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Abstract. TS1Simulating NMR experiments may appear mysterious and even daunting for those who are new to
the field. Yet, broken down into pieces, the process may turn out to be easier than expected. Quite the opposite, it
is in fact a powerful and playful means to get insights into the spin dynamics of NMR experiments. In this tutorial
paper, we show step by step how some NMR experiments can be simulated, assuming as little prior knowledge
from the reader as possible. We focus on the case of NMR at zero and ultralow fields, an emerging modality
of NMR in which the spin dynamics are dominated by spin–spin interactions rather than spin–field interactions,
as is usually the case with conventional high-field NMR. We first show how to simulate spectra numerically.
In a second step, we detail an approach to construct an eigenbasis for systems of spin-1/2 nuclei at zero field.
We then use it to interpret the numerical simulations. In this attempt to make NMR simulation approachable,
the authors wish to pay tribute to Prof. Konstantin L’vovich Ivanov, a great scientist and pedagogue who passed
away on 5 March 2021.TS2

1 Introduction

NMR spectroscopists know well the advantages of perform-
ing experiments at the highest possible magnetic field. In-
creasing magnetic field strength boosts the sensitivity thanks
to higher Boltzmann nuclear polarization and higher Lar-5

mor frequency (provided the signal linewidth is maintained
constant). In addition to this already convincing advantage,
higher magnetic fields also imply a larger frequency shift
dispersion and therefore easier resolution of individual res-
onances in crowded spectra. This has motivated the use of10

ever-increasing magnetic fields (Thayer and Pines, 1987;
Schwalbe, 2017; Wikus et al., 2022). The past year has wit-
nessed the implementation of the first spectrometers operat-
ing at no less than 28 T, corresponding to a 1H Larmor fre-
quency of 1.2 GHz. (Wikus et al., 2022) There is no doubt15

that these new instruments will allow for unprecedented ap-
plications.

On the fringe of these great achievements, growing interest
is pioneering the opposite strategy, namely, zero- to ultralow-
field (ZULF) NMR, a modality of NMR experiments where 20

the dominant interactions are spin–spin interactions rather
than spin–field interactions (Thayer and Pines, 1987; Weit-
ekamp et al., 1983; Blanchard and Budker, 2016; Blanchard
et al., 2021; Tayler et al., 2017; Jiang et al., 2021). To real-
ize such conditions, ZULF experiments are not performed in 25

magnets but rather in mumetal magnetic shields that screen
magnetic fields originating from the Earth and other sur-
rounding sources, bringing the residual field down to nan-
otesla (nT) values. In this paper, “zero field” (ZF) designates
the regime where heteronuclear spin–spin interactions dom- 30

inate over spin–field interactions (Zeeman interactions), and
the residual spin–field interactions are small enough for the
Larmor period to be much longer than the coherence time
(Blanchard and Budker, 2016). When this condition is met,
decreasing the residual field to even lower values leaves the 35

1
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NMR spectrum unchanged. “Ultralow field” (ULF) desig-
nates the regime where the spin–field interactions can be
treated as a perturbation to the heteronuclear spin–spin inter-
actions. This typically corresponds to fields on the order of
tens to hundreds of nanotesla (Ledbetter et al., 2011). Liquid-5

state ZULF experiments result in J spectraCE3 which do
not feature any chemical shift information (Ledbetter et al.,
2009). The regime where the intensity of heteronuclear spin–
spin interactions is on the order of that of the spin–field in-
teractions occurs typically in the range of microtesla (µT) to10

tens of microtesla and is referred to as Earth-field NMR (EF-
NMR) (Callaghan and Le Gros, 1982; Appelt et al., 2006).

In the simplest form of ZULF experiments, the sample
is thermally prepolarized in a permanent magnet (typically
2 T) (Tayler et al., 2017) and subsequently shuttled into15

the magnetic shields for detection at ZF or ULF. Alterna-
tively, ZULF experiments may be coupled with hyperpolar-
ization techniques (Theis et al., 2012; Butler et al., 2013b;
Barskiy et al., 2019; Picazo-Frutos et al., 2023). In partic-
ular, parahydrogen-induced polarization (PHIP) has become20

common as a method for enhancing ZULF signal (Theis et
al., 2011, 2012; Butler et al., 2013b). Once the sample is
prepolarized (or hyperpolarized), coherences are excited us-
ing constant magnetic field pulses rather than radiofrequency
(RF) pulses and are usually detected using optically pumped25

magnetometers (OPMs) rather than inductive coils (Ledbet-
ter et al., 2009). Contrary to high-field instruments, ZULF
spectrometers have the advantage of being cheap and rela-
tively easy to assemble (Tayler et al., 2017). They are small
enough to sit on a bench and do not require the use of cryo-30

genics (at least if OPMs are used for detection).
Most people who have been introduced to the theory of

high-field NMR have first encountered the vector model. The
representation of a single-spin system as a vector in 3D space
is a powerful tool to build intuition on what happens during35

an NMR experiment. Then, in a second step, the product op-
erator formalism is necessary to understand the outcome of
experiments involving interacting spins. At ZULF, couplings
between spins need to be taken into account even to describe
the simplest experiment, which consists of detecting the co-40

herence between the singlet S0 and triplet T0 states of a pair
of J -coupled heteronuclei, e.g., 1H and 13C (Blanchard and
Budker, 2016). Polarization oscillates back and forth from
one heteronucleus to the other, producing an observable os-
cillating signal whose frequency is given by the J coupling45

between the two spins. The outcome of the experiment is
simple – a single line at the J -coupling frequency – although
it cannot be predicted by the vector model of high-field NMR
and Bloch equations. Nonetheless, it is possible to build in-
tuition regarding ZULF experiments in several ways. First,50

when dealing with two-spin systems, one can define spin op-
erators at ZF in analogy to that at high field so as to trans-
late some of the intuitions from high field to ZULF (Blan-
chard and Budker, 2016; Butler et al., 2013b). Second, there
is a strong analogy between the energy states of electronic55

spins in atoms and coupled nuclei at ZF (Butler et al., 2013a;
Theis et al., 2013). The formalism of addition of angular mo-
menta (widely used in atomic physics and rotational spec-
troscopy but less frequently in liquid-state NMR) can there-
fore be used to describe ZULF experiments. Finally, ZULF 60

experiments can be numerically simulated easily, and – as is
the case for high-field NMR – simulation provides a play-
ful means to understand NMR experiments (Blanchard et al.,
2020; Put et al., 2021). This tutorial paper is focused on the
last two approaches. 65

We present a step-by-step procedure to numerically simu-
late ZULF spectra in some simple cases. The process is bro-
ken down into the following steps:

1. define the experimental sequence

2. define the spin system 70

3. compute the spin Hamiltonian

4. define the initial state – compute the initial density ma-
trix

5. propagate the density matrix under the Hamiltonians

6. extract expectation values from the propagation 75

7. Fourier transform the expectation values to obtain a
spectrum.

We assume that the reader is familiar with general concepts
of NMR and that they are not necessarily used to performing
spin dynamics simulations. We take particular care to detail 80

the technical “tricks” which are generally omitted in research
papers but are nonetheless essential to performing successful
simulations. We present simulated spectra for XAn spin sys-
tems with n between 1 and 5 with several excitation schemes.
The spectra are simulated using MATLAB live scripts, which 85

are available in the Supplement. The code is abundantly com-
mented and is constructed so as to follow precisely the recipe
presented in this paper. Each object and operation presented
in this paper can thus be related to lines in the MATLAB
code, and vice versa. PDF versions of the live scripts are 90

available. We strongly advise the reader to read the code in
parallel to the paper. In a second step, we interpret the simu-
lated results by performing an analytical analysis of the XAn
system using a theoretical framework coming from atomic
physics. We show how to construct an eigenbasis and find 95

the selection rules for the allowed transitions. This section is
also supported with a code written in Wolfram Mathematica
and with a step-by-step link between the text and lines in the
code supporting the derived equations.

The reader might wonder whether it makes sense to go 100

through all the details of simulating NMR experiments from
scratch while there are powerful simulation packages which
are freely available. SpinDynamica (Bengs and Levitt, 2018)
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and Spinach (Hogben et al., 2011), which run on Mathemat-
ica and MATLAB, respectively, are probably the most appro-
priate tools for simulations at ZULF. The people who have
programmed these have already gone through the hurdles of
making them efficient and versatile for us, and they even pro-5

vide code examples for the simulation of NMR spectra at
ZULF.1 However, it is the authors’ opinion that performing
simple simulations from scratch is the best way to get fa-
miliar with the quantum mechanical objects of NMR theory.
Once one is confident with these objects and their language,10

one will make the best use of powerful packages such as
SpinDynamica and Spinach. We note that several PhD the-
ses from Pines’ group at the Massachusetts Institute of Tech-
nology (MIT) present simulations of NMR spectra at ZULF
(Theis, 2012; Blanchard, 2014; Sjolander, 2017). These the-15

ses contain code examples and are a useful resource for the
beginner.

In writing this paper, the authors wish to pay trib-
ute to their regretted lecturer and mentor Prof. Kon-
stantin L’vovich Ivanov, known as Kostya by many, who20

was taken by COVID-19 on 5 March 2021 (Yurkovskaya
and Bodenhausen, 2021). Kirill SheberstovTS4 had Kon-
stantin Ivanov as a PhD co-supervisor, performing research
on long-lived states, parahydrogen-induced polarization, and
chemically induced dynamic nuclear polarization (CIDNP).25

Konstantin Ivanov’s deep understanding of the underlying
physics allowed his group to work in very different direc-
tions, e.g., to combine CIDNP and ZULF NMR. During his
PhD in Sami Jannin’s team in Lyon, France, Quentin Stern
collaborated with Konstantin Ivanov on a research project.30

In the course of their collaboration, Konstantin Ivanov gave
Quentin Stern guidance on how to simulate experiments at
ZF. A few pieces of advice turned into precious teachings
for Quentin Stern. Sadly, these teachings were brutally in-
terrupted by Konstantin Ivanov’s death. Konstantin Ivanov’s35

kindness and availability to give help and advice will forever
remain an example for Quentin Stern and Kirill Sheberstov.

2 Theory – numerical simulation of spin dynamics

2.1 Define the experimental sequence

Most 1D NMR experiments can be broken down into three40

steps:

preparation−mixing− detection.

