ^1\text{H}]\text{-HSQC}$ and $[^{15}\text{N}, ^1\text{H}]\text{-HSQC}$ spectra. We made this choice
547 because the paramagnetic tags give rise to weak molecular alignments in the magnetic field,
548 which result in residual anisotropic chemical shifts (RACS). The effect is unimportant for ^1H
549 spins but significant for nuclear spins with large chemical shift anisotropy (CSA) tensors such
550 as backbone nitrogens and aromatic carbons. Correcting for the RACS effect is possible with
551 prior knowledge of the CSA tensors and bond orientations (John et al., 2005). We therefore
552 chose not to measure PCSs of the heteronuclear spins in favour of improving sensitivity by
553 accepting a lower spectral resolution in the indirect dimensions.

554 Finally, the C12 tag was designed specifically with the intent to produce a more rigid
555 tether to the protein than the C2 tag, but this did not result in larger $\Delta\chi$ tensors (Table S7) and
556 the NMR spectra of IMP-1 N172C displayed more heterogeneity with the C12 than the C2 tag,
557 suggesting that the shorter and more rigid tether combined with the fairly high molecular
558 weight of the cyclen-lanthanoid complex may have perturbed the protein structure to some
559 degree.

560

561 **5 Conclusion**

562 The current work illustrates how $\Delta\chi$ tensors from paramagnetic lanthanoid ion tags installed at
563 three different sites of the protein can be used to probe the conformation of a selected site in
564 solution in unprecedented detail, provided the structure of most of the protein is known with
565 high accuracy to allow fitting effective $\Delta\chi$ tensors of high predictive value. Importantly,
566 however, the method is easily compromised, if two PCS isosurfaces intersect at a shallow angle
567 as, in this situation, inaccuracies in $\Delta\chi$ tensor determinations have an outsized effect on
568 positioning the localisation spaces defined by the PCSs. Therefore, improved results were
569 obtained by not combining data from different metal ions bound to otherwise identical tags and
570 tagging sites. In the present work, simplifying the NMR spectrum of tryptophan residues by
571 site-selective isotope labelling proved to be of great value for sufficiently improving the
572 spectral resolution to allow assigning the labelled resonances solely from PCSs and PREs. The
573 strategy opens a path to detailed structural investigations of proteins of limited stability like
574 IMP-1, for which complete assignments of the NMR spectrum are difficult to obtain.

575

576

577 **Code and data availability.** NMR spectra and pulse programs are available at
578 <https://doi.org/10.5281/zenodo.5518294>. The script for calculating localisation spaces is
579 available at <https://doi.org/10.5281/zenodo.3594568> and from the GitHub site of Paramagy.

580

581 **Supplement.** The supplement related to this article is available online at: <https://doi.org/...>

582

583 **Author contributions.** GO initiated the project and edited the final version of the manuscript.
584 HWO wrote NMR pulse programs and software to calculate localisation spaces and performed
585 the $\Delta\chi$ tensor and structure analysis. IDH made labelled protein samples, recorded and assigned
586 NMR spectra, measured PCSs and wrote the first version of the manuscript. AM synthesised
587 the isotope-labelled indole. SJ made ^{15}N -labelled protein mutants with C2 tags and assigned
588 PCSs of backbone amides. MS synthesized C2 tags with different lanthanoid ions. CB, LT and
589 SB synthesized C12 tags with different lanthanoid ions.

590

591 **Competing interests.** The authors declare that they have no conflict of interest.

592

593 **Financial support.** GO thanks the Australian Research Council for a Laureate Fellowship
594 (grant no. FL170100019) and project funding through the Centre of Excellence for Innovations

595 in Peptide and Protein Science, Australian Research Council (grant no. CE200100012). AM
596 thanks the European Regional Development Fund (ERDF) for funding (PostDoc project
597 No. [1.1.1.2/VIAA/2/18/381](#)).

598

599 **References**

600 Arakawa, Y., Murakami, M., Suzuki, K., Ito, H., Wacharotayankun, R., Ohsuka, S., Kato, N.,
601 and Ohta, M.: A novel integron-like element carrying the metallo- β -lactamase gene *bla_{IMP}*,
602 *Antimicrob. Agents Chemother.*, 39, 1612–1615, <https://doi.org/10.1128/AAC.39.7.1612>,
603 1995.

