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Abstract. CE1Diffusion NMR and MRI methods building on the classic pulsed gradient spin-echo sequence
are sensitive to many aspects of translational motion, including time and frequency dependence (“restriction”),
anisotropy, and flow, leading to ambiguities when interpreting experimental data from complex heterogeneous
materials such as living biological tissues. While the oscillating gradient technique specifically targets frequency
dependence and permits control of the sensitivity to flow, tensor-valued encoding enables investigations of
anisotropy in orientationally disordered materials. Here, we propose a simple scheme derived from the “double-
rotation” technique in solid-state NMR to generate a family of modulated gradient waveforms allowing for
comprehensive exploration of the 2D frequency–anisotropy space and convenient investigation of both restricted
and anisotropic diffusion with a single multidimensional acquisition protocol, thereby combining the desirable
characteristics of the oscillating gradient and tensor-valued encoding techniques. The method is demonstrated
by measuring multicomponent isotropic Gaussian diffusion in simple liquids, anisotropic Gaussian diffusion in
a polydomain lyotropic liquid crystal, and restricted diffusion in a yeast cell sediment.

1 Introduction

Magnetic field gradients applied during the dephasing and
rephasing periods of a spin-echo sequence (Hahn, 1950)
render the NMR signal sensitive to various aspects of
translational motion including bulk diffusivity (Douglass5

and McCall, 1958), flow (Carr and Purcell, 1954), time
and frequency dependence (“restriction”) (Woessner, 1963),
anisotropy (Boss and Stejskal, 1965), and exchange (Kärger,
1969). Although the conventional and ubiquitous pulsed gra-
dient spin-echo sequence by Stejskal and Tanner (1965) may10

give information about all of these aspects, more elabo-
rate gradient modulations (Tanner, 1979; Cory et al., 1990;
Callaghan and Manz, 1994; Mori and van Zijl, 1995) are
required to unambiguously assign a certain mechanism to
the experimental observations (Topgaard, 2017; Lundell and15

Lasič, 2020). Diffusion MRI methods incorporating such
advanced diffusion encoding schemes have recently been
shown to have potential for clinical research applications
(Reymbaut et al., 2020); some notable examples are oscil-
lating gradients to estimate cell sizes (Xu et al., 2021) and20

tensor-valued encoding to characterize cell shapes (Daimiel
Naranjo et al., 2021) in breast tumors.

The sensitivity of the MRI signal to the various types of
motion can be quantified with the tensor-valued encoding
spectrum b(ω) (Topgaard, 2019a; Lundell and Lasič, 2020), 25

the trace of which equals the dephasing power spectrum
(Stepišnik, 1981) – relevant for isotropic restricted diffusion
– and whose integral over ω equals the conventional b ma-
trix (Basser et al., 1994) giving information about diffusion
anisotropy. While most studies focus on either the frequency- 30

dependent (Aggarwal, 2020) or tensorial (Reymbaut, 2020)
aspects of the encoding, Lundell et al. (2019) suggested join-
ing them into a common multidimensional framework. The
approach was demonstrated with gradient waveforms deriv-
ing from the magic-angle spinning (MAS) technique in solid- 35

state NMR spectroscopy (Andrew et al., 1959; Eriksson et
al., 2013; Topgaard, 2013); however, these methods offer
only limited access to the frequency and anisotropy dimen-
sions.
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Expanding on the results of Lundell et al. (2019), we take
inspiration from the “double-rotation” (DOR) technique in
solid-state NMR (Samoson et al., 1998) and derive a fam-
ily of gradient waveforms for comprehensive exploration of,
in particular, the frequency–anisotropy dimensions of b(ω),5

as quantified by the centroid frequency ωcent (Arbabi et al.,
2020) and encoding anisotropy b1 (Eriksson et al., 2015),
in addition to the b value and b vector (2, 8) of conven-
tional diffusion tensor imaging (Kingsley, 2006). While ωcent
is key for characterizing restricted diffusion (Stepišnik and10

Callaghan, 2000), the variable b1 enables quantification of
anisotropy in orientationally disordered materials (Eriksson
et al., 2015) and estimation of nonparametric diffusion ten-
sor distributions (de Almeida Martins and Topgaard, 2016;
Topgaard, 2019b). The ability of the new gradient waveforms15

to give access to the complete 2D ωcent–b1 plane is demon-
strated by microimaging measurements on previously stud-
ied phantoms with well-defined restriction and anisotropy
properties, namely water (Mills, 1973) and concentrated salt
solution (Wadsö et al., 2009) with isotropic Gaussian dif-20

fusion, a lamellar liquid crystal giving anisotropic Gaussian
diffusion (Topgaard, 2016), and a yeast cell sediment exhibit-
ing isotropic restricted diffusion (Malmborg et al., 2006).