During the preparation, some nuclear polarization is acquired
by letting the sample rest in a strong magnetic field (in
most conventional experiments). Mixing consists of bring-45

ing the system to a non-stationary state whose oscillations
are recorded during detection. In common high-field NMR

1See, for example, http://spindynamics.org/wiki/index.php?
title=Zerofield.m (last access:TS3 ).

experiments, all the steps are performed in a strong mag-
net with a nearly constant magnetic field. Nuclear polariza-
tion is spontaneously acquired due to the high magnetic field, 50

and both the mixing and detection are performed through the
same RF coil using Faraday induction. At ZULF, there is no
nuclear polarization, so the preparation has to be performed
in different conditions. A common method is to shuttle the
sample between a region of high field and a region of ZULF. 55

Figure 1 shows a typical experimental setup. A permanent
magnet is used to prepolarize the sample, which is connected
with the magnetic shields by a guiding solenoid coil. This
coil ensures that the sample experiences a magnetic field with
constant direction and sufficient strength during the transfer 60

from the region of high field to inside the magnetic shields
(i.e., the coil ensures an adiabatic transfer). Once the sample
arrives in the magnetic shields at the location of detection,
the Helmholtz coil continues to produce a magnetic field in
the same direction as the solenoid, and the spin system is still 65

distributed into Zeeman populations (Blanchard and Budker,
2016; Tayler et al., 2017). All the steps detailed until here are
part of the preparation. In practice, the guiding solenoid and
the Helmholtz coil produce a magnetic field which is much
weaker than the prepolarizing magnet. However, this will not 70

be taken into account in the simulation: we consider that the
sample spends enough time in the prepolarizing magnet to
reach Boltzmann equilibrium and that the transfer is suffi-
ciently fast for us to neglect the change in polarization during
the transfer. 75

A further step can optionally be added to the preparation,
which consists of ramping down the magnetic field produced
by the Helmholtz coil to bring the spins adiabatically to ZF.
We will refer to experiments which include or do not include
this step as the adiabatic field drop and sudden field drop ex- 80

periments, respectively. In the case of sudden field drop ex-
periments, the mixing step simply consists of switching off
the magnetic field non-adiabatically (that is, fast enough to
be considered instantaneous with respect to the evolution of
the spin system). In the case of adiabatic field drop experi- 85

ments, the sample is already at ZF at the end of preparation,
so populations have to be mixed by applying a magnetic field
pulse before any signal can be detected. This is analogous to
high-field pulses except that it uses constant magnetic field
rather than RF pulses. After the mixing, the oscillating mag- 90

netic field generated by the sample is detected by an optical
magnetometer. In Fig. 1, the magnetometer is represented be-
low the sample, that is, aligned along the z axis with respect
to the sample. We assume that the OPM is configured so as
to be sensitive to magnetic field along the z axis and that the 95

spins are initially prepolarized along the same axis. Defining
this axis as z is a natural choice for high-field NMR spectro-
scopists, but note that other conventions exist (see, for exam-
ple, Ledbetter et al., 2011). During detection, a weak mag-
netic field may be applied, either along the z axis or along 100

an orthogonal axis. In the latter case, the experiment is said
to be performed under the ULF regime. In the absence of

http://spindynamics.org/wiki/index.php?title=Zerofield.m
http://spindynamics.org/wiki/index.php?title=Zerofield.m
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applied magnetic field (and provided the residual magnetic
field is properly zeroed at the location of the sample), the
experiment is said to be performed under the ZF regime.

In summary, there are several possible combinations of ex-
perimental schemes. All of them start with prepolarizing the5

spins at high magnetic field. After the sample is transported
into the magnetic shields, the field is dropped either suddenly
or adiabatically, in which case a magnetic field pulse is ap-
plied. Finally, the oscillating magnetic field produced by the
sample is detected along the z axis, with or without a weak10

magnetic field applied along the x axis. In the remaining of
the paper, these sequences presented in Fig. 3b will be broken
down into the following steps:

1. prepolarization,

2. transfer and coherence excitation, and15

3. detection.

2.2 Define the spin system

This step consists of listing the different magnetic sites of
the molecule whose ZULF spectrum is to be simulated and
the interactions which the spins are subject to. This paper is20

concerned with small molecules in the liquid state. As is the
case for high-field NMR, dipolar interactions are averaged
out by rapid molecular tumbling and need not be taken into
account (except as stochastic perturbation if one intends to
include relaxation effects). Therefore, only the J coupling25

and the Zeeman interactions are considered here.
In this paper, we consider spin systems of the form XAn,

where XTS6 is a 13C spin coupled to n equivalent 1H spins
A through a coupling JAX. The A spins are coupled together
through JAA.30

2.3 Compute the spin Hamiltonian

The Hamiltonian is the operator which represents the total
energy of the system. Information about the spin system is
mathematically encoded in the spin Hamiltonian. We will
first present how the Hamiltonian for the Zeeman interaction35

of a single spin is computed based on Pauli matrices. Then,
we will present the construction of a two-spin system using
the Kronecker product of individual spin spaces to compute
the Zeeman and the J -coupling Hamiltonians. Finally, we
will show how the procedure is extended to an arbitrary num-40

ber of spins.
Let us first assume that the system contains a single spin-

1/2 interacting with the magnetic field B TS7 along the z axis.
The state of any spin system can be represented as a lin-
ear combination of basis vectors, which are called “kets” in45

Dirac’s notation and are represented by the symbols | 〉. For
a single spin-1/2, two basis kets are necessary to represent
the state of the system. We chose to represent the spin sys-

tem in the Zeeman basis:

B2
Z = {|α〉 , |β〉 } =

{(
1
0

)
,

(
0
1

)}
. (1) 50

The |α〉 and |β〉 states correspond to the spin being paral-
lel and antiparallel with the magnetic field, respectively. The
general state in which the spin may be found is a linear com-
bination of these two basis states. Because these states and
their associated kets form a basis, their vector representa- 55

tion have the canonical form with only 0 and 1 coefficients.
The space spanned by these two vectors is called a “Hilbert
space” and has dimension 2, as indicated by the superscript
in B2

Z. Note that the choice of the Zeeman basis is convenient
for numerical simulation but is not necessary. For example, 60

one may use the coupled basis, which will be presented and
used in Sect. 4. The same basis may be used to perform sim-
ulations at high field or ZULF, although one particular basis
might turn out to be more convenient.

The angular momentum of a single spin is associated with 65

the spin angular momentum operators, which can be repre-
sented as a vector with three Cartesian components:

Î =
(
Îx , Îy , Îz

)
. (2)

These operators act on the Zeeman states in certain ways,
e.g., Îx |α〉 = 1

2 |β〉 . To summarize the set of rules, it is con- 70

venient to use the matrix representation of the operators,
with the matrix elements determined by the action of the
operator on the |α〉 and |β〉 states: I rsµ = 〈r

∣∣∣Îk∣∣∣ s〉, where
r,s ∈ {α,β} ;µ ∈ {x,y,z}. This definition makes use of 〈 |,
i.e., the “bra”, an object which is complementary to the ket 75

and corresponds to the “Hermitean conjugate” of the ket. In
the matrix representation of quantum mechanics, the Her-
mitean conjugate of a ket corresponds to the complex trans-
pose of the vector representing the ket. The matrix represen-
tation of operators in quantum mechanics is very important 80

for performing simulations, as they are constructed in such a
way that any state or operation with the quantum system can
be represented using linear algebra. The matrix representa-
tions of the three Cartesian components of the spin angular
momentum operators are proportional to Pauli matrices σ̂x , 85

σ̂y , and σ̂z:

Îx =
1
2
σ̂x =

1
2

(
0 1
1 0

)
,

Îy =
1
2
σ̂y =

1
2

(
0 −i

i 0

)
,

Îz =
1
2
σ̂z =

1
2

(
1 0
0 −1

)
. (3)

The interaction of a single spin with a magnetic field B is
given by the Zeeman Hamiltonian:

ĤZ =−γB · Î =−γ
(
Bx Îx +By Îy +BzÎz

)
, (4) 90
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Figure 1. (a) Typical experimental setup for ZULF experiments. Note that the sample is represented in two places in the same drawing even
if there is a single sample. (b) Schemes of the experimental sequences for measurements at ZF using a sudden field drop or an adiabatic field
drop followed by a pulse of static magnetic field.TS5

where γ is the gyromagnetic ratio of the spin (in
rad s−1 T−1). The dot product of the vectors of the magnetic
field and of the spin angular momentum (vectors and vec-
tor operators are denoted in bold throughout the text) is ex-
panded on the right member of Eq. (4). Note that we have5

omitted the reduced Planck constant } in Eq. (4), which
implies that the energy is expressed in radians per second
(rad s−1) rather than in joules. This is the case through-
out this paper. In many cases, the magnetic field is aligned
with one of the axes. If it points along the z axis, i.e.,10

B =
(

0 0 B0
)
, Eq. (4) simplifies to

ĤZ =−γB0Îz = ω
0Îz =

1
2

(
+ω0 0

0 −ω0

)
, (5)

where ω0
=−γB0 is the Larmor frequency of the spin. This

expression is valid regardless of the intensity of the magnetic
field, i.e., at high field as well as at ZULF. The Zeeman states,15

|α〉 and |β〉 , which correspond to the spin being parallel and
antiparallel with the magnetic field, respectively, are eigen-
states of the Zeeman Hamiltonian; that is, they satisfy the re-
lations ĤZ |α〉 = +1/2 |α〉 and ĤZ |β〉 = −1/2 |β〉 . Eigen-
states of a Hamiltonian are of particular importance; they are20

states which do not evolve under the effect of that Hamilto-
nian (ignoring the accumulation of the phase factor, which
turns out to be irrelevant in most of the experiments), i.e.,
stationary states.

The single spin whose Hamiltonian is given by Eq. (5)25

lives in a Hilbert space of dimension 2. To represent a pair of

spins of 1/2, we need to use a Hilbert space with a dimension
of 4. To do so, we redefine the angular momentum operators
in this higher-dimension space. The matrix representations
of the angular momentum operators Î1x , Î1y , and Î1z and Î2x , 30

Î2y , and Î2z of spin 1 and spin 2, respectively, are given by
the Kronecker product of matrices of single-spin angular mo-
mentum operator and the identity operator, in the appropriate
order. For the z-axis angular momentum operators, we have

Î1z = Îz⊗ 1̂=
1
2

(
1 0
0 −1

)
⊗

(
1 0
0 1

)

=
1
2


+1 0 0 0
0 +1 0 0
0 0 −1 0
0 0 0 −1

 (6) 35

and

Î2z = 1̂⊗ Îz =
(

1 0
0 1

)
⊗

1
2

(
1 0
0 −1

)

=
1
2


+1 0 0 0
0 −1 0 0
0 0 +1 0
0 0 0 −1

 . (7)

Similar expressions are obtained for the matrices of x and y
operators. They are not shown here but are available in many
textbooks (Hore et al., 2015; Levitt, 2013). Here, we have 40
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used the following convention for the Kronecker product(
a b

c d

)
⊗

(
α β

γ δ

)

=

 a

(
α β

γ δ

)
b

(
α β

γ δ

)
c

(
α β

γ δ

)
d

(
α β

γ δ

)


=


aα aβ bα bβ

aγ aδ bγ bδ

cα cβ dα dβ

cγ cδ dγ dδ

 . (8)

The two operators defined by Eqs. (6) and (7) are the same
as the one given by Eq. (5), except that the world of spin 1
now contains spin 2, and vice versa. This representation cor-5

responds to a basis that is the Kronecker product of the basis
of the individual spins.

B4
Z = B

2
Z⊗B

2
Z = {|αα〉 , |αβ〉 , |βα〉 , |β β〉 } (9)

For the case where the magnetic field points along the z axis,
the total Zeeman Hamiltonian for the two spins can now be10

computed using Eq. (5) in the basis of Eq. (9) as the sum of
the two Zeeman Hamiltonians:

ĤZ = ĤZ,1+ ĤZ,2 = ω
0
1 Î1z+ω

0
2 Î2z

=
1
2


+ω0

1 +ω
0
2 0 0 0

0 +ω0
1 −ω

0
2 0 0

0 0 −ω0
1 +ω

0
2 0

0 0 0 −ω0
1 −ω

0
2

, (10)

where ω0
1 and ω0

2 are the Larmor frequencies of spin 1 and
2, respectively. Note that in a Hilbert space of several spins,15

it is useful to define projections of total angular momentum
operators:

Îx = Î1x + Î2x,

Îy = Î1y + Î2y,

Îz = Î1z+ Î2z. (11)

Note that these operators are represented by the same sym-
bol as their equivalent in the single-spin Hilbert space (see20

Eq. 3). It should be clear from the context whether the op-
erator corresponds to a single-spin or multiple-spin Hilbert
space. Where confusion may remain, we will indicate the di-
mension of the space on which the operator acts.