604 Bertini, I., Janik, M. B. L., Lee, Y. M., Luchinat, C., and Rosato, A.: Magnetic susceptibility
605 tensor anisotropies for a lanthanide ion series in a fixed protein matrix, *J. Am. Chem. Soc.*,
606 123, 4181–4188, <https://doi.org/10.1021/ja0028626>, 2001.

607 Brem, J., van Berkel, S. S., Zollman, D., Lee, S. Y., Gileadi, O., McHugh, P. J., Walsh, T. R.,
608 McDonough, M.A., and Schofield, C. J.: Structural basis of metallo- β -lactamase inhibition
609 by captopril stereoisomers, *Antimicrob. Agents Chemother.*, 60, 142–150,
610 <https://doi.org/10.1128/AAC.01335-15>, 2016.

611 Brewer, K. D., Bacaj, T., Cavalli, A., Camilloni, C., Swarbrick, J. D., Liu, J., Zhou, A., Zhou,
612 P., Barlow, N., Xu, J., Seven, A. B., Prinslow, E. A., Voleti, R., Häussinger, D., Bonvin, A.
613 M. J. J., Tomchick, D. R., Vendruscolo, M., Graham, B., Südhof, T. C., and Rizo, J.:
614 Dynamic binding mode of a synaptotagmin-1-SNARE complex in solution, *Nat. Struct.
615 Mol. Biol.*, 22, 555–564, <https://doi.org/10.1038/nsmb.3035>, 2015.

616 Bush, K.: Proliferation and significance of clinically relevant β -lactamases, *Ann. N. Y. Acad.
617 Sci.*, 1277, 84–90, <https://doi.org/10.1111/nyas.12023>, 2013.

618 Bush, K.: Alarming β -lactamase-mediated resistance in multidrug-resistant
619 *Enterobacteriaceae*, *Curr. Opin. Microbiol.*, 13, 558–564,
620 <https://doi.org/10.1016/j.mib.2010.09.006>, 2010.

621 Carruthers, T. J.: Paramagnetism & Structural Biology: Biochemical & Biophysical Analysis
622 of IMP-1 Metallo- β -lactamase, PhD thesis, The Australian National University, Canberra,
623 221 pp., 2014.

624 Carruthers, T. J., Carr, P. D., Loh, C.-T., Jackson, C. J., and Otting, G.: Fe^{3+} located in the
625 dinuclear metallo- β -lactamase IMP-1 by pseudocontact shifts, *Angew. Chemie Int. Ed.*, 53,
626 14269–14272, <https://doi.org/10.1002/anie.201408693>, 2014.

627 Chen, W.-N., Nitsche, C., Pilla, K. B., Graham, B., Huber, T., Klein, C. D., and Otting, G.:
628 Sensitive NMR approach for determining the binding mode of tightly binding ligand
629 molecules to protein targets, *J. Am. Chem. Soc.*, 138, 4539–4546,
630 <https://doi.org/10.1021/jacs.6b00416>, 2016.

631 Concha, N. O., Rasmussen, B. A., Bush, K., and Herzberg, O.: Crystal structure of the wide-
632 spectrum binuclear zinc β -lactamase from *Bacteroides fragilis*, *Structure*, 4, 823–836,
633 [https://doi.org/10.1016/S0969-2126\(96\)00089-5](https://doi.org/10.1016/S0969-2126(96)00089-5), 1996.

634 Concha, N. O., Janson, C. A., Rowling, P., Pearson, S., Cheever, C. A., Clarke, B. P., Lewis,
635 C., Galleni, M., Frere, J.-M., Payne, D. J., Bateson, J. H., and Abdel-Meguid, S. S.: Crystal
636 Structure of the IMP-1 metallo- β -lactamase from *Pseudomonas aeruginosa* and its complex
637 with a mercaptocarboxylate inhibitor: binding determinants of a potent, broad-spectrum
638 inhibitor, *Biochemistry*, 39, 4288–4298, <https://doi.org/10.1021/bi992569m>, 2000.