2 Theoretical background

To set the stage for later sections dealing with the pro-25

posed gradient waveforms to investigate both frequency-
dependent and tensorial aspects of translational motion, we
include a brief summary of the relevant theory here; greater
detail can be found in the textbooks by Price (2009) and
Callaghan (2011) as well as in the comprehensive review by30

Lundell and Lasič (2020). Readers already familiar with the
background material may proceed directly to the design of
gradient waveforms in Sect. 3 after noting Eqs. (32) and (34)
with the definitions of the main variables ωcent and b1 re-
porting on the sensitivity to restriction and anisotropy.35

2.1 Encoding of translational motion by magnetic field
gradients

Figure 1 illustrates the effects of a general gradient waveform
g(t) on the NMR signal from an ensemble of spins undergo-
ing restricted diffusion and flow within an infinite cylinder.40

As shown using the 2D and 3D plots of g(t) in Fig. 1a, both
the magnitude and direction of the gradient vector are chang-
ing smoothly with time. Simultaneously, the spins spread out
and gradually drift from their initial positions (Fig. 1b). The
time-dependent normalized signal E(t) is given by45

E (t)= 〈exp(iφ (t))〉 , (1)

where 〈. . .〉 denotes an ensemble mean and the time-
dependent phase φ(t) of a single spin with gyromagnetic ra-
tio γ is determined by the time integral of the scalar product

between g(t) the time-dependent position r(t) according to 50

φ (t)=−γ
∫ t

0
g
(
t ′
)
· r
(
t ′
)

dt ′. (2)

The interplay between g(t) and r(t) results in φ(t) evolving
from zero for all spins at t = 0 to periodic patterns with vary-
ing directions and spatial wavelengths at intermediate times
and, finally, an overall phase shift superposed on partially 55

randomized values. From Eq. (1), it follows that the latter
phase dispersion leads to a decrease in the magnitude of the
signal.

The evolution of φ(t) may be rationalized by partial inte-
gration of Eq. (2) into 60

φ (t)=−q (t) · r (t)+
∫ t

0
q
(
t ′
)
· v
(
t ′
)

dt ′, (3)

where q(t) is the dephasing vector, defined as

q (t)= γ
∫ t

0
g
(
t ′
)

dt ′, (4)

and v(t)= dr(t) / dt is the time-dependent velocity. The spa-
tial periodicity in φ(t) at intermediate times is, according to 65

the first term in Eq. (3), given by the scalar product between
q(t) and r(t), which is utilized to obtain the spatial resolution
in MRI where the dephasing vector is usually denoted k(t).
The plots of q(t) in Fig. 1a show smooth changes in both the
magnitude and direction of the vector with time. 70

Focusing on translational displacements rather than abso-
lute positions, we select a time τ where

q (τ )= 0 (5)

and the first term in Eq. (3) vanishes while the second one
remains: 75

φ (τ )=
∫ τ

0
q (t) · v (t)dt. (6)

The value of φ(τ ) in Eq. (6) is insensitive to r(τ ) but depends
on the history of q(t) and v(t) in the interval from t = 0 to τ .

2.2 Gaussian phase distribution approximation

As shown in Figure 1c, the selected gradient waveform 80

and random walk simulation parameters yield a phase dis-
tribution P (φ(t)) that is well approximated at t = τ as a
Gaussian function with mean 〈φ(τ )〉 and standard deviation
std[φ(τ )]= (〈φ(τ )2

〉 – 〈φ(τ )〉2)1/2. The Gaussian function
can be expressed as 85

P (φ (τ ))=
1

2
√
πβ

exp

(
−

(φ (τ TS1 )−α)2

4β

)
, (7)

where

α = 〈φ (τ )〉 (8)
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Figure 1. Principles of motion encoding by general gradient waveforms. (a) Time-dependent gradient g(t) and dephasing vector q(t) il-
lustrated as 2D graphs of Cartesian components vs. t (left) and 3D plots of trajectories through space (right). The average values of the
q(t) components within the time interval from t = 0 to τ are indicated with arrows labeled qv/τ , where the velocity-encoding vector qv
is defined in Eq. (15). (b) Sequence of snapshots from a random walk simulation of an ensemble of spins (spheres) undergoing restricted
diffusion and flow within an infinite cylinder (black section) during application of the waveforms in panel (a). Each spin is color-coded by its
time-dependent phase φ(t) given by the interplay between g(t) and the spin positions r(t) according to Eq. (2). (c) Phase distribution P (φ(τ ))
for the ensemble of spins at t = τ (black histogram) and a Gaussian (smooth gray line) with mean 〈φ(τ )〉 and standard deviation std[φ(τ )]
(spacing between vertical gray lines) which give the phase shift α and attenuation factor β of the signal E(τ ) via Eqs. (8), (9), and (11).
(d) Frequency-dependent elements (color-coded) of the tensor-valued encoding spectrum b(ω) and diffusion spectrum D(ω) as well as their
tensor dot product b(ω) : D(ω) which gives β via Eq. (21). The centroid frequency ωcent (arrow) is obtained from the trace of b(ω) (gray line)
via Eq. (32). (e) The 3D plots of the ensemble mean velocity 〈v〉, velocity-encoding vector qv, and encoding tensor b, with the latter being
defined in Eq. (33). The scalar product of 〈v〉 and qv gives α via Eq. (14).

and

β =
1
2

(〈
φ(τ )2

〉
−〈φ (τ )〉2

)
. (9)

After rewriting Eq. (1) as an integral,

E (τ )=
∫
∞

−∞

P (φ (τ ))exp(iφ (τ ))dφ (τ ) , (10)

the insertion of Eq. (7) into Eq. (10) may be evaluated to 5

E (τ )= exp(iα−β) , (11)

where α and β can be identified as quantitative measures of
the overall phase shift and attenuation of the signal, respec-
tively, as previously deduced from visual inspection of the
phases of the spin ensemble in Fig. 1b. The Gaussian phase 10

distribution approximation has been applied for the cases of
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free (Carr and Purcell, 1954; Douglass and McCall, 1958)
and restricted (Neuman, 1974) diffusion, and investigations
of its ranges of validity can be found in the literature (Balinov
et al., 1993; Stepišnik, 1999).

