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Abstract. Diffusion NMR and MRI methods building on the classic pulsed gradient spin echo sequence are sensitive to many 
aspects of translational motion, including time/frequency-dependence (“restriction”), anisotropy, and flow, which leads to 
ambiguities when interpreting experimental data from complex heterogeneous materials such as living biological tissues. 
Higher specificity to restriction or anisotropy can be obtained with, respectively, oscillating gradient or tensor-valued encoding 
which nevertheless both have some sensitivity to the property not being of direct interest. Here we propose a simple scheme 10 
derived from the “double rotation” technique in solid-state NMR to generate a family of modulated gradient waveforms 
allowing for comprehensive exploration of the two-dimensional frequency-anisotropy space and convenient investigation of 
both restricted and anisotropic diffusion with a single multidimensional acquisition protocol. The method is demonstrated by 
measuring multicomponent isotropic Gaussian diffusion in simple liquids, anisotropic Gaussian diffusion in a polydomain 
lyotropic liquid crystal, and restricted diffusion in a yeast cell sediment. 15 

1 Introduction 

Magnetic field gradients applied during the dephasing and rephasing periods of a spin echo sequence (Hahn, 1950) render the 
NMR signal sensitive to various aspects of translational motion including bulk diffusivity (Douglass and McCall, 1958), flow 
(Carr and Purcell, 1954), time/frequency-dependence (“restriction”) (Woessner, 1963), anisotropy (Boss and Stejskal, 1965), 
and exchange (Kärger, 1969). Although the conventional and ubiquitous pulsed gradient spin echo sequence by Stejskal and 20 
Tanner (1965) may give information about all of these aspects, more elaborate gradient modulations (Tanner, 1979; Cory et 
al., 1990; Callaghan and Manz, 1994; Mori and van Zijl, 1995) are required to unambiguously assign a certain mechanism to 
the experimental observations (Topgaard, 2017; Lundell and Lasič, 2020). Diffusion MRI methods incorporating such 
advanced diffusion encoding schemes have recently been shown to have potential for clinical research applications (Reymbaut 
et al., 2020)—some notable examples being oscillating gradients to estimate cell sizes (Xu et al., 2021) and tensor-valued 25 
encoding to characterize cell shapes (Daimiel Naranjo et al., 2021) in breast tumors. 

The sensitivity of the MRI signal to the various types of motion can be quantified with the tensor-valued encoding 
spectrum b(w) (Topgaard, 2019b; Lundell and Lasič, 2020), the trace of which equals the dephasing power spectrum 
(Stepišnik, 1981)—relevant for isotropic restricted diffusion—and whose integral over w equals the conventional b-matrix 
(Basser et al., 1994) giving information about diffusion anisotropy. While most studies focus on either the frequency-dependent 30 
(Aggarwal, 2020) or tensorial (Reymbaut, 2020) aspects of the encoding, Lundell et al. (2019) suggested joining them into a 
common multidimensional framework. The approach was demonstrated with gradient waveforms deriving from the magic-
angle spinning (MAS) technique in solid-state NMR spectroscopy (Andrew et al., 1959; Eriksson et al., 2013; Topgaard, 2013), 
which, however, offer only limited access to the frequency and anisotropy dimensions. 

Expanding on the results of Lundell et al. (2019), we here take inspiration from the "double rotation" (DOR) technique 35 
in solid-state NMR (Samoson et al., 1998) and derive a family of gradient waveforms for comprehensive exploration of, in 
particular, the frequency-anisotropy dimensions of b(w), as quantified by the centroid frequency wcent (Arbabi et al., 2020) and 
encoding anisotropy bD (Eriksson et al., 2015), in addition to the b-value and b-vector (Q,F) of conventional diffusion tensor 
imaging (Kingsley, 2006). While wcent is key for characterizing restricted diffusion (Stepišnik and Callaghan, 2000), the 
variable bD enables quantification of anisotropy in orientationally disordered materials (Eriksson et al., 2015) and estimation 40 
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of nonparametric diffusion tensor distributions (de Almeida Martins and Topgaard, 2016; Topgaard, 2019a). The ability of the 
new gradient waveforms to give access to the complete 2D wcent-bD plane is demonstrated by microimaging measurements on 
previously studied phantoms with well-defined restriction and anisotropy properties, namely water (Mills, 1973) and 
concentrated salt solution (Wadsö et al., 2009) with isotropic Gaussian diffusion, a lamellar liquid crystal giving anisotropic 
Gaussian diffusion (Topgaard, 2016), and a yeast cell sediment exhibiting isotropic restricted diffusion (Malmborg et al., 45 
2006). 