639 Crick, D. J., Wang, J. X., Graham, B., Swarbrick, J. D., Mott, H. R., and Nietlispach, D.:
640 Integral membrane protein structure determination using pseudocontact shifts, *J. Biomol.*
641 *NMR*, 61, 197–207, <https://doi.org/10.1007/s10858-015-9899-6>, 2015.

642 de la Cruz, L., Nguyen, T.H.D., Ozawa, K., Shin, J., Graham, B., Huber, T., and Otting, G.:
643 Binding of low-molecular weight inhibitors promotes large conformational changes in the
644 dengue virus NS2B-NS3 protease: fold analysis by pseudocontact shifts, *J. Am. Chem. Soc.*,
645 133, 19205–19215, <https://doi.org/10.1021/ja208435s>, 2011.

646 Galleni, M., Lamotte-Brasseur, J., Rossolini, G. M., Spencer, J., Dideberg, O., Frère, J.-M.,
647 and The Metallo- β -Lactamase Working Group: Standard numbering scheme for class B β -
648 lactamases. *Antimicrob. Agents Chemother.*, 45, 660–663,
649 <https://doi.org/10.1128/AAC.45.3.660-663.2001>, 2001.

650 Gianquinto, E., Tondi, D., D'Arrigo, G., Lazzarato, L., and Spyrosakis, F.: Can we exploit β -
651 lactamases intrinsic dynamics for designing more effective inhibitors? *Antibiotics*, 9, 833,
652 <https://doi.org/10.3390/antibiotics9110833>, 2020.

653 González, M. M., Abriata, L. A., Tomatis, P. E., and Vila, A. J.: Optimization of
654 conformational dynamics in an epistatic evolutionary trajectory, *Mol. Biol. Evol.*, 33, 1768–
655 1776, <https://doi.org/10.1093/molbev/msw052>, 2016.

656 Graham, B., Loh, C.T., Swarbrick, J.D., Ung, P., Shin, J., Yagi, H., Jia, X., Chhabra, S.,
657 Pintacuda, G., Huber, T., and Otting, G.: A DOTA-amide lanthanide tag for reliable
658 generation of pseudocontact shifts in protein NMR spectra, *Bioconjugate Chem.*, 22, 2118–
659 2125, <https://doi.org/10.1021/bc200353c>, 2011.

660 Guan, J. Y., Keizers, P. H. J., Liu, W. M., Löhr, F., Skinner, S. P., Heeneman, E. A., Schwalbe,
661 H., Ubbink, M., and Siegal, G.: Small-molecule binding sites on proteins established by
662 paramagnetic NMR spectroscopy. *J. Am. Chem. Soc.*, 135, 5859–5868,
663 <https://doi.org/10.1021/ja401323m>, 2013.

664 Herath, I. D., Breen, C., Hewitt, S. H., Berki, T. R., Kassir, A. F., Dodson, C., Judd, M., Jabar,
665 S., Cox, N., Otting, G., and Butler, S. J.: A chiral lanthanide tag for stable and rigid
666 attachment to single cysteine residues in proteins for NMR, EPR and time-resolved
667 luminescence studies, *Chem. Eur. J.*, 27, 13009–13023,
668 <https://doi.org/10.1002/chem.202101143>, 2021.

669 Hinchliffe, P., González, M. M., Mojica, M. F., González, J. M., Castillo, V., Saiz, C.,
670 Kosmopoulou, M., Tooke, C. L., Llarrull, L. I., Mahler, G., and Bonomo, R. A.: Cross-class
671 metallo- β -lactamase inhibition by bisthiazolidines reveals multiple binding modes, *Proc.*
672 *Nat. Acad. Sci.*, 113, E3745–E3754, <https://doi.org/10.1073/pnas.1601368113>, 2016.

673 Hinchliffe, P., Tanner, C. A., Krismanich, A. P., Labbé, G., Goodfellow, V. J., Marrone, L.,
674 Desoky, A. Y., Calvopiña, K., Whittle, E. E., Zeng, F., and Avison, M. B.: Structural and
675 kinetic studies of the potent inhibition of metallo- β -lactamases by 6-
676 phosphonomethylpyridine-2-carboxylates, *Biochemistry*, 57, 1880–1892,
677 <https://doi.org/10.1021/acs.biochem.7b01299>, 2018.