2.3 Mean velocity and velocity correlation function5

Insertion of Eq. (6) into Eq. (8) yields

α =

〈∫ τ

0
q (t) · v (t)dt

〉
, (12)

which by separating v(t) into the ensemble mean 〈v(t)〉= 〈v〉
and fluctuating part u(t), defined by

u (t)= v (t)−〈v〉 , (13)10

can be evaluated to

α = qv · 〈v〉 , (14)

where the flow encoding vector qv is defined as

qv =

∫ τ

0
q (t)dt. (15)

Correspondingly, the insertion of Eq. (6) into Eq. (9) gives15

β =
1
2

(〈[∫ τ

0
q (t) · v (t)dt

]2
〉
−

〈∫ τ

0
q (t) · v (t)dt

〉2
)
, (16)

which by reordering the time integrals and ensemble means
as well as noting that 〈u(t) · 〈v〉〉 = 0, can be expressed as

β =

∫ τ

0

∫ t

0
q(t)T

·

〈
u (t)u

(
t ′
)T〉
·q
(
t ′
)

dtdt ′, (17)

where 〈u(t)u(t ′)T
〉 is the tensor-valued velocity correlation20

function.

2.4 Transformation to the frequency domain

After introducing the dephasing spectrum q(ω) and diffusion
spectrum D(ω) by Fourier transformations to the frequency
(ω) domain according to25

q (ω)=
∫ τ

0
q (t)exp(iωt)dt (18)

and

D (ω)=
1
2

∫
∞

−∞

〈
u (t)u

(
t ′
)T〉exp

(
iω
(
t ′− t

))
d
(
t ′− t

)
, (19)

Eq. (17) can be recast into

β =
1

2π

∫
∞

−∞

q(ω)T
·D (ω) ·q (−ω)dω, (20)30

which can be expressed more compactly as

β =

∫
∞

−∞

b (ω) : D (ω)dω, (21)

where b(ω) is the tensor-valued encoding spectrum defined
as (Topgaard, 2019a; Lundell and Lasič, 2020)

b (ω)=
1

2π
q (ω)q(−ω)T , (22) 35

and “:” denotes a tensor dot product (Basser et al., 1994):

b (ω) : D (ω)=
∑

i

∑
j
bij (ω)Dij (ω) . (23)

Combining Eqs. (11), (14), and (21) yields

E (τ )= exp
(

iqv · 〈v〉−
∫
∞

−∞

b (ω) : D (ω)dω
)
, (24)

where the motion-encoding properties of g(t) are summa- 40

rized in qv and b(ω), as illustrated in Fig. 1d and e. While
qv and 〈v〉 are (ω-independent) vectors, both b(ω) and D(ω)
are symmetric second-order tensors at each value of ω.

2.5 Diffusion spectra for some simple cases

For a liquid with bulk diffusivity D0 confined in d di- 45

mensions in planar (d = 1), cylindrical (d = 2), or spherical
(d = 3) compartments with radius r , the diffusion spectrum
Drest(ω) in the restricted dimensions can be expressed as fol-
lows (Stepišnik, 1993):

Drest (ω)=D0−
∑
k

wk
D0−D∞

1+ω2/02
k

, (25) 50

where

0k =
ξ2
kD0

r2 (26)

and

wk =
2

ξ2
k + 1− d

. (27)

Equation (25) includes the long-range diffusivityD∞, allow- 55

ing for finite permeability of the compartment walls (Lasič
et al., 2009), and can be recognized as a sum of Lorentzians
with widths 0k and weights wk . In Eqs. (26) and (27), ξk is
the kth solution of

ξJd/2−1 (ξ )− (d − 1)Jd/2 (ξ )= 0, (28) 60

where Jν is the νth-order Bessel function of the first kind. Us-
ing the cylindrical case in Fig. 1b as an example, the tensor-
valued diffusion spectrum D(ω) is given by

D (ω)= R (θ,φ)

(
Drest (ω) 0 0

0 Drest (ω) 0
0 0 D0

)
R−1 (θ,φ) , (29)



H. Jiang et al.: Multidimensional encoding of restricted and anisotropic diffusion 5

where θ and φ are polar and azimuthal angles, giving the ori-
entation of the cylinder in the lab frame, and R(θ , φ) is a
rotation matrix. Figure 1d includes a plot of D(ω) for the
case θ = 0 and φ = 0 where all off-diagonal elements are
zero. At high values of ω, the diagonal elements converge to-5

wards D0, corresponding to isotropic diffusion. Conversely,
the effects of anisotropy reach a maximum in the low-ω limit
whereDrest(ω) approachesD∞, which equals zero in the ex-
ample in Fig. 1d. The planar version of Eq. (29) is obtained
by exchanging Drest(ω) and D0. In the low-ω limit, the pla-10

nar and cylindrical cases are often combined into a single
expression:

D= R (θ,φ)

D⊥ 0 0
0 D⊥ 0
0 0 D‖

R−1 (θ,φ) , (30)

where D‖ and D⊥ are the eigenvalues parallel and perpen-
dicular to the main symmetry axis of the compartment, re-15

spectively. For completeness, we note that Drest(ω) and D in
Eqs. (25) and (30), respectively, reduce to an ω-independent
scalar diffusion coefficientD for the special case of isotropic
Gaussian diffusion where D =D0 =D∞ =D⊥ =D‖.