2 Theory 

The textbooks by Price (2009) and Callaghan (2011), as well as the comprehensive review by Lundell and Lasič (2020), give 
detailed accounts of the theory behind diffusion NMR and MRI. For the purpose of this paper, it is sufficient to focus on the 
Gaussian phase distribution approximation (Stepišnik, 1981, 1993) where the tensor-valued diffusion spectrum D(w) is 50 
encoded into the signal attenuation S/S0 via 

𝑆 𝑆0⁄ = exp (− ∫ 𝐛(𝜔): 𝐃(𝜔)d𝜔
∞

−∞ ), (1) 

where “:” denotes a generalized scalar product (Kingsley, 2006) and b(w) is the tensor-valued encoding spectrum (Topgaard, 
2019b; Lundell and Lasič, 2020) given by the time-dependent gradient vector g(t), time-dependent dephasing vector q(t), and 
spectrum of the dephasing vector q(w) through 

𝐪(𝑡) = 𝛾 ∫ 𝐠(𝑡′)d𝑡′,
𝑡

0
 (2) 

 55 

𝐪(𝜔) = ∫ 𝐪(𝑡) exp(i𝜔𝑡) d𝑡,
𝜏

0
 (3) 

and 

𝐛(𝜔) = 1
2π

𝐪(𝜔)𝐪(−𝜔)T. (4) 

At each frequency w, both b(w) and D(w) are symmetric second-order tensors. The conventional dephasing power spectrum 
b(w) (Stepišnik, 1981) and b-matrix b (Basser et al., 1994) are obtained from b(w) by 

𝑏(𝜔) = trace{𝐛(𝜔)} (5) 

and 

𝐛 = ∫ 𝐛(𝜔)d𝜔.
∞

−∞
 (6) 

The sensitivity to restriction and anisotropy may be summarized by the centroid frequency wcent (Arbabi et al., 2020) and 60 
encoding anisotropy bD (Eriksson et al., 2015) given by 

𝜔cent = 1
𝑏 ∫ |𝜔|𝑏(𝜔)d𝜔

∞

−∞
 (7) 

and 

𝑏Δ = 1
𝑏 (𝑏𝑍𝑍 −

𝑏𝑌𝑌 + 𝑏𝑋𝑋
2 ), (8) 
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where 
𝑏 = trace{𝐛} (9) 

is the conventional b-value (Le Bihan et al., 1986) and bXX, bYY, and bZZ are the eigenvalues of b ordered according to the 
Haeberlen convention |bZZ – b/3| > |bXX – b/3| > |bYY – b/3| (Haeberlen, 1976). Additionally, the encoding asymmetry bh is 65 
defined by (Eriksson et al., 2015) 

𝑏𝜂 = 3
2

𝑏𝑌𝑌 − 𝑏𝑋𝑋
𝑏𝑏Δ

. (10) 

 For the special cases of (i) isotropic Gaussian, (ii) anisotropic Gaussian, and (iii) isotropic restricted diffusion, the 
signal expression in Eq (1) can be rewritten as 

𝑆 𝑆0⁄ = exp(−𝑏𝐷), (11) 

 
𝑆 𝑆0⁄ = exp(−𝐛: 𝐃), (12) 

and 70 

𝑆 𝑆0⁄ = exp (− ∫ 𝑏(𝜔)𝐷(𝜔)d𝜔
∞

−∞ ), (13) 

respectively, where D is the (isotropic and w-independent) diffusion coefficient, D the (w-independent) diffusion tensor, and 
D(w) the (isotropic) diffusion spectrum which all have been extensively used in the diffusion MRI literature. 
 Assuming axial symmetry of both b and D, powder averaging of Eq. (12) yields (Eriksson et al., 2015) 