At this point, the two spins are represented in a common25

space, but they do not interact. The J -coupling Hamiltonian
for the pair of spins is given by

ĤJ = 2πJ Î1 · Î2 = 2πJ
(
Î1x Î2x + Î1y Î2y + Î1zÎ2z

)

= πJ


1/2 0 0 0
0 −1/2 1 0
0 1 −1/2 0
0 0 0 1/2

 , (12)

where J is the J coupling between the two spins (in Hz).
Compared with the Zeeman Hamiltonian (see Eq. 10), the 30

J -coupling Hamiltonian has the particularity to have off-
diagonal elements in the {|αβ〉 , |βα〉 } subspace, which im-
plies that the J interaction mixes the |αβ〉 and |βα〉 states.
In other words, due to the J interaction, these two states are
no longer eigenstates of the spin system. 35

In the case of a system of n spins of 1/2, the same pro-
cedure can be applied to define the angular momentum op-
erators and the Hamiltonians. These operators can be repre-
sented as 2n× 2n matrices. Their Zeeman basis can be con-
structed as in Eq. (9), taking all possible combinations of |α〉 40

and |β〉 states of the individuals spins. Equations (6) and (7)
generalize to

Îkz =⊗
n
l=1û

2×2
lz where û2×2

lz =

{
1̂2×2 if l 6= k,
Î 2×2
z if l = k,

(13)

where 1̂ and Îkz are the identity operator and the z angular
momentum operator of spin k in an n-spin Hilbert space, and 45

the û2×2
lz operator is defined in a single-spin Hilbert space.

The z projection of total angular momentum operators is
given by

Îz =

n∑
l=1

Îlz. (14)

Equations (13) and (14) are shown for z operators but apply 50

similarly for x and y operators. The Zeeman Hamiltonian for
a system of n spins is given by

ĤZ =−

n∑
l=1

γlB · Îl

=−

n∑
l=1

γl

(
Bx Îlx +By Îly +BzÎlz

)
, (15)

where γl is the gyromagnetic ratio of spin l. The J Hamilto-
nian in the same space is given by 55

ĤJ = 2π
n∑
l>k

Jlk Îl · Îk

= 2π
n∑
l>k

Jlk

(
Îlx Îkx + Îly Îky + ÎlzÎkz

)
, (16)

where Jlk is the J coupling between spins l and k (in Hz).
Because a spin is not J coupled to itself, the sum in Eq.
(16) does not include terms with l = k. Furthermore, to avoid
counting terms twice, terms with l < k are not included ei- 60

ther, leaving only l > k terms. The expression of the Zeeman
Hamiltonian and J Hamiltonian in Eqs. (15) and (16), re-
spectively, are valid both at high field and at ZULF. What
makes the difference between the two regimes is the relative
intensity of the two contributions. 65
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2.4 Define the initial state – compute the initial density
matrix

The state of a spin system during an NMR experiment is de-
scribed by a density operator. If |ψ〉 is a ket representing
the state of the system as a linear combination of basis states5

(like those defined in Eqs. 1 and 9), the density operator is
given by

ρ̂ = |ψ〉 〈ψ | , (17)

where the upper bar represents the ensemble average over
all identical spin systems in the sample – the operation per-10

formed by the density operator. This averaging makes the
density operator formalism well-suited for NMR, where the
experiment consists of observing a large number of identical
spin systems at the same time rather than a single spin sys-
tem. The matrix representation of the density operator (and15

of any other spin operator) is achieved by calculating all the
matrix elements ρrs =

〈
r| ρ̂ | s〉 , where | r〉 and | s〉 are basis

states. For example, the matrix representation of the density
operator for the |α〉 and |β〉 states of a single spin yields

ρ̂α = |α〉 〈α| =

(
1
0

)(
1 0

)
=

(
1 0
0 0

)
,

ρ̂β = |β〉 〈β| =

(
0
1

)(
0 1

)
=

(
0 0
0 1

)
. (18)20

To start a simulation, we need to determine the density ma-
trix of the system at the initial point of the experiment. We
assume that the sample has spent enough time in the pre-
polarizing magnet to reach thermal equilibrium; that is, the
spin system follows Boltzmann’s distribution of states. In this25

case, the density matrix is given by

ρ̂eq =
exp

(
−

Ĥ
kBT

,
)

Z
(19)

where Ĥ , kB, and T are the Hamiltonian operator of the
spin system, Boltzmann’s constant, and the temperature, re-
spectively. Operation exp( ) denotes the matrix exponentia-30

tion. Note that this operation does not consist of applying
f (x)= exp(x) to each element of the matrix. It is a more
complex operation, which is realized in MATLAB by the
built-in function expm (rather than exp). Z is a normaliza-
tion constant, which ensures that the density matrix has unit35

trace. It is given by

Z = Tr

{
exp

(
−
Ĥ

kBT

)}
. (20)

The prepolarizing step of the experiments that we intend to
simulate occurs in a strong magnetic field (in the sense that
the Zeeman interaction is largely dominating all other inter-40

actions), as in a standard high-field experiment. In this case,
we can compute the thermal equilibrium by taking only the

Zeeman terms into account. For a single spin with Larmor
frequency ω0 and gyromagnetic ratio γ in prepolarizing field
Bp, the thermal equilibrium density matrix yields 45

ρ̂eq =
exp

(
−

}ω0 Îz
kBT

)
Z

=

exp
(
+

}γBp Îz
kBT

)
Z

=

( 1+P
2 0
0 1−P

2

)
=

1
2

1̂+P Îz, (21)

where P is the polarization of the nucleus along the z axis
(for positive γ , it corresponds to the population excess of the
|α〉 state with respect to the |β〉 state), defined by

P = tanh
(
}γBp

2kBT

)
. (22) 50

Note that the use of } in the expression of the Hamiltonian
(i.e., expressing the energy in joules) cannot be avoided here,
to ensure consistency of units. To obtain the expression on
the right-hand side of Eq. (21), we have jumped several steps
of calculation which are all based on the definition of polar- 55

ization. This expression for the density matrix is exact for a
spin whose only interaction is the Zeeman interaction, which
we have assumed here.

For an n-spin system, we take the Kronecker product of
density matrices of individual spins ρ̂2×2

eq,l . 60

ρ̂eq ≈ ⊗
n
l=1ρ̂

2×2
eq,l = ⊗

n
l=1

(
1̂2×2

2
+Pl Î

2×2
z

)

=
1̂
2n
+

1
2n−1

n∑
l=1

Pl Îlz (23)

The expression is approximate in the sense that it neglects
all spin–spin interactions. This approximation is valid unless
the system is highly polarized, which is the case even at very
high field (without hyperpolarization). To avoid confusion, 65

we specified that the operators ρ̂2×2
eq,l , 1̂2×2, and Î 2×2

z act on
a single-spin Hilbert space (2× 2 matrix). On the contrary,
the operators 1̂ and Îlz act on spin states of n spins, and ac-
cordingly their matrix representations have dimensionality of
2n× 2n (for spins of 1/2). As shown by Eq. (23), one may 70

compute the density matrix either using the Kronecker prod-
uct of operators in a single-spin Hilbert space or by summing
the operators in a Hilbert space of n spins.

In many textbooks (Hore et al., 2015; Levitt, 2013), one
encounters simplified expressions of the density operator. 75

First, it is common to remove the identity component:

ρ̂eq→ ρ̂eq−
1̂
2n
, (24)

where n is the number of spins in the system. Because all op-
erators commute with the identity, this does not affect the
result of propagation. The resulting expression is simpler 80
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(ρ̂eq = P Î
2×2
z for a single spin), which is convenient for cal-

culations by hand. It may also make the numerical propaga-
tion faster and more precise. Another common simplification
is to drop the polarization factor. For a single spin, the two
combined simplifications yield5

ρ̂eq→ Îz. (25)

Simplifications are useful, but they should be handled with
care. The polarization factor P is different for spins with dif-
ferent gyromagnetic ratio. If it is dropped without introduc-
ing further corrections, the relative sizes of the population10

of spins with different gyromagnetic ratios will not be re-
spected. In the simulations presented here, we will compute
the initial density matrix using the transformation of Eq. (24)
but not that of Eq. (25).

2.5 Propagate the density matrix under the15

Hamiltonians

We have seen how to compute the initial density matrix and
the matrix representation of the Hamiltonian. We now de-
scribe how the evolution of the system (represented by the
density matrix) evolves with time under a given Hamiltonian.20

This will be used at several steps of the simulation: when the
sample is brought adiabatically to ZF, during the pulse, and
during the signal measurement.

The evolution of a quantum system with time is given by
the time-dependent Schrödinger equation. Its equivalent for25

the evolution of density matrix is the Liouville–von Neu-
mann equation d

dt ρ̂ (t)=−i
[
Ĥ (t) , ρ̂ (t)

]
, which has the so-

lution

ρ̂ (t)= Û (t) ρ̂0Û
−1 (t) , (26)

where ρ̂0 is the density matrix at t = 0, and Û is the propa-30

gator during time t , which is defined as

Û (t)= exp
(
−iĤ t

)
, (27)

where Ĥ is the total Hamiltonian. The operation of Eq. (26)
“takes” the spin system from ρ̂0 to ρ̂ (t). Again, note that
exp( ) denotes the matrix exponentiation and not element-by-35

element exponentiation. An important case of propagator is
the rotation operator. For an angular momentum operator Îµ,

with µ ∈ {x,y,z}, the propagator exp
(
−iÎµθ

)
is called a ro-

tation operator; it represents a rotation of the spins of angle
θ around axis µ, when applied to the density matrix using40

Eq. (26). For a single spin subject to a static magnetic field
along the z axis, the total Hamiltonian is the Zeeman Hamil-
tonian (see Eq. 5) which causes the spin to rotate around the
z axis; this rotation can be expressed using the rotation oper-
ator exp

(
−iĤ t

)
= exp

(
−iω0Îzt

)
with angle ω0t .45

The brute force calculation of the exponential operator in
an arbitrary basis is computationally challenging as it re-
quires calculating the Taylor expansion of the Ĥ operator. To

avoid this, the calculation of the propagator (Eq. 27) is usu-
ally performed by diagonalizing the Hamiltonian and then 50

taking the complex exponent for each of its eigenvalues,
exp(−iωkt), where ωk denotes the kth eigenvalue. There-
fore, the transformation to the eigenbasis of the Hamiltonian
implicitly happens during most spin dynamics simulations,
meaning that, even if it was not set by the user, this is likely 55

done by the linear algebra packages of the software. One may
note that the basis does not affect the result of the calculation,
but the choice of a more appropriate one may help rationalize
the problem. In many cases, the initial choice is the Zeeman
basis, in which spin operators are readily introduced based 60

on Kronecker products of the Pauli matrices. Depending on
the symmetry of the problem, it might be more convenient to
change the basis to another one. As we will see in Sect. 4.1, a
choice of coupled basis is preferable for understanding zero-
field J spectroscopy of coupled spins. 65

It is important to remark that Eq. (27) is only valid if the
Hamiltonian is constant during the evolution period. The case
where the Hamiltonian is time dependent is treated below.
Note that the propagator is a unitary operator and therefore
has the convenient property that its inverse is equal to its 70

complex transpose (i.e., Û−1
= Û†), which is much faster

to compute than the matrix inverse Û−1.
Equations (26) and (27) allow us to know the state of the

system at any time t from the initial time t = 0. To simu-
late the signal produced by the spin system during the course 75

of the experiment, we must calculate the time domain signal
at different time points. Note that in this case the Hamilto-
nian remains constant during free evolution. To calculate the
signal at fixed time steps, it is convenient to first calculate
the propagator Û (dt) over period dt . We then apply Eq. (26) 80

recursively to get the new density matrix ρ̂ (tk+1) from the
previous one ρ̂ (tk),

ρ̂ (tk+1)= Û (dt) ρ̂ (tk) Û−1 (dt) , (28)

where tk+1−tk = dt . To simulate ZULF spectra, we will also
encounter situations where the Hamiltonian is time depen- 85

dent. First, the Hamiltonian can vary with time but be “con-
stant by block”. This is, for example, the case for the sudden
field drop; the system is under a certain Zeeman Hamilto-
nian in the beginning of the experiment and suddenly under
the ZULF Hamiltonian during detection. This situation does 90

not present particular difficulties; the evolution of the system
can be described step by step by both Eqs. (26) and (28).