678 Hiraiwa, Y., Saito, J., Watanabe, T., Yamada, M., Morinaka, A., Fukushima, T., and Kudo, T.:
679 X-ray crystallographic analysis of IMP-1 metallo- β -lactamase complexed with a 3-
680 aminophthalic acid derivative, structure-based drug design, and synthesis of 3,6-
681 disubstituted phthalic acid derivative inhibitors, *Bioorg. Med. Chem. Lett.*, 24, 4891–4894,
682 <https://doi.org/10.1016/j.bmcl.2014.08.039>, 2014.

683 Huntley, J.J.A., Scrofani, S.D.B., Osborne, M.J., Wright, P.E., and Dyson, H.J.: Dynamics of
684 the metallo- β -lactamase from *Bacteroides fragilis* in the presence and absence of a tight-
685 binding inhibitor, *Biochemistry*, 39, 13356–13364, <https://doi.org/10.1021/bi001210r>,
686 2000.

687 Huntley, J. J. A., Fast, W., Benkovic, S. J., Wright, P. E., and Dyson, H. J.: Role of a solvent-
688 exposed tryptophan in the recognition and binding of antibiotic substrates for a metallo- β -
689 lactamase, *Protein Sci.*, 12, 1368–1375, <https://doi.org/10.1110/ps.0305303>, 2003.

690 Ito, H., Arakawa, Y., Ohsuka, S., Wachorotayankun, R., Kato, N., and Ohta, M.: Plasmid-
691 mediated dissemination of the metallo- β -lactamase gene *bla_{IMP}* among clinically isolated

692 strains of *Serratia marcescens*, *Antimicrob. Agents Chemother.*, 39, 824–829,
693 <https://doi.org/10.1128/AAC.39.4.824>, 1995.

694 John, M., Park, A. Y., Pintacuda, G., Dixon, N. E., and Otting, G.: Weak alignment of
695 paramagnetic proteins warrants correction for residual CSA effects in measurements of
696 pseudocontact shifts, *J. Am. Chem. Soc.*, 127, 17190–17191,
697 <https://doi.org/10.1021/ja0564259>, 2005.

698 John, M., Park, A. Y., Pintacuda, G., Dixon, N. E., and Otting, G.: Weak alignment of
699 paramagnetic proteins warrants correction for residual CSA effects in measurements of
700 pseudocontact shifts, *J. Am. Chem. Soc.*, 127, 17190–17191,
701 <https://doi.org/10.1021/ja0564259>, 2005.

702 Joss, D., Walliser, R. M., Zimmermann, K., and Häussinger, D.: Conformationally locked
703 lanthanide chelating tags for convenient pseudocontact shift protein nuclear magnetic
704 resonance spectroscopy, *J. Biomol. NMR*, 72, 29–38, <https://doi.org/10.1007/s10858-018-0203-4>, 2018.

705

706 Keizers, P. H. J., Saragliadis, A., Hiruma, Y., Overhand, M., and Ubbink, M.: Design,
707 synthesis, and evaluation of a lanthanide chelating protein probe: CLaNP-5 yields
708 predictable paramagnetic effects independent of environment, *J. Am. Chem. Soc.*, 130,
709 14802–14812, <https://doi.org/10.1021/ja8054832>, 2008.

710 Keizers, P. H. J., Mersinli, B., Reinle, W., Donauer, J., Hiruma, Y., Hannemann, F., Overhand,
711 M., Bernhardt, R., and Ubbink, M.: A solution model of the complex formed by adrenodoxin
712 and adrenodoxin reductase determined by paramagnetic NMR spectroscopy, *Biochemistry*,
713 49, 6846–6855, <https://doi.org/10.1021/bi100598f>, 2010.

714 Kobashigawa, Y., Saio, T., Ushio, M., Sekiguchi, M., Yokochi, M., Ogura, K., and Inagaki, F.:
715 Convenient method for resolving degeneracies due to symmetry of the magnetic
716 susceptibility tensor and its application to pseudo contact shift-based protein-protein
717 complex structure determination, *J. Biomol. NMR*, 53, 53–63,
718 <https://doi.org/10.1007/s10858-012-9623-8>, 2012.