𝑆 𝑆0⁄ = exp(−𝑏𝐷iso)
√π
2

exp(𝐴 3⁄ )

√𝐴
erf(√𝐴) (14) 

where 
𝐴 = 3𝑏𝐷iso𝑏Δ𝐷Δ. (15) 

In Eq. (15), Diso is the isotropic diffusivity and DD the normalized diffusion anisotropy defined as 75 

𝐷iso = 1
3

trace{𝐃} (16) 

and 

𝐷Δ =
𝐷A + 𝐷R

3𝐷iso
, (17) 

where DA and DR are the axial radial eigenvalues of D. Eq. (14) is used to fit the liquid crystal data in Figure 3(b). 
For restricted diffusion of a liquid with bulk diffusivity D0 in a sphere with radius r, the diffusion spectrum D(w) is 

given by (Stepišnik, 1993) 

𝐷(𝜔) = 𝐷0 (
1 − ∑ 𝑤𝑘

𝑘

1
1 + 𝜔2 Γ𝑘

2⁄ )
 (18) 

where 80 

𝑤𝑘 = 2
𝛼𝑘

2 − 2
 (19) 
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and 

Γ𝑘 =
𝛼𝑘

2𝐷0

𝑟2 . (20) 

In Eq. (20), ak is the kth solution of 

𝛼𝐽1 2⁄ (𝛼) − 2𝐽3 2⁄ (𝛼) = 0, (21) 

where Jn is the nth order Bessel function of the first kind. Eq. (13) with Eq. (18) is used to fit the yeast data in Figure 3(c). 

3 Design of gradient waveforms by double rotation of the q-vector 

Expanding on previous magic-angle spinning (Andrew et al., 1959; Eriksson et al., 2013; Topgaard, 2013) and variable-angle 85 
spinning (Frydman et al., 1992; Topgaard, 2016, 2017) approaches for generating motion-encoding gradient waveforms, we 
here apply the double rotation (DOR) technique (Samoson et al., 1998; Topgaard, 2019b) to probe the 2D acquisition space 
spanned by the variables wcent and bD. Following previous works (Eriksson et al., 2013), the q-vector trajectory q(t) is expressed 
in terms of its time-dependent magnitude q(t) and unit vector u(t) as 

𝐪(𝑡) = 𝑞(𝑡)𝐮(𝑡). (22) 

For the special case of DOR, the unit vector is written as 90 

𝐮(𝑡) = 𝐑𝑧(𝜓2(𝑡))𝐑𝑦(𝜁2)𝐑𝑧(𝜓1(𝑡))𝐑𝑦(𝜁1)[0 0 1]T, (23) 

where Rz and Ry are Euler rotation matrices, z1 and	z2 are the inclinations of the two rotation axes, and y1(t) and y2(t) are the 
time-dependent angles of rotation. The rotations in Eq. (23) are applied from right to left and follow a Z-Y active rotation 
matrix convention. 

Starting from a conventional one-dimensional gradient waveform g1D(t)–for instance a pair of rectangular or sine-bell 
pulses of opposite polarity–the time-dependent functions q(t) and y2(t) are given by (Topgaard, 2016) 95 

𝑞(𝑡) = 𝛾 ∫ 𝑔1D(𝑡′)d𝑡′
𝑡

0
 (24) 

and 

𝜓2(𝑡) =
Δ𝜓2

𝑏 ∫ 𝑞2(𝑡′)d𝑡′,
𝑡

0
 (25) 

where Dy2 is the total angle of rotation during the encoding interval from time t = 0 to t and 

𝑏 = ∫ 𝑞2(𝑡)d𝑡
𝜏

0
 (26) 

is the conventional b-value. After some exercises in trigonometry, combination of Eqs. (22)-(26) and the relation between g(t) 
and q(t) in Eq.(2) yields 

𝐠DOR(𝑡) = 𝑔1D(𝑡)
(

𝑎+ cos 𝜓+(𝑡) + 𝑎− cos 𝜓−(𝑡) + 𝑎2 cos 𝜓2(𝑡)
𝑎+ sin 𝜓+(𝑡) − 𝑎− sin 𝜓−(𝑡) + 𝑎2 sin 𝜓2(𝑡)