Second, the Hamiltonian can vary continuously, as in the
case of the adiabatic field drop, where the intensity of the
magnetic field is ramped down to zero. This event can be sim- 95

ulated by propagating the evolution of the system during time
intervals which are sufficiently short for the Hamiltonian to
be considered constant during this time interval. The propa-
gator must then be computed for each time increment. The
form of the equation for propagation is similar to Eq. (28), 100

ρ̂ (tk+1)= Û (tk→ tk+1) ρ̂ (tk) Û−1 (tk→ tk+1) , (29)
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where the propagator is given by

Û (tk→ tk+1)= exp
(
−iĤ (tk)dt

)
, (30)

where Ĥ (tk) is the Hamiltonian at time tk . Note that the
choice of Ĥ (tk) rather than Ĥ (tk+1) in Eq. (30) is arbitrary,
but in the limit of small intervals, the choice has no conse-5

quence.

2.6 Extract expectation values from the propagation

The propagation procedure described above gives access to
the density matrix along time. To simulate the time domain
signal, we need to extract a physical quantity from the density10

matrix as it evolves with time. The measured physical quan-
tity of a ZULF experiment is the magnetic field produced by
the nuclear spins of the sample at the location of an OPM. In
a first approximation, we can consider that the whole sam-
ple is a point dipole interacting with the OPM and that this15

total dipole is the sum of the dipoles of the individual spin
systems (Fig. 2 gives a visual representation of the approx-
imation). Whether this approximation is appropriate or not
depends on the geometry of the experimental setup. We have
chosen the z axis as the quantization axis (defined by the de-20

tector, i.e., the OPM). Therefore, the physical quantity that
we need to compute is the total magnetic field produced by
the spins along the z axis at the location of the vapor cell:

〈Bz〉 =
µ0

2π
〈µ̂tot
z 〉

r3 =
µ0

2π
N〈µ̂z〉

r3 , (31)

where 〈µ̂tot
z 〉, µ0, N , 〈µ̂z〉, and r are the magnetic moment of25

the sample along the z axis, the permeability of free space,
the number of identical spin systems in the sample, their in-
dividual magnetic moments along the z axis, and the distance
between the center of the sample and the center of the vapor
cell, respectively.30

For each identical spin system, we then compute the mag-
netic moment as the sum of the contributions of each spin
l.

〈Bz〉 =
µ0

2π
N

r3

n∑
l=1
〈µ̂lz〉 =

µ0

2π
N}
r3

n∑
l=1

γl〈Îlz〉, (32)

where µ̂lz, γl , and Îlz are the magnetic moment, the gyro-35

magnetic ratio, and the angular momentum along the z axis
of spin l, respectively. Note that n and N represent the num-
ber of spins in the molecule and the number of molecules
in the sample, respectively. The notation 〈 〉 denotes the ex-
pectation value of a quantity. Particularly important ones are40

those that can be physically measured in the experiment. In
the density matrix formalism that we are using, the expecta-
tion value of a physical quantity related to an operator Â is
given by

〈A〉 = Tr
{
Âρ̂
}
, (33)45

Figure 2. Comparison of the real geometry of the sample of the
OPM with the approximated one. The arrows represent local mag-
netization vectors parallel to the total magnetization vector.

where Tr{ } denotes the matrix trace, i.e., the sum of all di-
agonal elements of the matrix representation of the operator.
Note that the expectation value of µ̂lz (or Îlz) is proportional
to the polarization level of spin l which was accounted for
in Eqs. (21) and (22). Therefore, the total magnetic moment 50

calculated with Eq. (32) depends on the polarization of the
different spin species.

If ρ̂ (t) is the density matrix at time t , we obtain the signal
S(t) measured by the OPM by plugging Eq. (32) into Eq. (33)

S (t)= 〈Bz〉 (t)=
µ0

2π
N}
r3 Tr

{
Ôρ̂(t)

}
, (34) 55

where we have defined a “detection operator”,

Ô =

n∑
l=1

γl Îlz. (35)

To obtain Eq. (34), we have used the fact that taking the trace
of a matrix is a linear operation, and so the trace of a sum is
the sum of the traces. 60

In the case of a sample with volume V = 100 µL of 13C-
formic acid prepolarized at 2 T at 298 K, with molar mass of
46 g mol−1 TS8 and density of 1.22 g mL−1, one finds that the
amplitude of the oscillating magnetic field generated by the
sample at a distance of r = 1 cm is on the order of 10 pT us- 65

ing the above equations. This estimation does not take into
account demagnetization effects caused by distribution of
spins in space, giving the upper limit for the expected field.
Experimentally measured magnetic fields are about 10 times
smaller (Tayler et al., 2017). 70

2.7 Fourier transform the expectation values to obtain a
spectrum

The time domain signal is what is measured by the ZULF
NMR spectrometer. The final step of the simulation is to
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transform the measured signal from the time domain to the
frequency domain using a discrete Fourier transform. Pro-
gramming environments such as MATLAB or Mathematica
are equipped with built-in functions for fast Fourier transfor-
mation. We will not discuss the mathematics behind this pro-5

cess, but we will give a few practical hints. Contrary to high-
field NMR, ZULF spectra can be obtained with real magnetic
field units (rather than arbitrary units). We will show how
such units can be obtained.

Let us call t and S the arrays of numbers containing the10

time and corresponding time domain signal values, respec-
tively, which resulted from the previous steps (note that, in
MATLAB’s programming environment, such arrays are usu-
ally called vectors). Let us call K the number of elements
of both arrays (which corresponds to the number of points15

in the time domain signal). For now, S consists of a sum of
oscillating signals which do not decay with time as our sim-
ulation did not include relaxation effects. If we perform a
Fourier transform on S, we will obtain non-Lorentzian line
shapes (with distinctive sinc patterns). We must therefore ar-20

tificially include relaxation by multiplying the signal with an
apodization function, to force the signal to decay to 0. For
liquid-state signals, the most common choice is a monoex-
ponential decay which can be expressed as

S′k = Sk exp(−πlBtk)= Sk exp
(
−
tk

T2

)
, (36)25

where Sk , tk , lB, and T2 are the kth elements of t and S, the
line broadening (in Hz), and the coherence time constant (in
s), respectively. Note that the coherence time constant is of-
ten referred to as the spin–spin relaxation constants or trans-
verse relaxation time constant. The signal intensities S′k de-30

fine the apodized signal array S′. As shown in Eq. (36), we
may choose to express the apodization function using either
the coherence time constant T2 or the line broadening lB (in
Hz), which are related by πlB = 1/T2. The former is the time
constant at which the time domain signal decays, while the35

latter is the full width at half height (FWHH) of the signals.
In order to avoid “truncating” the decay of the time domain
signal and the related spectral artifacts, we must fulfill the
condition T2� taq, where taq =max {tk} is the acquisition
time (or the length of the signal in the time domain). Typ-40

ically, we may choose T2 and taq so that taq = 5T2. Table 1
summarizes the parameters which were used in this paper.

The apodization function of Eq. (36) yields Lorentzian sig-
nals as one would expect. However, without further apodiza-
tion, the baseline of the spectra will have some distortions45

(Zhu et al., 1993), with the main distortion being a small off-
set of the baseline. This problem arises because the time do-
main signal has its first point at time t = 0, so the Fourier
transform gives the integral of the first segment of twice
larger amplitude than it should be. As proposed by Otting,50

this baseline offset can be removed by weighting the first
point of the time domain signal by factor 1/2 (Otting et al.,
1986). However, because the integral of the Fourier trans-

form is proportional to the first point of the time domain sig-
nal, this apodization does not preserve the integral. To obtain 55

spectra without baseline offset and preserving the integral,
we propose to use an apodization function which weights all
points by 2 expect for the first one:

S′′k =

{
S′k
2S′k

if k = 1,
otherwise. (37)

We show in the Supplement that this apodization function 60

preserves the integral (see Sect. S2.1TS9 ).
In MATLAB programming language, the function for fast

Fourier transformation fft() takes array S′ as input and returns
the frequency domain array which corresponds to the simu-
lated spectrum. Optionally, one may add a second argument 65

L to fft() to include a zero-fillingCE4 in the Fourier trans-
form. Including zero-filling has the advantage of increasing
the number of points per FWHH on the spectrum without
increasing the computation time of the propagation. Due to
MATLAB’s Fourier transform convention, it is convenient 70

to retransform the signal with fftshift() in order to obtain a
Fourier transformed signal with 0 as the middle frequency.
We then divide the output of MATLAB’s Fourier transform
by the number of points L:

S (ν)=
1
L
F S (t) , (38) 75

where F designates the Fourier transform. The frequency do-
main signal obtained after this whole procedure has units of
magnetic field (e.g., pT). Changing the zero-fillingL changes
the intensity of the frequency domain signal but preserves the
integrals. 80

MATLAB’s fft() function does not generate the frequency
array associated with the Fourier transformed signal. The fre-
quency array ν (in Hz) can be generated based on the follow-
ing expression:

νk =
k

L
f, k ∈

[[
−
L

2
;
L

2
− 1

]]
, (39) 85

where the sampling frequency (in Hz) is given by

f =
K − 1
taq

. (40)

The sampling frequency of the time domain signal gives
the maximum frequency that can be appropriately sampled. 90

Figure 3 illustrates the consequence of choosing a sampling
frequency which is lower than the maximum frequency. If the
sampling frequency is lower than the signal to be sampled,
the Fourier transformed signal lies outside the spectral width
(between −f/2 and +f/2). However, due to the “refolding 95

effect” of the Fourier transform, the signal still appears in the
spectrum but at irrelevant positions. To avoid this, one may
repeat the simulation by increasing the sampling frequency
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Figure 3. Illustration of signal sampling and the effect of undersampling. Panels (a), (c), and (e) TS10 represent a cosine oscillating at 1 Hz
in gray sampled with various frequencies f (1.3, 3.7, and 7.3 Hz). The blue dots represent the samples. In each case, the Fourier transform is
shown in panels (b), (d), and (f). When the sampling frequency is lower than 1 Hz, the peak cannot appear at 1 Hz and is therefore found at
a fictitious position.

and keeping other parameters constant. If the sampling fre-
quency is sufficient, the spectrum should not be affected.