719 Laraki, N., Galleni, M., Thamm, I., Riccio, M. L., Amicosante, G., Frère, J.-M., and Rossolini,
720 G. M.: Structure of In101, a *bla_{IMP}*-containing *Pseudomonas aeruginosa* integron
721 phyletically related to In5, which carries an unusual array of gene cassettes, *Antimicrob.*
722 *Agents Chemother.*, 43, 890–901, <https://doi.org/10.1128/AAC.43.4.890>, 1999a.

723 Laraki, N., Franceschini, N., Rossolini, G. M., Santucci, P., Meunier, C., De Pauw, E.,
724 Amicosante, G., Frère, J.-M., and Galleni, M.: Biochemical characterization of the
725 *Pseudomonas aeruginosa* 101/1477 metallo-β-lactamase IMP-1 produced by *Escherichia*

726 *coli*, *Antimicrob. Agents Chemother.*, 43, 902–906, <https://doi.org/10.1128/AAC.43.4.902>,
727 1999b.

728 Lescanne, M., Ahuja, P., Blok, A., Timmer, M., Akerud, T., and Ubbink, M.: Methyl group
729 reorientation under ligand binding probed by pseudocontact shifts, *J. Biomol. NMR*, 71,
730 275–285, <https://doi.org/10.1007/s10858-018-0190-5>, 2018.

731 Linciano, P., Cendron, L., Gianquinto, E., Spyros, F., and Tondi, D.: Ten years with New
732 Delhi metallo- β -lactamase-1 (NDM-1): from structural insights to inhibitor design, *ACS*
733 *Infect. Dis.* 5, 9–34, <https://doi.org/10.1021/acsinfecdis.8b00247>, 2018.

734 Maleckis, A., Herath, I. D., and Otting, G.: Synthesis of ^{13}C / ^{19}F / ^2H labeled indoles for use as
735 tryptophan precursors for protein NMR spectroscopy, *Org. Biomol. Chem.*, 19, 5133–5147,
736 <https://doi.org/10.1039/D1OB00611H>, 2021.

737 Man, B., Su, X.-C., Liang, H., Simonsen, S., Huber, T., Messerle, B. A., and Otting, G.: 3-
738 Mercapto-2,6-pyridinedicarboxylic acid, a small lanthanide-binding tag for protein studies
739 by NMR spectroscopy, *Chem. Eur. J.*, 16, 3827–3832,
740 <https://doi.org/10.1002/chem.200902904>, 2010.

741 Markley, J. L., Bax, A., Arata, Y., Hilbers, C. W., Kaptein, R., Sykes, B. D., Wright, P. E., and
742 Wüthrich, K.: Recommendations for the presentation of NMR structures of proteins and
743 nucleic acids - IUPAC-IUBMB-IUPAB Inter-Union Task Group on the Standardization of
744 Data Bases of Protein and Nucleic Acid Structures Determined by NMR Spectroscopy, *J.*
745 *Biomol. NMR*, 12, 1–23, <https://doi.org/10.1023/A:1008290618449>, 1998.

746 Meissner, A., Duus, J. Ø., and Sørensen, O. W.: Spin-state-selective excitation. Application for
747 E.COSY-type measurement of J_{HH} coupling constants, *J. Magn. Reson.*, 128, 92–97,
748 <https://doi.org/10.1006/jmre.1997.1213>, 1997.

749 Moali, C., Anne, C., Lamotte-Brasseur, J., Groslambert, S., Devreese, B., Van Beeumen, J.,
750 Galleni, M., and Frère, J.M.: Analysis of the importance of the metallo- β -lactamase active
751 site loop in substrate binding and catalysis, *Chemistry & Biology*, 10, 319–329,
752 [https://doi.org/10.1016/S1074-5521\(03\)00070-X](https://doi.org/10.1016/S1074-5521(03)00070-X), 2003.

753 Orton, H. W., Huber, T., and Otting, G.: Paramagpy: software for fitting magnetic
754 susceptibility tensors using paramagnetic effects measured in NMR spectra, *Magn.*
755 *Reson.*, 1, 1–12, <https://doi.org/10.5194/mr-1-1-2020>, 2020.