𝑎0 − 𝑎1 cos 𝜓1(𝑡) )

+ 𝑔rot(𝑡) (

−(𝑛 + 1)𝑎+ sin 𝜓+(𝑡) − (𝑛 − 1)𝑎− sin 𝜓−(𝑡) − 𝑎2sin 𝜓2(𝑡)
    (𝑛 + 1)𝑎+ cos 𝜓+(𝑡) − (𝑛 − 1)𝑎− cos 𝜓−(𝑡) + 𝑎2 cos 𝜓2(𝑡)

𝑛𝑎1 sin 𝜓1(𝑡) )
, 

(27) 

where 100 
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𝑔rot(𝑡) =
Δ𝜓2𝑞(𝑡)3

𝛾𝑏
 (28) 

is the time-dependent magnitude of the rotating gradient vector, 
𝜓1(𝑡) = 𝑛𝜓2(𝑡) 

𝜓±(𝑡) = (𝑛 ± 1)𝜓2(𝑡) 
(29) 

are time-dependent rotation angles, and 
𝑎0 = cos 𝜁1 cos 𝜁2 

𝑎1 = sin 𝜁1 sin 𝜁2 

𝑎2 = cos 𝜁1 sin 𝜁2 

𝑎± = sin 𝜁1
cos 𝜁2 ± 1

2
 

(30) 

are amplitudes of the oscillating terms. At the selected inclinations z1 = p/2 and z2 = –acos(1/31/2), the a0 and a2 terms in 
Eq. (27) vanish while the remaining amplitudes evaluate to a1 = –(2/3)1/2 » –0.816, a+ = (3–1/2 + 1)/2 » 0.789, and a– = (3–
1/2 – 1)/2 » –0.211. For n > 1 and the special case of g1D(t)  µ [d(t) – d(t – t)], where d(x) is the Dirac delta function, these 105 
inclinations yield an isotropic b-tensor, corresponding to bD = 0. Waveforms for any values of bD and bh are then conveniently 
obtained by scaling the components of gDOR(t) according to 

𝐠(𝑡) =
[

𝑔𝑋(𝑡)
𝑔𝑌 (𝑡)
𝑔𝑍 (𝑡)]

=

⎣
⎢
⎢
⎢
⎢
⎡𝑔DOR,𝑋(𝑡)√1 − 𝑏Δ(1 + 𝑏𝜂)

𝑔DOR,𝑌 (𝑡)√1 − 𝑏Δ(1 − 𝑏𝜂)
𝑔DOR,𝑍(𝑡)√1 + 2𝑏Δ ⎦

⎥
⎥
⎥
⎥
⎤

. (31) 

For the special case g1D(t)  µ [d(t) – d(t – t)], the main frequency components of b(w) are given by 

w± =
𝜓±(𝜏)

𝜏
= (𝑛 ± 1)

Δ𝜓2
𝜏

 and 

w1 =
𝜓1(𝜏)

𝜏
= 𝑛

Δ𝜓2
𝜏

, 
(32) 

where, according to Eq. (27), w± and w1 are cleanly separated into the X,Y and Z directions, respectively. The mean frequency 
content, as quantified by the centroid frequency wcent defined in Eq. (7), can be estimated by weighting the contributions from 110 
the main frequency components with the corresponding amplitudes Eq. (27), but is more accurately calculated by numerical 
evaluation of Eq. (7) which also takes the finite durations of the sinusoidal oscillations into account. For rough prediction of 
wcent it is useful to note that a+2>> a–2, implying that the w+-component will dominate the spectra in the X,Y-directions. The 
scaling of the waveforms according to Eq. (31) preserves the frequency content in each of the eigendirections of the b-tensor, 
but shifts the value of wcent between the approximate extremes w+ and w1 for bD = –1/2 and 1, respectively. 115 