2.6 Key properties of the tensor-valued diffusion20

encoding spectrum

While the signal expression in Eq. (24) takes the ω depen-
dence and tensorial properties of both b(ω) and D(ω) into
account and may be numerically evaluated as a single matrix
multiplication after discretization in the ω dimension and ap-25

propriate reordering of the tensor elements, the common oc-
currence of systems exhibiting approximately Gaussian (ω-
independent) and/or isotropic diffusion has led to the intro-
duction of simplified descriptions focusing on some specific
aspects. In the absence of diffusion anisotropy – which is ob-30

viously not the case for the example in Fig. 1 – it is sufficient
to use the dephasing power spectrum b(ω) (Stepišnik, 1981)
obtained from b(ω) by

b (ω)= trace {b (ω)} . (31)

The sensitivity to restriction can be summarized by the cen-35

troid frequency ωcent (Arbabi et al., 2020), defined as

ωcent =
1
b

∫
∞

−∞

|ω|b (ω)dω. (32)

In addition to all the tensor elements of b(ω), Fig. 1d in-
cludes a plot of b(ω) with an arrow indicating ωcent. The
example of b(ω) covers both low- and high-ω features of40

D(ω) and is, thus, less well suited for exploring ω-dependent
diffusion processes than gradient modulation schemes com-
prising trains of rectangular pulses (Callaghan and Stepišnik,
1995), multiple smooth oscillations (Parsons et al., 2003), or
a Carr–Purcell–Meiboom–Gill sequence in the presence of45

a constant gradient (Lasič et al., 2006), where the encoding

power is concentrated in a narrow frequency range and the
single value ωcent captures most of the relevant information
about the spectral content. Even when the peaks in b(ω) are
broader than the features in D(ω), the ωcent metric has some 50

value as a bookkeeping tool but is less suitable for quantita-
tive analysis.

For anisotropic systems with Gaussian diffusion, it is use-
ful to introduce the b-matrix b (Basser et al., 1994) by

b=
∫
∞

−∞

b (ω)dω. (33) 55

The sensitivity to anisotropy is given by the “shape” of the
tensor which can be quantified with the encoding anisotropy
b1 and asymmetry bη (Eriksson et al., 2015), defined as

b1 =
1
b

(
bZZ −

bYY + bXX

2

)
(34)

and 60

bη =
3
2
bYY − bXX

bb1
, (35)

respectively. Here, bXX, bYY , and bZZ are the eigenvalues
of b ordered according to the Haeberlen convention |bZZ −
b/3|>|bXX − b/3|>|bYY − b/3| (Haeberlen, 1976) and

b = trace {b} (36) 65

is the conventional b value (Le Bihan et al., 1986) that gives
the overall magnitude of the diffusion encoding. Figure 1e
shows a superquadric tensor glyph (Kindlmann, 2004) repre-
sentation of b where all eigenvalues and both shape parame-
ters b1 and bη are nonzero. 70

From the definitions of qv, q(ω), and b(ω) in Eqs. (15),
(18), and (22), it follows that the ω = 0 values of b(ω) are
proportional to qvqT

v and, thus, report on the sensitivity to
flow, albeit with some ambiguity with respect to the direc-
tionality: the vectors qv and −qv give the same b(ω = 0). It 75

should be noted that qv is not necessarily colinear with any
of the eigenvectors of b.

2.7 Special cases for data analysis

For data-fitting purposes, it is convenient to write the normal-
ized signal E as the ratio 80

E = S/S0, (37)

where S is detected signal and S0 is the signal obtained in
a reference measurement with the amplitudes of the motion-
encoding gradients set to zero. Equation (24) can then be ex-
pressed as 85

S = S0 exp
(

iqv · 〈v〉−
∫
∞

−∞

b (ω) : D (ω)dω
)
. (38)
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For the special cases of (i) isotropic restricted, (ii) anisotropic
Gaussian, and (iii) isotropic Gaussian diffusion in the ab-
sence of net flow (〈v〉 = 0), Eq. (38) is simplified to

S = S0 exp
(
−

∫
∞

−∞

b (ω)D (ω)dω
)
, (39)

S = S0 exp(−b : D) , (40)5

and

S = S0 exp(−bD) , (41)

respectively, where D(ω) is the (isotropic) diffusion spec-
trum, D is the (ω-independent) diffusion tensor, and D is
the (isotropic and ω-independent) diffusion coefficient intro-10

duced in Sect. 2.5 above.
For a heterogeneous system including multiple sub-

ensembles i with individual signals Si , each of which is given
by one of the equations (Eqs. 38–41) above, the total signal
S is obtained by the sum15

S =
∑
i

Si . (42)

An important type of heterogeneity refers to the orientations
of anisotropic objects with the extreme case of completely
random orientations as in a “powder”. In the special case
of axial symmetry of both b and D, powder averaging of20

Eq. (40) yields (Eriksson et al., 2015)

S = S0 exp(−bDiso)
√
π

2
exp(A/3)
√
A

erf
(√
A
)
, (43)

where

A= 3bDisob1D1. (44)

In Eq. (44), Diso is the isotropic diffusivity and D1 is the25

normalized diffusion anisotropy; these terms are defined as

Diso =
1
3

trace {D} =
D‖+ 2D⊥

3
(45)

and

D1 =
D‖−D⊥

3Diso
, (46)

respectively. Here, D‖ and D⊥ were introduced in Eq. (30).30

The definitions of b1 and b can be found in Eqs. (34) and
(36), respectively.