756 Palacios, A. R., Mojica, M. F., Giannini, E., Taracila, M. A., Bethel, C. R., Alzari, P. M., Otero,
757 L. H., Klinke, S., Llarrull, L. I., Bonomo, R. A., and Vila, A. J.: The reaction mechanism of
758 metallo- β -lactamases is tuned by the conformation of an active-site mobile loop,

759 Antimicrob. Agents Chemother, 63, e01754-18, <https://doi.org/10.1128/AAC.01754-18>,
760 2019.

761 Payne, D. J., Hueso-Rodriguez, J. A., Boyd, H., Concha, N. O., Janson, C. A., Gilpin, M.,
762 Bateson, J. H., Cheever, C., Niconovich, N. L., Pearson, S., Rittenhouse, S., Tew, D., Díez,
763 E., Pérez, P., de la Fuente, J., Rees, M., and Rivera-Sagredo, A.: Identification of a series of
764 tricyclic natural products as potent broad-spectrum inhibitors of metallo- β -lactamases,
765 Antimicrob. Agents Chemother., 46, 1880–1886, <https://doi.org/10.1128/AAC.46.6.1880-1886.2002>, 2002.

766

767 Pearce, B. J. G., Jabar, S., Loh, C. T., Szabo, M., Graham, B., and Otting, G.: Structure
768 restraints from heteronuclear pseudocontact shifts generated by lanthanide tags at two
769 different sites, J. Biomol. NMR, 68, 19–32, <https://doi.org/10.1007/s10858-017-0111-z>,
770 2017.

771 Pilla, K. B., Otting, G., and Huber, T.: Protein structure determination by assembling super-
772 secondary structure motifs using pseudocontact shifts, Structure, 25, 559–568,
773 <https://doi.org/10.1016/j.str.2017.01.011>, 2017.

774 Pintacuda, G., Park, A. Y., Keniry, M. A., Dixon, N. E., and Otting, G.: Lanthanide labeling
775 offers fast NMR approach to 3D structure determinations of protein-protein complexes, J.
776 Am. Chem. Soc., 128, 3696–3702, <https://doi.org/10.1021/ja057008z>, 2006.

777 Rossi, M.-A., Martinez, V., Hinchliffe, P., Mojica, M. F., Castillo, V., Moreno, D. M., Smith,
778 R., Spellberg, B., Drusano, G. L., Banchio, C., Bonomo, R. A., Spencer, J., Vila, A. J., and
779 Mahler, G.: 2-Mercaptomethyl-thiazolidines use conserved aromatic–S interactions to
780 achieve broad-range inhibition of metallo- β -lactamases, Chem. Sci., 12, 2898–2908,
781 <https://doi.org/10.1039/d0sc05172a>, 2021.

782 Salimraj, R., Hinchliffe, P., Kosmopoulou, M., Tyrrell, J. M., Brem, J., van Berkel, S. S.,
783 Verma, A., Owens, R. J., McDonough, M. A., Walsh, T. R., Schofield, C. J., and Spencer,
784 J.: Crystal structures of VIM-1 complexes explain active site heterogeneity in VIM-class
785 metallo- β -lactamases, FEBS J., 286, 169–183, <https://doi.org/10.1111/febs.14695>, 2018.

786 Shishmarev, D. and Otting, G.: How reliable are pseudocontact shifts induced in proteins and
787 ligands by mobile paramagnetic metal tags? A modelling study, J. Biomol. NMR, 56, 203–
788 216, <https://doi.org/10.1007/s10858-013-9738-6>, 2013.

789 Softley, C. A., Zak, K. M., Bostock, M. J., Fino, R., Zhou, R. X., Kolonko, M., Mejdi-Nitiu,
790 R., Meyer, H., Sattler, M., and Popowicz, G. M.: Structure and molecular recognition

791 mechanism of IMP-13 metallo- β -lactamase, *Antimicrob. Agents Chemother.*, 64, e00123-
792 20, <https://doi.org/10.1128/AAC.00123-20>, 2020.