Figure 1 illustrates the series of calculations required to convert a conventional 1D waveform g1D(t) and given values of 
z1,	z2, Dy2, n, bD, and bh to a 3D waveform g(t) by numerical evaluation of Eqs. (24)-(31). Following previous works to 
generate families of smooth gradient waveforms to explore the bD and bh dimensions of diffusion encoding (Topgaard, 2016, 
2017), we here construct g1D(t) from a dephasing lobe with quarter-sine ramp up of duration eup and half-cosine ramp down of 
duration edown, as well as a rephasing lobe obtained by inversion and time-reversal of the dephasing one. The corresponding 120 
Matlab code is provided in the supporting information. 
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Figure 1. Flow chart for calculating a double-rotation gradient waveform gDOR(t) given a one-dimensional dephasing/rephasing waveform 
g1D(t), rotation axis inclinations z1 and	z2, double rotation ratio n, and total angle of rotation Dy2 during the waveform duration t. The 
waveform g1D(t), containing dephasing and rephasing pulses with sinusoidal ramps of durations eup and edown, gives the time-dependent 125 
magnitude of the dephasing vector q(t) by Eq. (24), which yields the time-dependent rotation angles yi(t) via Eqs. (25) and (29) as well as 
the time-dependent magnitude of the rotating/oscillating gradient grot(t) through Eq. (28). Combining g1D(t), grot(t), and yi(t) via Eq. (27) 
gives gDOR(t), which if z1 = p/2, z2 = –acos(1/31/2), n is an integer above 1, and Dy2 is a multiple of 2p achieves isotropic encoding tensors 
b where the anisotropy bD and asymmetry bh are both equal to zero. Finally, waveforms g(t) for any values of bD and bh are obtained by 
scaling of the Cartesian components of gDOR(t) according to Eq. (31). The shown example was generated with the accompanying Matlab 130 
code (see supporting information) using eup = 0.015t, edown = 0.06t, Dy2 = 2p, n = 4, bD = 0.5, and bh = 0.25. 

Figure 2 compiles waveforms and encoding spectra for an array of n and bD at constant g1D(t), t, and Dy2, yielding 
constant b. Increasing n leads to larger rotation angles y1(t) and y±(t) and frequencies w1 and w± according to Eqs. (29) and 
(32), respectively, at the expense of overall higher gradient amplitudes on account of the terms including n in Eq. (27). Many 
of the waveforms in Figure 2 are familiar from the literature, for instance conventional Stejskal-Tanner encoding at (n = 0, 135 
bD = 1), basic flow-compensated encoding (Caprihan and Fukushima, 1990) at (n = 1, bD = 1), and magic-angle spinning of the 
q-vector (Eriksson et al., 2013) at (n = 0, bD = 0). The series of bD = 1 and –1/2 waveforms with varying n resemble, 
respectively, the cosine-modulated oscillating gradients of Parsons et al. (2003) and the circularly polarized version introduced 
by Lundell et al. (2015). Correspondingly, the series of waveforms with n = 0 and varying bD has previously been introduced 
as a diffusion version of the variable-angle spinning technique to correlate isotropic and anisotropic chemical shifts in solid-140 
state NMR (Topgaard, 2016, 2017). The approach for joint investigation of restricted and anisotropic diffusion proposed by 
Lundell et al. (2019), combining isotropic encoding with “tuned” and “detuned” directional encodings, can be recognized as 
measurements at the three discrete points (n = 0, bD = 0), (n = 0, bD = 1), and (n = 1, bD = 1) of the 2D plane in Figure 2. For 
completeness, we note that the elliptically polarized oscillating gradients by Nielsen et al. (2018) can be reproduced with bD = –
1/2 and bh in the range from 0 to 3 (not included in Figure 2). 145 
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Figure 2. Gradient waveforms g(t) for comprehensive exploration of the 2D space of centroid frequency wcent and anisotropy bD of the 
tensor-valued encoding spectrum b(w). The three-dimensional paths with radial spokes shown for the bD = 0 cases illustrate q-vector 
trajectories derived from magic-angle spinning (MAS) and double rotation (DORn) with variable frequency ratio n. The waveforms are 
generated according to the scheme in Figure 1 using eup = 0.03t, edown = 0.12t, Dy2 = 2p, bh = 0, and identical b-values for a 2D array of n 150 
= 0, 1, …, 5 and bD = –0.5, 0, 0.5, and 1 with the angles z1 = 0 and	z2 = acos(1/31/2) for n = 0 and z1 = p/2 and	z2 = –acos(1/31/2) for n > 0. 
Superquadric tensor glyphs (Kindlmann, 2004) along the vertical axis indicate the chosen values bD. The main maxima in b(w) are located 
at the frequencies w1 and w+ given in Eq. (32). Values of wcent and bD, including non-idealities originating from the finite durations of the 
dephasing and rephasing lobes of g1D(t), are obtained by Eqs. (7) and (8) using numerically evaluated b(w) according to Eqs. (2)-(4). 
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4 Proof-of-principle experiments 155 