The choice of the parameters discussed in this section and
above influences the outcome of the simulation in the same
way as it does for the experiment. Once an NMR simulation5

is running, one might want to play with the combination of
f , K , taq, T2, and L until the simulated spectra display con-
venient features. If one intends to simulate spectra to match
experimental data, one might simply perform the simulation
with the same f , K , L, and taq values. Table 1 summarizes10

the parameters which were used in this paperTS11 .
The procedure described here yields an NMR signal which

is symmetric around 0. As a consequence, each signal is
found both in the positive and negative frequencies, and the
integral is split into the two duplicates. Because the exper-15

imental procedure that we are simulating does not differen-
tiate negative and positive frequencies, we discard the fre-
quency domain signal corresponding to negative frequencies
and multiply the abscissa of the frequency domain signal cor-
responding to positive frequencies by a factor of 2. This op-20

eration corresponds to “folding” the spectrum around ν = 0.
Note that in high-field NMR, the measured signal is complex
and is therefore not split into positive and negative halves.
The central frequency of the spectrum at high field is given
by the carrier frequency of the spectrometer (e.g., typically25

400 MHz for 1H at 9.4 T). Section 2.8 describe this differ-
ence between high-field and ZULF NMR in more detail.

Whether the time domain signal which results from the
simulation is real or complex, the Fourier transform yields
a complex frequency domain signal. To get a spectrum con- 30

sisting of a signal intensity as a function of the frequency, we
must use the real part of the frequency domain signal. De-
pending on the experiment that we are simulating, we might
find that some or all spectral components of the frequency
domain signal are not in phase. To compensate for this, one 35

might apply a phase correction by multiplying each point of
the frequency domain signal by a complex constant exp iφ,
where ϕ is the phase correction before taking its real part.

Ir (ν)= Re {Ic (ν)exp iφ} , (41)

where Ir (ν) and Ic (ν) are the real and complex frequency 40

domain signals, respectively.
In summary, the Fourier transform procedure that we have

described has the following steps:

1. Apply a monoexponential apodization window to the
time domain signal so that it decays to 0 (see Eq. 36). 45

2. Apply the apodization described by Eq. (37) to avoid
baseline artifacts in the frequency domain signal.
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Table 1. List of parameters that were used to simulate the time domain signals and spectra in Fig. 4.

Parameter Meaning Value used in
Fig. 4

K Number of points of the time domain signal 4096
L Number of points of the time domain signal including zero-filling/number of points of the

Fourier transform
65 536

taq Acquisition time 5 s
f Sampling frequency or spectral width 819.200 Hz
τd Dwell time (time between acquisition points) 1.2207 ms
T2 Coherence’s relaxation time constant 1 s
lb Line broadening 0.3183 Hz

3. Obtain the complex frequency domain signal by Fourier
transforming the time domain signal using a fast Fourier
transform algorithm.

4. Generate the corresponding frequency axis using
Eqs. (39) and (40).5

5. Remove the negative frequencies from both the fre-
quency axis and the frequency domain signal and multi-
ply the abscissa of the frequency domain signal by 2 to
account for the partition of the signal integral between
positive and negative frequencies.10

6. Take the real part of the signal.

2.8 Comparison with high-field NMR

We conclude this theory section by listing the main differ-
ences between high-field and ZULF NMR, which are sum-
marized in Table 2. As is the case for the rest of the paper,15

our description is limited to small molecules containing spin-
1/2 in the liquid state.

At high magnetic field, the Zeeman interaction dominates
the dynamics and the J coupling. Furthermore, the Larmor
frequency of the spins (which results from the Zeeman in-20

teraction) is slightly shifted by the presence of the electron
cloud around the nuclei. This phenomenon, called the chem-
ical shift, gives a slightly different Larmor frequency for nu-
clei in different positions in a molecule, which spreads over
typically 10 and 200 ppm around the Larmor frequency for25

1H and 13C spins, respectively. At ZULF, the J coupling
dominates while the Zeeman interaction is a perturbation,
and the chemical shift plays no role (in that it is a small per-
turbation of a small perturbation).

In Fig. 1 and in the simulations presented in this paper,30

we have assumed that the detector was positioned below the
sample (along the z axis in our axis convention) and that it
was sensitive to magnetic field along the z axis. Although
this choice is typical, it is not the only possibility. In com-
mon high-field experiments, the oscillating signal emitted by35

the spins is recorded perpendicular to the static magnetic
field. Detection at ZULF is performed with magnetometers

that are sensitive to the total magnetic field produced by the
sample. The operator corresponding to this observable is the
sum of the magnetic moment of the spins along the sensi- 40

tive axis of the OPM (see Eq. 34). In typical experiments,
a single detector is used, which results in a real signal. Note
that an imaginary ZULF signal could be obtained if the OPM
were to have several sensitive axes or more than one detec-
tor were used. High-field NMR uses Faraday induction in 45

pickup coils. Signals originating from different nuclei are
usually not observed in the same experiment as their Larmor
frequencies are too far apart, and the NMR coils are only
sensitive over a limited bandwidth. The operator correspond-
ing to inductive detection in pulsed NMR is non-Hermitean 50

and therefore yields complex signals. An extra step of the
acquisition process at high field that is not required at ZULF
is modulating the signal recorded by the coil with a carrier
frequency. Indeed, the NMR coil picks up a signal at the Lar-
mor frequency of the spins, which is too high to be digitized 55

(e.g., 400 MHz for 1H at 9.4 T). Instead, the signal is mixed
with a carrier frequency, and only the difference is digitized,
over a small bandwidth (e.g., over 10 ppm, corresponding to
4 kHz for 1H spins at 9.4 T). The signals at ZULF can be
detected without mixing the frequency as the they are suf- 60

ficiently low to be digitalized directly. For more details on
the signal modulation at high field, the reader is referred to
chapter 4 of J. Keeler’sTS12 book Understanding NMR spec-
troscopy (Keeler, 2010).

The code in Sect. S2.2TS13 presents in great detail the sim- 65

ulation of the spectra for a pair of J -coupled 1H and 13C spin
pairs at ZF and ULF and at high field for both 1H and 13C
(9.4 T). The code is decomposed in sections corresponding to
Sect. 2.1 to 2.7 of the text above, and, whenever possible, the
equations presented in this paper are referenced in the code. 70

The reader is encouraged to open this code to understand the
difference between simulating a spectrum at high field and at
ZULF. The code can be opened in PDF, including the figures,
for those who do not have a MATLAB license.
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Table 2. Comparison between high-field and ZULF NMR for typical experiments. Note that quadrature detection (and thus imaginary
signals) is possible at ZULF, although uncommon.

ZULF High field

Main interaction J -coupling ĤJ Zeeman interaction ĤZ
Perturbations Zeeman interaction ĤZ J -coupling ĤJ , chemical shift ĤCS
Detection method Magnetometry (OPM, SQUID CE5 , etc.) Faraday induction
Observables µ̂S,z+ µ̂I,z = γI Îz+ γS Ŝz Îz = Îx iÎy
Signal type Real Complex

3 Results of numerical simulations

3.1 Excitation schemes on an XA spin system

The ZF and ULF spectra of an XA spin system with a J cou-
pling of 140 Hz were simulated for different experimen-
tal sequences, assuming that the sample consists of 100 µL5

of solution where the spin system has a concentration of
27 mol L−1. The code and its PDF version are presented in
Sect. S2.3TS14 . Figure 4 shows the experimental sequences,
as well as the simulated time domain and frequency domain
signals. For all simulations, the sample was assumed to have10

spent sufficient time in a prepolarizing field of 2 T at 298 K
to be at Boltzmann’s equilibrium. The polarizations of the
13C and 1H spins were calculated using Boltzmann’s distri-
bution (see Eq. 19) and used to compute the single-spin den-
sity matrices of the 13C and 1H spins, ρ̂eq(13C) and ρ̂eq(1H)15

(see Eq. 21). The density matrix of the two-spin system was
computed by taking the Kronecker product of the single-spin
density matrices ρ̂0 = ρ̂eq(13C)⊗ ρ̂eq(1H) (see Eq. 23). The
identity was removed from the two-spin density matrix using
Eq. (24). The resulting density matrix was assumed to rep-20

resent the initial state of the simulation (as explained above,
only the Zeeman terms are considered to contribute to the ini-
tial state). For each experimental sequence, the spectrum was
simulated both at 0 nT (including only the J Hamiltonian
ĤJ ; see Eq. 12) and with a field of 0.5 µT along the x axis,25

that is, orthogonal to both the direction of the prepolarizing
field and the sensitive axis (including both the J Hamilto-
nian ĤJ and the Zeeman Hamiltonian ĤZ; see Eqs. 12 and
10). The time domain signal was computed by propagat-
ing the density matrix under the effect of the Hamiltonian30

for a total time of 5 s (parameter taq), discretized into 4096
points (parameter K), and corresponding to time intervals dt
of 1.2207 ms (parameter τD). Prior to the propagation loop,
the ZF and ULF propagators for this particular time step Û
(see Eq. 30) and the observable operator Ô (see Eq. 35) were35

computed only once.
The density matrix was propagated from time tk to time

tk+1 = tk + dt under the Hamiltonian (ZF or ULF) using the
sandwich formula ρ̂k+1 = Û ρ̂kÛ

−1
= Û ρ̂kÛ

† (see Eq. 29).
At each time point k of the propagation (realized by a “for”40

loop), the signal intensity of the time domain signal was ex-

tracted from the density matrix using the trace Tr
{
Ôρ̂k

}
(see

Eq. 33) (in pT). In theory, the trace of a Hermitean operator
should be real. However, due to the finite machine precision
of the numeric algorithm, the trace can sometimes contain a 45

nonzero imaginary part. This residual imaginary part is dis-
carded by taking the real part of the trace Re

(
Tr
{
Ôρ̂k

})
.

This point might appear secondary, but dealing with complex
numbers while thinking they are real can lead to mistakes.
After propagation, a monoexponential apodization function 50

was applied to the time domain signal (see Eq. 36), with
a coherence time constant T2 of 1 s. A second apodization
function was applied to avoid baseline artifacts (see Eq. 37).
The apodized time domain signal was Fourier transformed
with zero-filling to 65 536 points, using MATLAB’s built-in 55

functions. The real part of the Fourier transform is shown in
Fig. 4. The frequency axis of the spectra was computed using
Eqs. (39) and (40). The spectra are symmetric around zero,
and so it is common to work only with the positive frequen-
cies as shown in Fig. 4. 60

Simulating the sudden field drop experiment is the sim-
plest case presented here. Because the coherence excitation
scheme (or mixing) only consists of bringing the spin from
high magnetic field to ZF or ULF, the simulation only con-
sists of propagating the high-field thermal equilibrium den- 65

sity matrix under the ZF or ULF Hamiltonian. The ZF spec-
trum consists of one line at the J coupling and one at zero
frequency (see Fig. 4a). Including a field of 0.5 µT along the
x axis (ULF case) splits the J peak as well as the line at zero
frequency. 70

The simulations presented in Fig. 4b–d feature an adia-
batic field drop. We used a monoexponential field drop from
Bstart = 200 µT to 0 occurring over tdecay = 0.5 s with a decay
time constant of τ = 0.05 s, described by

B (t)= Bstart

exp
(
−
t
τ

)
− exp

(
−
tdecay
τ

)
1− exp

(
−
tdecay
τ

) , (42) 75

which fulfills the conditions B (0)= Bstart and B
(
tdecay

)
= 0.