3 Design of gradient waveforms by double rotation
of the q vector

Expanding on previous magic-angle spinning (Andrew et al.,35

1959; Eriksson et al., 2013; Topgaard, 2013) and variable-
angle spinning (Frydman et al., 1992; Topgaard, 2016,

2017) approaches for generating motion-encoding gradient
waveforms, we apply the double-rotation (DOR) technique
(Samoson et al., 1998; Topgaard, 2019a) to probe the 2D ac- 40

quisition space spanned by the variables ωcent and b1 defined
in Eqs. (32) and (34), respectively. The q-vector trajectory
q(t) is expressed in terms of its time-dependent magnitude
q(t) and unit vector u(t) as

q (t)= q (t)u (t) . (47) 45

For the special case of DOR, the unit vector is written as

u (t)= Rz (ψ2 (t))Ry (ζ2)Rz (ψ1 (t))Ry (ζ1)
[

0 0 1
]T
,

(48)

where Rz and Ry are Euler rotation matrices, ζ1 and ζ2 are
the inclinations of the two rotation axes, and ψ1(t) and ψ2(t)
are the time-dependent angles of rotation. The rotations in 50

Eq. (48) are applied from right to left and follow aZ–Y active
rotation matrix convention.

Starting from a conventional 1D gradient waveform g1D(t)
– for instance, a pair of rectangular or sine-bell pulses of op-
posite polarity – the time-dependent functions q(t) and ψ2(t) 55

are given by Topgaard (2016):

q (t)= γ
∫ t

0
g1D

(
t ′
)

dt ′ (49)

and

ψ2 (t)=
1ψ2

b

∫ t

0
q2 (t ′)dt ′, (50)

where 1ψ2 is the total angle of rotation during the encoding 60

interval from time t = 0 to τ and

b =

∫ τ

0
q2 (t)dt (51)

is the conventional b value. After some exercises in
trigonometry, combination of Eqs. (47)–(51) and the relation
between g(t) and q(t) in Eq. (4) yields 65

gDOR (t)= g1D (t)


a+ cosψ+ (t)+ a− cosψ− (t)

+a2 cosψ2 (t)
a+ sinψ+ (t)− a− sinψ− (t)

+a2 sinψ2 (t)
a0− a1 cosψ1 (t)



+ grot (t)



− (n+ 1)a+ sinψ+ (t)
− (n− 1)a− sinψ− (t)
−a2 sinψ2(t)

(n+ 1)a+ cosψ+ (t)
− (n− 1)a− cosψ− (t)
+a2 cosψ2(t)
na1 sinψ1 (t)


, (52)

where

grot (t)=
1ψ2q(t)3

γ b
(53)
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is the time-dependent magnitude of the rotating gradient vec-
tor;

ψ1 (t)= nψ2 (t) and

ψ± (t)= (n± 1)ψ2 (t) (54)

are time-dependent rotation angles; and

a0 = cosζ1 cosζ2,

a1 = sinζ1 sinζ2,

a2 = cosζ1 sinζ2, and

a± = sinζ1
cosζ2± 1

2
(55)5

are amplitudes of the oscillating terms.
In the solid-state NMR field, DOR is applied with the in-

clinations ζ1 = 54.7◦ and ζ2 = 30.6◦, corresponding to zeros
of the second and fourth Legendre polynomial, to eliminate
both first- and second-order quadrupolar broadening of the10

NMR spectra of nuclei such as 23Na (Samoson et al., 1998).
While the encoding anisotropy b1 in Eq. (34) is closely re-
lated to the second Legendre polynomial (Eriksson et al.,
2015), we are not yet aware of any diffusion analog of the
quadrupolar interactions involving the fourth Legendre poly-15

nomial. Instead, we found that DOR with the inclinations
ζ1 = 90◦ and ζ2 =−54.7◦ yields desirable properties for dif-
fusion encoding, namely spectral content concentrated to a
narrow frequency window for all of the elements of b(ω).
For n>1 and the special case of g1D(t)∝ [δ(t)− δ(t − τ )],20

where δ(x) is the Dirac delta function, these angles yield an
isotropic b tensor, corresponding to b1 = 0. Waveforms for
any values of b1 and bη are then conveniently obtained by
scaling the components of gDOR(t) according to

g (t)=

[
gX (t)
gY (t)
gZ (t)

]
=

 gDOR,X (t)
√

1− b1
(
1+ bη

)
gDOR,Y (t)

√
1− b1

(
1− bη

)
gDOR,Z (t)

√
1+ 2b1

 . (56)25

At the selected inclinations, the a0 and a2 terms in Eq. (52)
equal zero, while the remaining amplitudes evaluate to a1 ≈