793 Su, X.-C., McAndrew, K., Huber, T., and Otting, G.: Lanthanide-binding peptides for NMR
794 measurements of residual dipolar couplings and paramagnetic effects from multiple angles,
795 *J. Am. Chem. Soc.*, 130, 1681–1687, <https://doi.org/10.1021/ja076564l>, 2008.

796 Toney, J. H., Hammond, G. G., Fitzgerald, P. M., Sharma, N., Balkovec, J. M., Rouen, G. P.,
797 Olson, S. H., Hammond, M. L., Greenlee, M. L., and Gao, Y. D.: Succinic acids as potent
798 inhibitors of plasmid-borne IMP-1 metallo- β -lactamase, *J. Biol. Chem.*, 276, 31913–31918,
799 <https://doi.org/10.1074/jbc.M104742200>, 2001.

800 van Duin, D., Kaye, K. S., Neuner, E. A., and Bonomo, R. A.: Carbapenem-resistant
801 Enterobacteriaceae: a review of treatment and outcomes, *Diagn. Microbiol. Infect. Dis.* 75,
802 115–120, <https://doi.org/10.1016/j.diagmicrobio.2012.11.009>, 2013.

803 Wachino, J., Kanechi, R., Nishino, E., Mochizuki, M., Jin, W., Kimura, K., Kurosaki, H., and
804 Arakawa, Y.: 4-Amino-2-sulfanylbenzoic acid as a potent subclass B3 metallo- β -lactamase-
805 specific inhibitor applicable for distinguishing metallo- β -lactamase subclasses, *Antimicrob.*
806 *Agents Chemother.* 63, e01197-19, <https://doi.org/10.1128/AAC.01197-19>, 2019.

807 Watanabe, M., S. Iyobe, M. Inoue, and S. Mitsuhashi: Transferable imipenem resistance in
808 *Pseudomonas aeruginosa*, *Antimicrob. Agents Chemother.* 35, 147–151, <https://doi.org/10.1128/AAC.35.1.147>, 1991.

809 Yagi, H., Pilla, K. B., Maleckis, A., Graham, B., Huber, T., and Otting, G.: Three-dimensional
810 protein fold determination from backbone amide pseudocontact shifts generated by
811 lanthanide tags at multiple sites, *Structure*, 21, 883–890,
812 <https://doi.org/10.1016/j.str.2013.04.001>, 2013.

813 Yamaguchi, Y., Matsueda, S., Matsunaga, K., Takashio, N., Toma-Fukai, S., Yamagata, Y.,
814 Shibata, N., Wachino, J., Shibayama, K., Arakawa, Y., and Kurosaki, H.: Crystal structure
815 of IMP-2 metallo- β -lactamase from *Acinetobacter* spp.: comparison of active-site loop
816 structures between IMP-1 and IMP-2, *Biol. Pharm. Bull.* 38, 96–
817 101, <https://doi.org/10.1248/bpb.b14-00594>, 2015.

818 Yamaguchi, Y., Kato, K., Ichimaru, Y., Jin, W., Sakai, M., Abe, M., Wachino, J., Arakawa,
819 Y., Miyagi, Y., Imai, M., Fukuishi, N., Yamagata, Y., Otsuka, M., Fujita, M., and Kurosaki,
820 H.: Crystal structures of metallo- β -lactamase (IMP-1) and its D120E mutant in complexes
821 with citrate and the inhibitory effect of the benzyl group in citrate monobenzyl ester, *J. Med.*
822 *Chem.*, 64, 10019–10026, <https://doi.org/10.1021/acs.jmedchem.1c00308>, 2021.

824 Yamaguchi, H., M. Nukaya, and T. Sawai, T: Sequence of *Klebsiella pneumoniae* RDK4
825 metallo- β -lactamase, EMBO database accession no. D29636, EMBO, Heidelberg,
826 Germany, 1994.

827 Zimmermann, K., Joss, D., Müntener, T., Nogueira, E. S., Schäfer, M., Knörr, L., Monnard,
828 F. W., and Häussinger, D.: Localization of ligands within human carbonic anhydrase II
829 using ^{19}F pseudocontact shift analysis, Chem. Sci., 10, 5064–5072,
830 <https://doi.org/10.1039/c8sc05683h>, 2019.