During the field drop, the Hamiltonian Ĥ (t)= ĤJ + ĤZ (t)
is time dependent. This step thus cannot be simulated in
a single propagation step. Instead, it must be discretized
into substeps dt that are sufficiently short for the Hamilto- 80
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Figure 4. Excitation schemes for an XA spin system corresponding to 13C and 1H spins with a J coupling of 140 Hz and corresponding
simulated time domain signals and spectra. The vertical dashed line indicates the J coupling. The time domain signal was computed by
propagating the density matrix under the effect of the Hamiltonian for a total time of 5 s (parameter taq), discretized into 4096 points
(parameter K), and corresponding to time intervals dt of 1.2207 ms (parameter τD). A monoexponential apodization function was applied to
the time domain signal, with a coherence time constant T2 of 1 s. The apodized time domain signal was Fourier transformed with a zero-filling
to 65 536 points.

nian to be considered time independent. Here, the 0.5 s time
length was discretized into 5000 steps of 0.1 ms. At time
t = 0, the density matrix is the thermal equilibrium density
matrix ρ̂eq obtained above. At each time step tk , the prop-

agator Û (tk→ tk+1)= exp
(
−iĤ (tk)dt

)
is computed (see5

Eq. 30), and the density matrix is propagated from time tk
to time tk+1 = tk + dt (see Eq. 29) under the Hamiltonian
Ĥ (tk)= ĤJ + ĤZ (tk). We name ρ̂adia the density matrix ob-
tained after this process. A question arises here: is this mag-
netic field drop that we have chosen sufficiently slow to be10

considered adiabatic? In other words, is ρ̂adia stationary? A
simple way to ensure that it is the case is to simulate the spec-
trum at ZF after the magnetic field drop without any excita-
tion pulse, that is, taking ρ̂adia as the density matrix at time
t = 0, ρ̂0. If the transition is adiabatic, then the system should 15

remain stationary; that is, the time domain signal should fea-
ture no oscillation and the spectrum no peak. Figure 4b shows
the result of this procedure, which confirms that the transition
is adiabatic. The only feature of the ZF spectrum in Fig. 4b
is the line at zero frequency. This line originates from the 20
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non-oscillating magnetization decaying with T2, which is the
result of the apodization function that we have applied. Ver-
ifying that the ZF spectrum is flat also ensures that the field
drop was discretized into sufficiently short time intervals dt .

The density matrix after the adiabatic field drop ρ̂adia5

obtained above was used for the simulations presented in
Fig. 4c–d. In the experimental sequences of Fig. 4c–d, the
adiabatic field drop is followed by a magnetic field pulse
either along the z or x axis. This was simulated by prop-
agating ρ̂adia under the pulse Hamiltonian to obtain ρ̂0 =10

Ûp
(
τp
)
ρ̂adiaÛ

†
p
(
τp
)
, where Ûp

(
τp
)

is the propagator of the
pulse Hamiltonian Ĥp = ĤJ + ĤZ, which acts on the den-
sity matrix during pulse length τp. The Zeeman Hamiltonian
depends on the magnetic field intensity of the pulse Bp and
its direction (see Eq. 15). For the z-axis pulse, we used a15

pulse intensity and length of 50 µT and 150 µs, respectively.
For the x-axis pulse, we used a pulse intensity and length of
50 µT and 910 µs, respectively. These choices are justified in
the next section. The resulting density matrices ρ̂0 were used
as the density matrix at time t = 0 of the time domain signal,20

which was computed and Fourier transformed as described
above. In the case of the z-axis pulse experiment, the peaks
of interest (J peak at 140 Hz) were found to be out of phase;
a phase correction eiφ with φ = π/2 was thus applied to the
Fourier transform. Adjusting the phase for the J peak caused25

the lower-frequency peaks to be out of phase. Interestingly, in
Fig. 4d, the intensity of the J peak is higher than for the other
excitation schemes while the lower-frequency peaks are sup-
pressed, indicating that all the available polarization has been
transferred to the J peak.30

3.2 Rabi oscillation curves

The pairs of magnetic field intensity and length of the pulses
used for the simulation in Fig. 4d were chosen by simulating
Rabi curves for both the z- and x-axis pulses. The high-field
NMR equivalent to the Rabi curve is the “nutation experi-35

ment”, which consists of recording a series of NMR detec-
tions while keeping the RF pulse power constant and vary-
ing the pulse length (or the pulse length is kept constant and
the amplitude is varied; Tayler et al., 2017). The nutation or
Rabi curve is the plot of the signal intensity as a function of40

the varied parameter. It allows us to determine the pair of RF
power and pulse length which maximizes the signal inten-
sity. Except in the presence of rapid relaxation effects or RF
field inhomogeneities, the observed curve is sinusoidal. At
ZULF, the Rabi curve is more complex and depends on the45

spin system under scrutiny. To simulate the Rabi curve at ZF,
we repeated the simulation of the ZF spectra for an experi-
ment with an adiabatic field drop (using the same parameters
as above) followed by a pulse of 50 µT along the z and x
axes, varying the pulse length from 0 to 3000 µs (the code50

and its PDF version are presented in Sect. S2.3TS15 ). The
time domain signal was Fourier transformed as described
above, and the frequency domain signal was integrated from

138 to 142 Hz. The signal integral of the J peak is plotted
as a function of the pulse length in Fig. 5. The signal inte- 55

gral of the sudden drop experiment is shown as a horizontal
dashed line for comparison. When a pulse along the z axis is
used, a simple sinusoidal curve is obtained, and its maximum
matches that of the sudden drop experiment (see Fig. 5a).
The first maximum is reached for a pulse length of 150 µs. 60

When a pulse along the x axis is used, a more complex pat-
tern is obtained, and the maximum is found to be 1.64 times
higher than the sudden drop experiment (see Fig. 5b). The
first global maximum is reached for a pulse length of 910 µs.

3.3 XAn spin system 65

The simulations shown up to this point only deal with an XA
spin system, which typically corresponds to 13C-formate (or
13C-formic acid), where the 13C spin interacts with a single
1H through a J coupling of 195–222 Hz (Blanchard and Bud-
ker, 2016; Tayler et al., 2017) (depending on experimental 70

conditions). 13C,15N-cyanide groups are also interesting two-
spin systems which were used in ZULF experiments (Blan-
chard et al., 2020, 2015). We now extend the simulation to
incorporate multiple A spins. An XA2 spin system is, for
example, met in 13C-glycine (Put et al., 2021). XA3 spins 75

are met in a number of molecules containing methyl groups
such as 13C-pyruvate (Barskiy et al., 2019). XA4 (for exam-
ple 15N-ammonium cation; Barskiy et al., 2019) and XA5 are
less common, but they are presented here to show the pattern
that arises when adding spins. 80

Figure 6 shows the simulations for sudden drop experi-
ments with detection at ZF and ULF of XAn spin systems
with n= 1,2, . . .,5, where X represents a 13C spin, and An
represents 1H spins with a J coupling of 140 Hz between
X and A spins and 10 Hz among A spins (the code and its 85

PDF version are presented in Sect. S2.4TS16 ). All the relevant
mathematics to construct the operators of an m= n+ 1 spin
system are given in the Theory section. For an XA5 spin sys-
tem, the Hilbert space has 26

= 64 dimensions (and related
operators). To avoid constructing each operator manually, re- 90

cursive formulae were used (see Eqs. 13 and 23). The time
domain signal was computed by propagating the density ma-
trix under the effect of the Hamiltonian for a total time of 5 s
(parameter taq), discretized into 8192 points (parameter K),
and corresponding to time intervals dt of 0.6104 ms (parame- 95

ter τD). A monoexponential apodization function was applied
to the time domain signal, with a coherence time constant T2
of 1 s. The apodized time domain signal was Fourier trans-
formed with a zero-filling to 32 768 points.

Increasing the number of A spins increases the number 100

of spectral components in the spectrum. A known result of
ZULF NMR appears in this simulation: for odd numbers of
n, the ZF spectrum features lines at integer multiples of the
J coupling k·JAX TS17 with k ∈ [[1; (n+1)/2]], while for even
numbers of n, it features lines at half-integer multiples of 105

the J coupling k ·JAX/2 with k ∈ [[1;n/2]]. Adding a 0.5 µT
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Figure 5. Rabi curves at ZF with excitation pulses along z (a) and x (b) axes applied to an XA spin system. The horizontal dashed line
represents the signal integral of the sudden drop ZF experiment. The time domain signal was computed by propagating the density matrix
under the effect of the Hamiltonian for a total time of 5 s (parameter taq), discretized into 4096 points (parameter K), and corresponding
to time intervals dt of 1.2207 ms (parameter τD). A monoexponential apodization function was applied to the time domain signal, with
a coherence time constant T2 of 1 s. The apodized time domain signal was Fourier transformed with a zero-filling to 65 536 points. The
frequency domain signal was then integrated from 138 to 142 Hz. The Rabi curve represents the integral compared with the excitation pulse
length. The picotesla unit (pT)CE6 should be recalculated.

field along the x axis during detection (that is, performing
ULF detection) splits the J lines. The higher the multiple
of the J line, the greater the number of splittings. Note that
the intensity of NMR signals at high field increases upon
adding more equivalent spins to the spin system. The anal-5

ysis of Fig. 6 shows that this logic does not apply to the
J lines for the ZULF case, where the spectrum completely
changes upon changing of spin topology. For example, note
that the amplitude of the J line for the XA system have the
same intensity as the J line for the XA2 system (appearing at10

3/2 · JAX frequency). Likewise, the two J lines for the XA3
system has the same total intensity as the two J lines for the
XA4 system. An empirical law of conservation of the total
spectral intensity for the J lines can be deduced by looking at
Fig. 6: indeed, the total intensity of all J lines is the same for15

any XAn system, assuming equal sample volume, prepolar-
ization, etc. On the other hand, the intensity of low-frequency
peaks shown in Fig. 6 is proportional to the total number of
spins in the spin system, like in high-field NMR. This is of
course expected as these signals are associated with the pre-20

cession of total magnetization around residual ULF field, and
total magnetization is proportional to the number of spins.

4 Interpretation

We are now going to show how to calculate ZULF NMR
spectra considering energy levels and transition probabilities25

rather than through the numerical propagation of the density
matrix. We will derive analytical solutions for the XAn sys-

tem, but the same approach can be used for more complex
spin systems. This approach was investigated in the follow-
ing references: Butler et al., 2013a; Theis et al., 2013; and 30

Emondts et al., 2014. Here we aim to present it with more
explanations and explicit derivations, but we limit ourselves
to only the simplest spin systems.

The relative contribution of ĤZ (see Eq. 10) and ĤJ (see
Eq. 12) terms depends on the magnetic field strength. In the 35

high-field extreme, for a heteronuclear spin system, ĤZ is the
dominant term, and ĤJ is considered as a first-order pertur-
bation. In this case, heteronuclei are said to be weakly cou-
pled, and their eigenstates coincide with the Zeeman states
(e.g., those in Eq. 9). At zero field, the weak coupling approx- 40

imation is not valid; the Zeeman states do not correspond to
the eigenstates of system. However, it is still possible to cal-
culate analytically the eigenstates for some spin systems, and
the simplest case is when all the spins are identical (An sys-
tem). In this case, the Hamiltonian is represented by only the 45

ĤJ term, and it commutes with the square of the total angular
momentum operatorTS18 .