−0.816, a+ ≈ 0.789, and a− ≈−0.211. For the special case
g1D(t)∝ [δ(t)− δ(t − τ )], the main frequency components of30

b(ω) are thus given by

ω± =
ψ± (τ )
τ
= (n± 1)

1ψ2

τ
and

ω1 =
ψ1 (τ )
τ
= n

1ψ2

τ
, (57)

where, according to Eq. (52), ω± and ω1 are cleanly sep-
arated into the respective transverse (X, Y ) and longitudi-
nal (Z) directions. The mean frequency content, as quanti-35

fied by the centroid frequency ωcent defined in Eq. (32), can
be estimated by weighting the contributions from the main
frequency components by the corresponding amplitudes in

Figure 2. Flowchart for calculating a double-rotation gradient
waveform gDOR(t) given a 1D dephasing/rephasing waveform
g1D(t), rotation axis inclinations ζ1 and ζ2, double-rotation ratio
n, and total angle of rotation 1ψ2 during the waveform duration τ .
The waveform g1D(t), containing dephasing and rephasing pulses
with sinusoidal ramps of durations εup and εdown, gives the time-
dependent magnitude of the dephasing vector q(t) via Eq. (49),
which yields the time-dependent rotation angles ψi (t) via Eqs. (50)
and (54) as well as the time-dependent magnitude of the rotating
and oscillating gradient grot(t) via Eq. (53). Combining g1D(t),
grot(t), and ψi (t) via Eq. (52) gives gDOR(t), which, if ζ1 = 90◦

and ζ2 =−54.7◦, n is an integer above 1, and 1ψ2 is a multiple of
2π TS2 , achieves isotropic encoding tensors b where the anisotropy
b1 and asymmetry bη are both equal to zero. Finally, waveforms
g(t) for any values of b1 and bη are obtained by scaling of the
Cartesian components of gDOR(t) according to Eq. (56). The shown
example was generated with the MATLAB code provided in the
Supplement using εup = 0.015τ , εdown = 0.06τ , 1ψ2 = 2π TS3 ,
n= 4, b1 = 0.5, and bη = 0.25.

Eq. (52) but is more accurately calculated by the numerical
evaluation of Eq. (32), which also takes the finite durations of 40

the sinusoidal oscillations into account. For rough prediction
of ωcent, it is useful to note that a2

+� a2
−, implying that the

ω+ component will dominate the spectra in the X and Y di-
rections. The scaling of the waveforms according to Eq. (56)
preserves the frequency content in each of the eigendirec- 45

tions of the b tensor but shifts the value of ωcent between the
approximate extremes ω+ and ω1 for b1 =−1/2 and 1, re-
spectively. The differences in ω± and ω1 may give rise to a
directional dependence of the sensitivity to restriction as in-
vestigated for the b1 = 0 case by de Swiet and Mitra (1996). 50

Figure 2 illustrates the series of calculations required to
convert a conventional 1D waveform g1D(t) and given val-
ues of ζ1, ζ2, 1ψ2, n, b1, and bη to a 3D waveform g(t)
by numerical evaluation of Eqs. (49)–(56). Following previ-
ous works to generate families of smooth gradient waveforms 55

to explore the b1 and bη dimensions of diffusion encoding
(Topgaard, 2016, 2017), we construct g1D(t) from a dephas-
ing lobe with quarter-sine ramp-up of duration εup and half-
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cosine ramp-down of duration εdown as well as a rephasing
lobe obtained by inversion and time-reversal of the dephas-
ing one. The corresponding MATLAB code is provided in
the Supplement.

Figure 3 compiles waveforms and encoding spectra for an5

array of n and b1 at constant g1D(t), τ , and 1ψ2, yield-
ing constant b. Increasing n leads to larger rotation angles
ψ1(t) and ψ±(t) and frequencies ω1 and ω± according to
Eqs. (54) and (57), respectively, at the expense of over-
all higher gradient amplitudes on account of the terms in-10

cluding n in Eq. (52). For most waveforms, vanishing val-
ues of b(ω) at ω = 0 correspond to qv = 0 and insensitiv-
ity to flow. Many of the examples in Fig. 3 are familiar
from the literature, such as conventional Stejskal–Tanner en-
coding at (n= 0, b1 = 1), basic flow-compensated encod-15

ing (Caprihan and Fukushima, 1990) at (n= 1, b1 = 1), and
magic-angle spinning of the q vector (Eriksson et al., 2013)
at (n= 0, b1 = 0). The series of b1 = 1 and −1/2 wave-
forms with varying n resemble the cosine-modulated oscil-
lating gradients of Parsons et al. (2003) and the circularly20

polarized version introduced by Lundell et al. (2015), re-
spectively. Correspondingly, the series of waveforms with
n= 0 and varying b1 has previously been introduced as a
diffusion version of the variable-angle spinning technique to
correlate isotropic and anisotropic chemical shifts in solid-25

state NMR (Topgaard, 2016, 2017). The approach for joint
investigation of restricted and anisotropic diffusion proposed
by Lundell et al. (2019), combining isotropic encoding with
“tuned” and “detuned” directional encodings, can be recog-
nized as measurements at the three discrete points (n= 0,30

b1 = 0), (n= 0, b1 = 1), and (n= 1, b1 = 1) of the 2D
plane in Fig. 3. For completeness, we note that the ellipti-
cally polarized oscillating gradients by Nielsen et al. (2018)
can be reproduced with b1 =−1/2 and bη in the range from
0 to 3 (not included in Fig. 3).35