Magnesium nitrate hexahydrate, cobalt nitrate hexahydrate, and 1-decanol were purchased from Sigma-Aldrich Sweden AB 
and sodium octanoate from J&K Scientific via Th.Geyer in Sweden. Water was purified with a Milli-Q system. A sample with 
two-component isotropic diffusion was prepared by inserting a 4 mm NMR tube containing an aqueous solution saturated with 
magnesium nitrate (Wadsö et al., 2009) into a 10 mm NMR tube with water (Mills, 1973). The magnesium nitrate solution 
was spiked with a small amount cobalt nitrate (0.27 wt% saturated solution) to reduce T2 to approx. 100 ms. An anisotropic 160 
sample was prepared by mixing 85.79 wt% Milli-Q, 9.17 wt% 1-decanol, and 5.04 wt% sodium octanoate giving a lamellar 
liquid crystal (Persson et al., 1975). Investigation of isotropic non-Gaussian diffusion was performed with a sediment of fresh 
baker’s yeast (trade name: Kronjäst from a local supermarket) prepared by dispersing yeast in tap water (1:1 weight ratio) in 
a glass vial, transferring with a syringe to a 10 mm NMR tube, and allowing for cell sedimentation overnight at 4 ºC (Malmborg 
et al., 2006). 165 

MRI was performed on a Bruker Avance-Neo 500 MHz spectrometer equipped with an 11.7 T magnet and a MIC-5 
microimaging probe fitted with a 10 mm RF insert for observation of 1H. Images were acquired with a Topspin 4.0 
implementation of a spin-echo prepared single-shot RARE sequence (available at https://github.com/daniel-topgaard/md-dmri) 
using 0.6´0.6 mm2 in-plane spatial resolution, 1 mm slice thickness, and 16´16´1 matrix size. Diffusion encoding employed 
pairs of identical gradient waveforms bracketing the 180º pulse in the preparation block (Lasič et al., 2014). Data was acquired 170 
for 8 b-values up to 6.44×109 sm–2 and 15 orientations (Q,F) for each of the 24 waveforms spanning the wcent,bD-plane in Figure 
2 using maximum gradient amplitude 3 T/m and waveform duration t = 25 ms, giving values of wcent in the range from 20 to 
260 Hz. With 5 s recycle delay, the total measurement time was approximately 4 h for each sample. The sample temperature 
was controlled with a Bruker VT unit to 278 K for the yeast and 291 K for the isotropic solutions and liquid crystal. Image 
reconstruction, definition of regions-of-interest, and curve fitting was performed in Matlab using in-house code available at 175 
https://github.com/daniel-topgaard/md-dmri (Nilsson et al., 2018). 