F̂ 2
= F̂ 2

x + F̂
2
y + F̂

2
z ,

F̂µ =

n∑
l=1

Îlµ; µ ∈ {x, y, z} ,[
ĤJ , F̂

2
]
= ĤJ F̂

2
− F̂ 2ĤJ = 0, (43)

where n is the number of spins in the system. It is well
known that any pair of commuting Hermitean operators share 50
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Figure 6. Simulation of ZF and ULF spectra after sudden field drop for XA, XA2, XA3, XA4, and XA5 spin systems with a J coupling of
140 Hz between X and A spins and 10 Hz among A spins. The time domain signal was computed by propagating the density matrix under
the effect of the Hamiltonian for a total time of 5 s (parameter taq), discretized into 4096 points (parameter K), and corresponding to time
intervals dt of 1.2207 ms (parameter τD). A monoexponential apodization function was applied to the time domain signal, with a coherence
time constant T2 of 1 s. The apodized time domain signal was Fourier transformed with a zero-filling to 32 768 points.

their eigenspaces (Levitt, 2013). The set of eigenstates which
forms an eigenbasis for both operators simultaneously is
unique in cases where there are no degeneracies (all the
eigenvalues for both operators are different). When there are
degeneracies, the common eigenbasis is not unique. It turns5

out that ĤJ and F̂ 2 operators have degeneracies, and this re-
sults in the existence of an infinite number of different shared
eigenbases. Let us describe how to find such a set of eigen-
states.

4.1 Eigenstates at zero field 10

The eigenstates of a F̂ 2 operator can be expressed in
terms of the total spin and its projection quantum num-
bers. The conventional way to express them is to use
the |F,mF 〉 notation, where F denotes the total spin,
and mF denotes the projection onto a quantization axis 15

(mF ∈ {−F,−F + 1, . . .,F − 1,F }). For example, by def-
inition, for a single spin of 1/2, we have the sates |α〉 ≡
|1/2,1/2〉and |β〉 ≡ |1/2,−1/2〉 . For a pair of spins,
we have the three triplet states |T+1〉 ≡ |1,1〉 ; |T0〉 ≡

quent
Texte inséré 
add "i.e., "

quent
Texte inséré 
add "do "



18 Q. Stern and K. Sheberstov: Simulation of NMR spectra at zero and ultralow fields from A to Z

Figure 7. Procedure for adding up the angular momenta for the A3
spin system.

|1,0〉 ; and |T−1〉 ≡ |1,−1〉 ; and the singlet state |S0〉 ≡

|0,0〉 . Any |F,mF 〉 state is an eigenstate of the F̂ 2 and F̂z
operators with the following eigenvalues:TS19

F̂ 2
| F,mF 〉 = F (F + 1) | F,mF 〉 ,

F̂z | F,mF 〉 =mF | F,mF 〉 . (44)

To find the total spin of a system constituted by n spins, one5

must sum up the angular momenta of the individual spins,
which is a common procedure in the field of atomic physics
but not so much in NMR. All possible values of the angu-
lar momentum of the interacting spins are added up to con-
stitute a set of uncoupled quasiparticles with different total10

spin. The total spin F of a system constituted by two spins
I and S can take the values with steps of 1 between the sum
I + S and the absolute value of their difference:

|I − S| ≤ F ≤ I + S. (45)

For a pair of spins of 1/2, the possible values are F = 0,1.15

For n spins, the summation should proceed until all the possi-
ble pairs of the angular momentum of the individual spins are
summed up. As an illustration, consider a coupled system of
three spins of 1/2 (see Fig. 7). First, any two spins are added
up together to give F = 1 (a triplet) and F = 0 (a singlet).20

Then, the remaining spin 1/2 is added up to the quasiparti-
cles formed in the previous step (spins 1 and 0 in this case).
As a result, the initial A3 system is decomposed into three
subsystems with total spins of F = 3/2, 1/2 (addition of 1
and 1/2), and 1/2 (addition of 0 and 1/2).25

A useful property of such a decomposition can be illus-
trated at this point: the total spin operator commutes with all
rotation operators (e.g., exp(−iθ Îz)); therefore, 3D rotations
will never mix terms of the wave function belonging to differ-
ent total spin, e.g., spin 3/2 with 1/2. At ZF, there is no dis-30

tinction between directions; therefore, the eigenstates must
be invariant with respect to 3D rotations. This also partially
explains the existence of an infinite number of eigenbases for
F̂ 2, as all different orientations of the {x,y,z} system corre-
spond to different bases.35

One can check that the total number of the spin states re-
mains the same after the procedure of adding up the spins.
On the one hand, the number of states formed by n coupled
spins I equals to (2I + 1)n, which is 8 in the considered case.
On the other hand, a manifoldCE7 with a total spin F has40

2F+1 different states associated with different possible pro-
jections of the spin on the quantization axis. Therefore, there
are 4+ 2+ 2 states in the considered case.

The explicit form of the resulting eigenstates can be ob-
tained in terms of “uncoupled” spin states, which are con- 45

structed as a Kronecker product of the individual Zeeman
states (see Eq. 9). The resulting state |F,mF 〉 of the addition
of two angular momenta (I and S) can be represented as the
following linear combination:

|F,mF 〉 =
∑
mI ,mS

C
F,mF
I,mI , S,mS

|I,mI , S,mS 〉 , (46) 50

where CF,mFI,mI , J,mJ
represents Clebsch–Gordan coefficients

and is defined by

C
F,mF
I,mI , S,mS

= 〈 I,mI ; S,mS | F,mF 〉 . (47)

Each Clebsch–Gordan coefficient is specified by six num-
bers: the total spin of the coupled state F , its projection mF , 55

and the total spins of the uncoupled states and their projec-
tions (I , S, mI , mS). Coefficient CF,mFI,mI , S,mS

represents “how
much” of uncoupled state |I,mI , S,mS 〉 there is in a cou-
pled state |F,mF 〉. The analytical values of the Clebsch–
Gordan coefficients can be calculated using recursive expres- 60

sions, which are available in many software packages and
textbooks. Table S1 in the Supplement provides the relation
between the coupled and uncoupled states for the considered
A3 system and shows explicitly how to calculate them. The
full set of all possible |F,mF 〉 states forms the new basis 65

that is better suited than the Zeeman basis for ZULF NMR.
In fact, this basis coincides with the eigenstates at ZULF for
An and for XAn systems, but this basis is also a good starting
point for more complicated cases. We will refer to this new
basis as a “coupled” basis, because it is appropriate for the 70

description of strongly coupled spins.

4.2 Eigenenergies at zero field

Having the eigenstates, we can now proceed with finding
the eigenvalues of the Hamiltonian; these values correspond
to the energy of the states and therefore determine the fre- 75

quencies of ZULF NMR transitions. It turns out that An sys-
tems are not detectable at ZULF; it is shown in the next sec-
tion (where intensities of transitions are calculated) that they
give rise to no observable transition. At least two types of
nuclei with different gyromagnetic ratios are necessary for 80

an observable transition to exist. Therefore, we consider an
XAn system from now on. We will denote the operators as-
sociated with the X spin as Ŝ and with A spins as Î . It is
also convenient to introduce total spin operators for A spins:

F̂Aµ =
n∑
l=1
Îlµ, µ ∈ {x,y,z}. The Hamiltonian at ZF for this 85

spin system is given by

ĤAX = 2πJAX

n∑
l=1

Ŝ · Îl + 2πJAA

n−1∑
l=1

n∑
k>l

Îl · Îk. (48)

The ĤAX Hamiltonian can be expressed in terms of the total
spin operators using algebraic tricks. We find an expression
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for the first term of Eq. (48) in terms of F̂ 2, F̂ 2
A, and Ŝ2 by

developing F̂ 2:TS20

F̂ 2
=

(
Ŝ+

n∑
l=1

Îl

)2

= Ŝ2
+ 2Ŝ ·

n∑
l=1

Îl +

(
n∑
l=1

Îl

)2

= Ŝ2
+ 2

n∑
l=1

Ŝ · Îl + F̂
2
A⇔

n∑
l=1

Ŝ · Îl

=
1
2

(
F̂ 2
− Ŝ2
− F̂ 2

A

)
. (49)

Similarly, we find an expression for the second term of
Eq. (48) in terms of F̂ 2

A and Î 2
l by developing F̂ 2

A:5

F̂ 2
A =

(
n∑
l=1

Îl

)2

=

n∑
l=1

Î 2
l + 2

n−1∑
l=1

n∑
k>l

Îl · Îk

⇔

n−1∑
l=1

n∑
k>l

Îl · Îk =
1
2

(
F̂ 2

A−

n∑
l=1

Î 2
l

)
. (50)

By substituting the results of Eqs. (49) and (50) into Eq. (48),
we obtain a form of the Hamiltonian for which the energies
will be more easily calculated:

ĤAX = 2πJAX
1
2

(
F̂ 2
− Ŝ2
− F̂ 2

A

)
+ 2πJAA

1
2

(
F̂ 2

A−

n∑
l=1

Î 2
l

)
. (51)10

The ĤAX Hamiltonian commutes with the F̂ 2 operator;
therefore, they share eigenstates |F,mF 〉. So, the eigenen-
ergies can be written as the expectation values of |F,mF 〉
with respect to ĤAX:

EF,mF = 〈F,mF | ĤAX |F,mF 〉 . (52)15

To calculate explicitly the eigenvalues, we substitute the
Hamiltonian of Eq. (51) into Eq. (52) and use the following
properties:TS21

F̂ 2
| F,mF 〉 = F (F + 1) | F,mF 〉 ,

Ŝ2
| F,mF 〉 = S(S+ 1) | F,mF 〉 ,

F̂ 2
A | F,mF 〉 = FA(FA+ 1) | F,mF 〉 ,

Î 2
l | F,mF 〉 = Il(Il + 1) | F,mF 〉 , (53)

to obtain the final expression for the energy of level |F,mF 〉.20

EF,mF =
JAX

2
[F (F + 1)− S(S+ 1)−FA(FA+ 1)]

+
JAA

2
[FA(FA+ 1)− nIl(Il + 1)] , (54)

expressed in hertz. Here, quantum number F corresponds to
the total spin of the full XAn system, S corresponds to the

spin of the nucleus X, FA is the total spin of the An spins,
and Il is the spin of individual nuclei A. The energy does not 25

depend on the spin projection, resulting in degeneracy of all
2F + 1 levels with equal F .

The spin number S is the same for all eigenstates (e.g., it
is 1/2 for 13C); similarly, all spins Il are the same, and for
1H spins they are equal to 1/2. The remaining two quantum 30

numbers F and FA can have different values depending on
the state, therefore removing degeneracy between some of
the levels. Figure 8 presents the energy levels of XA, XA2,
and XA3 systems at ZF calculated using Eq. (54). Mathe-
matica codes to perform these calculations are available in 35

the Supplement (Sect. S3TS22 ).