4 Proof-of-principle experiments

Magnesium nitrate hexahydrate, cobalt nitrate hexahydrate,
and 1-decanol were purchased from Sigma-Aldrich Sweden
AB and sodium octanoate was obtained from J&K Scien-
tific via Th. Geyer in Sweden. Water was purified with a40

Milli-Q system. A sample with two-component isotropic dif-
fusion was prepared by inserting a 4 mm NMR tube contain-
ing an aqueous solution saturated with magnesium nitrate
(Wadsö et al., 2009) into a 10 mm NMR tube with water
(Mills, 1973). The magnesium nitrate solution was spiked45

with a small amount of cobalt nitrate (0.27 wt % saturated
solution) to reduce T1 and T2 to approx. 500 and 50 ms,
respectively. An anisotropic sample was prepared by mix-
ing 85.79 wt % Milli-Q, 9.17 wt % 1-decanol, and 5.04 wt%
sodium octanoate giving a lamellar liquid crystal (Persson50

et al., 1975). Investigation of isotropic restricted diffusion
was performed with a sediment of fresh baker’s yeast (trade

name: Kronjäst; obtained from a local supermarket) prepared
by dispersing yeast in tap water (1 : 1 volume ratio) in a glass
vial, transferring it with a syringe to a 10 mm NMR tube to a 55

sample height of 40 mm, and keeping the tube in an upright
position overnight at 4 ◦C to allow the cells to settle under
the force of gravity into a 20 mm high pellet (Malmborg et
al., 2006).

MRI was performed on a Bruker AVANCE NEO 500 MHz 60

spectrometer equipped with an 11.7 T vertical bore mag-
net and a MIC-5 microimaging probe fitted with a 10 mm
radiofrequency insert for observation of 1H. Images were
acquired with a TopSpin 4.0 implementation of a spin-
echo prepared single-shot RARE (Rapid Imaging with Re- 65

focused Echoes) sequence (available at https://github.com/
daniel-topgaard/md-dmri, last access: 1 October 2022) using
a 0.6× 0.6 mm2 resolution in a plane perpendicular to the
tube axis, a 1 mm slice thickness, and a 16× 16× 1 matrix
size. Diffusion encoding employed pairs of identical gradient 70

waveforms bracketing the 180◦ pulse in the preparation block
(Lasič et al., 2014). Data were acquired for 8 b values up to
6.44 ·109 s m−2 and 15 orientations (2,8) for each of the 24
waveforms spanning the 2D ωcent–b1 plane in Fig. 3 using a
maximum gradient amplitude of 3 T m−1 and a waveform du- 75

ration of τ = 25 ms, giving values of ωcent in the range of 20–
260 Hz. With a 5 s recycle delay, the total measurement time
was approximately 4 h for each sample. The sample temper-
ature was controlled with a Bruker VT unit: 278 K for the
yeast and 291 K for the isotropic solutions and liquid crystal. 80

For the yeast, the image slice was placed in the middle of the
pellet and 10 mm below the bottom of the supernatant. Image
reconstruction, definition of regions of interest, and curve fit-
ting were performed in MATLAB using in-house code avail-
able at https://github.com/daniel-topgaard/md-dmri, last ac- 85

cess: 1 October 2022 (Nilsson et al., 2018).
Figure 4 compiles experimental data and fits for all inves-

tigated samples. To facilitate visual inspection of the highly
multidimensional data acquired as a function of (b, ωcent, b1,
2, 8), the signal data were averaged over b-tensor orien- 90

tations (2, 8) and are displayed as conventional Stejskal–
Tanner plots of log10(S) vs. b with the ωcent and b1 dimen-
sions coded using different marker styles and a gray scale.
For the isotropic Gaussian sample in Fig. 4a, all data points
collapse onto a single master curve, thereby verifying that 95

all 24 waveforms spanning the 2D ωcent–b1 plane in Fig. 3
indeed give the same b value. The pronounced nonlinearity
of the log10(S) vs. b plot indicates the presence of multi-
ple species with different diffusivities, and the bi-exponential
fit yields diffusivities consistent with pure water (fast) and 100

water in the saturated magnesium nitrate solution (slow).
The anisotropic Gaussian phantom Fig. 4b yields data points
stratified into one master curve for each of the four values of
b1, verifying independence of ωcent. The data are well fitted
by the expression for randomly oriented axisymmetric diffu- 105

sion tensors in Eq. (43), giving estimates of the diffusivities
D‖ andD⊥ parallel and perpendicular to the cylindrical sym-