Figure 3 compiles experimental data and fits for all investigated samples. To facilitate visual inspection of the highly 
multidimensional data acquired as a function of (b,wcent,bD,Q,F), the signal data was averaged over gradient orientations (Q,F) 
and displayed as conventional Stejskal-Tanner plots of log10(signal)-vs.-b with the wcent,bD-dimensions coded into marker 
grayscale and style. For the isotropic Gaussian sample in Figure 3(a), all data points collapse onto a single master curve, 180 
thereby verifying that all 24 waveforms spanning the wcent,bD-plane in Figure 2 indeed give the same b-value. The pronounced 
non-linearity of the log10(signal)-vs.-b plot indicates the presence of multiple species with different diffusivities, and the bi-
exponential fit yields values consistent with pure water (fast) and water in the saturated magnesium nitrate solution (slow). 
The anisotropic Gaussian phantom Figure 3(b) yields data points stratified into one master curve for each of the four values of 
bD, verifying independence of wcent. The data is well fitted by the expression for randomly oriented axisymmetric diffusion 185 
tensors in Eq. (14), giving estimates of the diffusivities in the axial and radial directions, DA and DR, with respect to the 
cylindrical symmetry axis of the crystallites. The observations DR >> DA and DA » 0 are consistent with diffusion in a lamellar 
liquid crystal with planar surfactant bilayers being nearly impermeable to water (Callaghan and Söderman, 1983). For the 
isotropic restriction phantom Figure 3(c), the signal depends strongly on wcent as expected. In this case there is no clear 
stratification of data points into separate master curves on account of the interplay between bD and wcent as reported in the 190 
legend in Figure 3(a) and explained in detail below Eq. (32). The minor dependence of wcent on bD is admittedly a drawback of 
our current approach for generating waveforms, which we however believe is justified by the simplicity and transparency of 
the mathematical expressions in Eqs. (24)-(32). Combined with an isotropic Gaussian component, the diffusion spectrum D(w) 
for spherical restriction in Eq. (18) yields an excellent fit to the acquired data, showing that the data features no dependence 
on the value of bD. The obtained diffusivities are consistent with previous results for extra- and intracellular water in yeast cell 195 
sediments (Åslund and Topgaard, 2009). Taken together, the data in Figure 3 verifies that the set of waveforms allow detailed 
exploration of the 2D wcent,bD-plane of multidimensional diffusion encoding. 
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Figure 3. Experimental (markers) and fitted (lines) normalized powder-averaged signal S/S0 vs. b-value for phantoms with well-defined 
diffusion properties. (a) Tube-in-tube assembly of pure water and a concentrated solution of magnesium nitrate in water (“brine”) giving 200 
rise to two isotropic Gaussian (w-independent) components. Two-component fit based on Eq. (11) gives diffusion spectra D(w) as shown in 
the inset with percentages indicating the relative contributions. The legend shows the 24 investigated values in the wcent (gray scale) and bD 
(marker style) space corresponding to the gradient waveforms in Figure 2 with duration t = 25 ms, maximum gradient strength 3 Tm–1, and 
pairs of waveforms bracketing the 180º pulse in the spin-echo preparation. (b) Polydomain lamellar liquid crystal giving Gaussian axial and 
radial diffusivities, DA and DR, as estimated by a fit of Eq. (14). (c) Sediment of yeast cells with intra- and extracellular compartments, the 205 
former exhibiting restricted (w-dependent) diffusion. The inset shows D(w) resulting from a two-component fit with one Gaussian (dashed) 
and one spherically restricted (solid) component. For the latter component, the signal was obtained by numerical integration of Eq. (13) with 
D(w) given by Eq. (18). 

5 Conclusions and outlook 

The proposed family of double-rotation gradient waveforms enables comprehensive sampling of both the frequency and 210 
“shape” dimensions of diffusion encoding as required for detailed characterization of restrictions and anisotropy in 
heterogeneous materials such as brain tissues. The present waveforms, deriving from simple geometrical considerations and 
generated by compact mathematical expressions, are suitable for pre-clinical investigations of tissue samples or small animals 
on high-gradient systems. By numerical optimizations to maximize the b-value for given gradient strength (Topgaard, 2013; 
Sjölund et al., 2015), mitigating image artifacts from eddy currents (Yang and McNab, 2019) and concomitant gradients 215 
(Szczepankiewicz et al., 2019), and further minimizing side-lobes in the encoding spectra (Hennel et al., 2020), we anticipate 
that the waveforms may be adapted for human in vivo studies. The merging of oscillating gradients (Aggarwal, 2020) and 
tensor-valued encoding (Reymbaut, 2020) into a common acquisition protocol encourages further development of a joint 
analysis framework, for instance by augmenting current nonparametric diffusion tensor distributions (Topgaard, 2019a) with 
a Lorentzian frequency dimension (Narvaez et al., 2021; Narvaez et al., 2022) or building on the concept of confinement 220 
tensors (Yolcu et al., 2016; Boito et al., 2022). 
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