4.3 Selection rules

We have now found the eigenstates and their energies, but not
all transitions between any pair of states are allowed. The last
step is to find the transition intensities and thus get the analyt- 40

ical appearance for the ZF NMR spectrum of an XAn system.
There are certain selection rules specifying which transitions
are in principle possible and which are forbidden, like those
in high-field NMR, where only single quantum transitions
are allowed. A general expression for the transition intensity 45

between any two eigenstates |F,mF 〉 and
∣∣F ′,m′F 〉 is given

by

Y =
〈
F ′,m′F |ρ̂0|F,mF

〉 〈
F ′,m′F |Ô|F,mF

〉
. (55)

We will explicitly calculate the transition intensity for the
sudden field drop experiment. In this case, both the initial 50

state ρ̂0 and the observation operator Ô are proportional to

γI F̂A,z+γS Ŝz (as a reminder, F̂A,z =
n∑
l=1
Îl,z). Therefore, the

transition intensity becomes

Y =
〈
F ′,m′F |γI F̂A,z+ γS Ŝz|F,mF

〉2
. (56)

This expression is an example of Fermi’s golden rule that is 55

used to calculate a transition’s amplitude in different prob-
lems in quantum mechanics. Similar expressions can be
found for the high-field NMR. By expressing the coupled
states |F,mF 〉 in terms of an uncoupled basis (see Eq. 46),
we find that 60(
γI F̂A,z+ γS Ŝz

)
|F,mF 〉

=

(
γI F̂A,z+ γS Ŝz

) ∑
mA,mS

C
F,mF
FA,mA, S,mS

|FA,mA, S,mS 〉

=

∑
mA,mS

C
F,mF
FA,mA, S,mS

(γImA+ γSmS ) |FA,mA, S,mS 〉 , (57)

where mA and mS are the z projection of the total spins FA
(for n protons, the maximum value of FA equals n/2, and
for each value of FA,mA ∈ {−FA,−FA+1, . . .,FA−1,FA})
and the z projection of the spin S (in the case where S is 65
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Figure 8. Energy levels for XA, XA2, and XA3 spin systems calculated according to Eq. (54). The numbers above the energy levels represent
the z projection of the angular momentum of the statesmF . Allowed transitions are shown by green arrows. JAX was set to 140 Hz, and JAA
was set to −12 Hz; these are typical values for 1JCH and 2JHHJ couplings TS23 . The energy difference for the allowed transitions equals to
JAX for the XA system, 3/2JAX for the XA2 system, and two frequencies of 2JAX and of JAX for the XA3 system. This agrees with the
numerical simulations shown in Fig. 6.

carbon-13, mS ∈ {− 1
2 ,

1
2 }), respectively. Now let us express

the remaining
〈
F ′,m′F

∣∣ state in terms of an uncoupled basis
as well and combine Eqs. (56) and (57)TS24 .

Y =

( ∑
m′A,m

′
S

C
F ′,m′F
F ′A,m

′

A, S
′,m′S

〈
F ′A,m

′

A,S,m
′

S

∣∣
∑
mA,mS

C
F,mF
FA,mA, S,mS

(γImA+ γSmS ) |FA,mA, S,mS 〉

)2

=

( ∑
m′A,m′S ,mA,mS

C
F ′,m′F
F ′A,m

′

A, S
′,m′S

C
F,mF
FA,mA, S,mS

(γImI + γSmS )
〈
F ′A,m

′

A, S
′,m′S | FA,mA, S,mS

〉)2

(58)

The last term
〈
F ′A,m

′

A, S
′,m′S | FA,mA, S,mS

〉
is nonzero5

only ifTS25

1FA = F
′

A−FA = 0,

1mA =m
′

A−mA = 0,
1S = S′− S = 0,
1mS =m

′

S −mS = 0. (59)

These selection rules mean that the only allowed transitions
are those which conserve the total spins FA and S (S is con-
served automatically as it can be only 1/2, but FA can have10

different values), as well as their projections onto the refer-
ence axis. Equation (58) therefore simplifies to

Y =

( ∑
mA,mS

C
F ′,m′F
FA,mA, S,mS

C
F,mF
FA,mA, S,mS

(γImA+ γSmS )

)2

. (60)

It is important to notice that, in the case where γI = γS ,
each element of this sum becomes zero. This is shown in the15

Wolfram Mathematica code for all observable transitions in
XA, XA2, and XA3 systems and can be rationalized in gen-
eral case by the following (see Sect. S3.1TS26 ). The operator

γI F̂A,z+ γS Ŝz (which is proportional to the initial state ρ̂0)

can be rewritten as γI
(
F̂A,z+ Ŝz

)
+ (γS − γI ) Ŝz. The first 20

term in this expression commutes with the ĤAX Hamiltonian
(see Eq. 48); therefore, it does not produce any observable
coherences, whereas the second term does not commute with
the ĤAX and leads to ZULF signals.

Finally, there are two more selection rules that are derived 25

by implementing the Wigner–Eckart theorem. The consid-
ered case is equivalent to a “dipole” transition, where the
transition is observed between two states connected by op-
erator of rank 1 (e.g., Eq. 56). This is a common situation in
atomic physics, and we adapt this result without evaluation: 30

the reduced matrix element coming from Wigner–Eckart is
shown to be nonzero if and only if

1F =±1,
1mF = 0. (61)

The whole set of selection rules given by Eqs. (59) and (61)
allows us to find which transitions are observable in XAn 35

systems at ZF. These transitions are shown in Fig. 8 by the
green arrows. It can be seen that JAA couplings shift the en-
ergy levels but do not affect the frequencies of the observable
transitions. This is a common situation that J couplings be-
tween magnetically equivalent spins do not contribute to the 40

observed NMR spectrum. As can be seen from the analysis
presented above, this statement holds for each case of the ZF
NMR spectra of XAn systems.

In this section, we analytically found the allowed transi-
tions for XA, XA2, and XA3 for the case of a sudden field 45

drop to ZF. The XA spin system has a single transition at
JAX, the XA2 spin system has a single transition at 3/2JAX,
and the XA3 spin system has one allowed transition at JAX
and another one at 2 JAX. Allowed transitions analytically
found here correspond to the numerical simulation: XA sin- 50

gle line at JAX, XA2 single line at 3/2JAX, etc. This deriva-
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tion explained the appearance of the ZF spectra but not that
of the ultralow-field spectra. To understand how the degen-
eracy of the ZF eigenstates are split by the presence of a
bias fieldCE8 , one has to use perturbation theory. We refer
the interested reader to Ledbetter et al. (2011) and Appelt et5

al. (2010).

4.4 Rabi oscillation curves

We finish this section on the interpretation of the numerical
simulations by giving a short explanation of the Rabi oscilla-
tion curves presented in Sect. 3.2 (see Fig. 5). The successful10

implementation of excitation pulses in ZULF-NMR experi-
ments requires two conditions to be fulfilled (Butler et al.,
2013b). First, the DCCE9 field of the pulse should be strong
enough so that heteronuclei (here, 1H and 13C spins) can be
considered weakly coupled. The field of 50 µT satisfies this15

condition, as the difference in Larmor frequencies between
1H and 13C spins is larger than 1.5 kHz� JXA = 140 Hz.
Second, the pulse must be much shorter than the evolution
under the J coupling. Here, the longest pulses that were sim-
ulated had a duration of 3 ms, while the characteristic time20

of the evolution under the J coupling is 1/JXA ≈ 7.1 ms.
Provided these two conditions are met, the product opera-
tor formalism can provide a convenient explanation for the
results of Fig. 5. Both Rabi oscillation curves in Fig. 5 are
rather unusual for high-field NMR, but the reader who is fa-25

miliar with the product operator formalism at high field will
see that there is a strong connection between the algebra de-
scribing pulsed experiments at high field and at ZULF. Here,
we give a brief summary of how this formalism can be used
to understand the Rabi oscillation curves. We recommend30

the interested reader to look at the following references for
a more detailed derivation (Butler et al., 2013b; Blanchard,
2014; Tayler et al., 2017).

After the adiabatic field drop, the magnetization of the
sample is proportional to γHÎz+γCŜz and does not evolve. In35

addition, part of the population is also on the zero-quantum
term Ẑz = 2

(
Îx Ŝx + Îy Ŝy

)
, which produces no observable

magnetization. Magnetic field pulses are applied to con-
vert one or both of these terms into the observable zero-
quantum term Ẑx = Îz− Ŝz. In the case of Fig. 5a where the40

pulse is applied along the z axis, the pulse converts Ẑz into
Ẑy = 2

(
Îx Ŝy + Îy Ŝx

)
. The state of the system after the pulse

is ρ̂
(
τp
)
= Ẑzcos

[
(γH− γC)Bzτp

]
+Ẑysin

[
(γH− γC)Bzτp

]
.

The excited unobservable Ẑy term then starts to evolve into
the observable term Ẑx under the action of the ĤJ Hamil-45

tonian, generating an oscillating magnetic field along the
z axis. The resulting ZULF signal has a sine rather than a
cosine time dependence and requires a π/2 phase correction
of the spectrum to have an absorption line as was described
in Sect. 3.2. The signal is maximized when the pulse has du-50

ration τp = π/
[
2(γH− γC)Bz

]
, which is around 157 µs in

the considered case. This is consistent with the simulated
Rabi oscillation curve of Fig. 5a. In the case of Fig. 5b
where the pulse is applied along the x axis, both initial
terms of the density operator, γHÎz+ γCŜz and Ẑz, are con- 55

verted into the observable term Ẑx . The conversion follows
a sin

[
(γH+ γC)Bxτp/2

]
sin
[
(γH− γC)Bxτp/2

]
function, al-

lowing one to excite slightly stronger signals over a slightly
longer pulse duration.

5 Conclusion 60

We have shown how to numerically simulate spectra at both
zero and ultralow fields for sudden drop and pulsed exper-
iments. We have then explained the results of the numeri-
cal simulation for sudden drop experiments at ZF by con-
structing the eigenbasis of the ZF Hamiltonian and finding 65

the allowed transitions among the eigenstates. The other nu-
merically simulated cases (i.e., pulsed experiments) can be
explained using the analytical approach that we have pre-
sented here. It requires an additional step which is to describe
how a pulse converts the populations of states. The reader 70

who is acquainted with the product operator formalism com-
monly used in high-field NMR might be interested in an al-
ternative approach based of commutation rules as presented
in Blanchard and Budker (2016) and Butler et al. (2013b).
We have chosen to describe the simplest cases, i.e., exper- 75

iments with thermal prepolarization with AXn systems. Us-
ing this methodology, the reader can proceed with simulating
more advanced cases, where analytical solutions do not ex-
ist. This includes calculation of ZULF spectra of molecules
with multiple spins (Wilzewski et al., 2017) and molecules 80

containing three or more types of nuclei, e.g., 1H, 13C, 15N,
and 2D (Alcicek et al., 2021); the evolution during dynam-
ical decoupling sequences (Bodenstedt et al., 2022a); the
ZULF-TOCSY type of spin-locking experiments (Kiryutin
et al., 2021); or spin evolution at intermediate fields, where 85

perturbation approaches are not valid (Bodenstedt et al.,
2021)CE10 . Complicated spin dynamics may occur under the
action of allowing composite pulsesCE11 (Jiang et al., 2018;
Bodenstedt et al., 2022b). The formalism we presented here
is a good starting point for the description and understanding 90

of hyperpolarized ZULF experiments, e.g., those involving
transfer of spin order in parahydrogen experiments at low
fields. Simulations are also useful to study different kinds of
imperfections such as field inhomogeneities, timing errors,
etc. We hope that this tutorial paper has allowed us to share 95

our excitement with the reader.

Code availability. The codes used to simulate the spectra pre-
sented in this paper are available online (https://doi.org/10.5281/
zenodo.7664138; Stern and Sheberstov, 2023). PDF versions of the
codes are available in the Supplement. 100

https://doi.org/10.5281/zenodo.7664138
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