https://github.com/daniel-topgaard/md-dmri
https://github.com/daniel-topgaard/md-dmri
https://github.com/daniel-topgaard/md-dmri
https://github.com/daniel-topgaard/md-dmri
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Figure 3. Gradient waveforms g(t) for comprehensive exploration of the 2D space of centroid frequency ωcent and anisotropy b1 of the
tensor-valued encoding spectrum b(ω). Magic-angle spinning (MAS) and double rotation (DORn) with variable frequency ratio n give q-
vector trajectories q(t) shown as 3D plots for the b1 = 0 cases. The waveforms are generated according to the scheme in Fig. 2 using
εup = 0.03τ , εdown = 0.12τ , 1ψ2 = 2π TS4 , bη = 0, and identical b values for a 2D array of n= 0, 1, . . . , 5 and b1 =−0.5, 0, 0.5, and 1
with the angles ζ1 = 0◦ and ζ2 = 54.7◦ for n= 0 and ζ1 = 90◦ and ζ2 =−54.7◦ for n>0. Superquadric tensor glyphs (Kindlmann, 2004)
along the vertical axis illustrate b for the chosen values of b1. The main maxima in b(ω) are located at the frequencies ω1 and ω+ given
in Eq. (57). Values of ωcent and b1, including non-idealities originating from the finite durations of the dephasing and rephasing lobes of
g1D(t), are obtained via Eqs. (32) and (34), respectively, using numerically evaluated b(ω) according to Eqs. (4), (18), and (22).

metry axis of the crystallites. The observations D‖�D⊥
and D‖ ≈ 0 are consistent with diffusion in a lamellar liquid
crystal with planar surfactant bilayers being nearly imper-
meable to water (Callaghan and Söderman, 1983). For the
isotropic restriction phantom in Fig. 4c, the signal depends5

strongly on ωcent. In this case, there is no clear stratification
of data points into separate master curves on account of the
interplay between b1 and ωcent, as reported in the legend in
Fig. 4a and explained in detail below Eq. (57). The minor
dependence of ωcent on b1 is admittedly a drawback of our10

current approach for generating waveforms; however, we be-

lieve our approach is justified by the simplicity and trans-
parency of the mathematical expressions in Eqs. (49)–(57).
The sum of isotropic restricted and Gaussian components,
given by Eqs. (41) and (39), yields an excellent fit to the ac- 15

quired data, showing that the data feature no dependence on
the value of b1. To account for the fact that b(ω) for (in par-
ticular) the b1 = 0 waveforms cannot be well approximated
with a delta function at a single value of ω, the signal for
the restricted component was obtained by numerical evalua- 20

tion of the integral in Eq. (39) using the diffusion spectrum
D(ω) for spherical compartments in Eq. (25). The obtained
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Figure 4. Experimental (markers) and fitted (lines) normalized powder-averaged signal S/S0 vs. b value for phantoms with well-defined
diffusion properties. (a) Tube-in-tube assembly of pure water and a concentrated solution of magnesium nitrate in water (“brine”) giving
rise to two isotropic Gaussian (ω-independent) components. A two-component fit based on Eq. (41) gives diffusion spectra D(ω), as shown
in the inset, with percentages indicating the relative contributions. The legend shows the 24 investigated values in the 2D ωcent (the gray
scale) and b1 (marker style) space corresponding to the gradient waveforms in Fig. 3 with a duration of τ = 25 ms, a maximum gradient
strength of 3 Tm−1, and pairs of waveforms bracketing the 180◦ pulse in the spin-echo preparation. (b) Polydomain lamellar liquid crystal
giving Gaussian parallel and perpendicular diffusivities, D‖ and D⊥, as estimated by a fit of Eq. (43). (c) Sediment of yeast cells with
intra- and extracellular compartments, with the former exhibiting restricted (ω-dependent) diffusion. The inset shows D(ω) resulting from a
two-component fit with one spherically restricted (solid) and one Gaussian (dashed) component. For the former component, the signal was
obtained by numerical integration of Eq. (39) with D(ω) given by Eq. (25) with d = 3 and D∞ constrained to zero.

diffusivities are consistent with previous results for intra- and
extracellular water in yeast cell sediments (Åslund and Top-
gaard, 2009). Taken together, the data in Fig. 4 verify that
the set of waveforms allows detailed exploration of the 2D
ωcent–b1 plane of multidimensional diffusion encoding.5

5 Conclusions and outlook

The proposed family of double-rotation gradient waveforms
enables comprehensive sampling of both the frequency and
“shape” dimensions of diffusion encoding, as required for de-
tailed characterization of restriction and anisotropy in hetero-10

geneous materials such as brain tissues. The present wave-
forms, deriving from simple geometrical considerations and
generated by compact mathematical expressions, are suitable
for preclinical investigations of tissue samples or small ani-
mals on high-gradient systems. By numerical optimizations15

to maximize the b value for given gradient strength (Top-
gaard, 2013; Sjölund et al., 2015), mitigating image artifacts

from eddy currents (Yang and McNab, 2019) and concomi-
tant gradients (Szczepankiewicz et al., 2019), and further
minimizing side lobes in the encoding spectra (Hennel et al., 20

2020), we anticipate that the waveforms may be adapted for
human in vivo studies. The merging of oscillating gradients
(Aggarwal, 2020) and tensor-valued encoding (Reymbaut,
2020) into a common acquisition protocol encourages fur-
ther development of a joint analysis framework, for instance, 25

by augmenting current nonparametric diffusion tensor distri-
butions (Topgaard, 2019b) with a Lorentzian frequency di-
mension (Narvaez et al., 2021, 2022) or building on the con-
cept of confinement tensors (Yolcu et al., 2016; Boito et al.,
2022). 30

Code availability. MATLAB code for image reconstruction, the
definition of regions of interest, and curve fitting is available
from https://github.com/daniel-topgaard/md-dmri (Topgaard, 2021;
Nilsson et al., 2018).

https://github.com/daniel-topgaard/md-dmri
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