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Abstract. Simulating NMR experiments may appear mysterious and even daunting for those who are new to the field. Yet, 

broken down into pieces, the process may turn out to be easier than expected. Quite to the opposite, it is in fact a powerful and 

playful means to get insights into the spin dynamics of NMR experiments. In this Tutorial Paper, we show step by step how 10 

some NMR experiments can be simulated, assuming as little prior knowledge from the reader as possible. We focus on the 

case of NMR at zero- and ultra-low field, an emerging modality of NMR in which the spin dynamics is dominated by spin-

spin interactions rather than spin-field interactions, as is usually the case of conventional high-field NMR. We first show how 

to simulate spectra numerically. In a second step, we detail an approach to construct an eigenbasis for systems of spin-½ nuclei 

at zero-field. We then use it to interpret the numerical simulations. In this attempt to make NMR simulation approachable, the 15 

authors wish to pay a tribute to Prof. Konstantin L’vovich Ivanov, a great scientist and pedagogue who passed away on March 

5th 2021. 

1 Introduction 

NMR spectroscopists know well the advantages of performing experiments at the highest possible magnetic field. Increasing 

magnetic field strength boosts the sensitivity thanks to higher Boltzmann nuclear polarization and higher Larmor frequency 20 

(provided the signal linewidth is maintained constant). In addition to this already convincing advantage, higher magnetic fields 

also imply larger frequency shift dispersion and therefore easier resolution of individual resonances in crowded spectra. This 

has motivated the use of ever-increasing magnetic fields. (Thayer and Pines, 1987; Schwalbe, 2017; Wikus et al., 2022) The 

past year has witnessed the implementation of the first spectrometers operating at no less than 28 T, corresponding to a 1H 

Larmor frequency of 1.2 GHz. (Wikus et al., 2022)  There is no doubt these new instruments will allow for unprecedented 25 

applications.  

On the fringe of these great achievements, growing interest is going to an opposite strategy, namely, zero- to ultralow-field 

NMR (ZULF), a modality of NMR experiments where the dominant interactions are spin-spin rather than spin-field 

interactions (Thayer and Pines, 1987; Weitekamp et al., 1983; Blanchard and Budker, 2016; Blanchard et al., 2021; Tayler et 

al., 2017; Jiang et al., 2021). To realize such conditions, ZULF experiments are not performed in magnets but rather in mumetal 30 
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magnetic shields that screen magnetic fields originating from the Earth and other surrounding sources, bringing the residual 

field down to nT values. In this paper, ‘Zero-field’ (ZF) designates the regime where heteronuclear spin-spin interactions 

dominate over spin-field interactions (Zeeman interactions) and the residual spin-field interactions are small enough for the 

Larmor period to be much longer than the coherence time (Blanchard and Budker, 2016). When this condition is met, 

decreasing the residual field to even lower values leaves the NMR spectrum unchanged. ‘Ultra-low field’ (ULF) designates 35 

the regime where the spin-field interactions can be treated as a perturbation to the heteronuclear spin-spin interactions. This 

typically corresponds to fields on the order tens to hundreds of nT (Ledbetter et al., 2011). Liquid-state ZULF experiment, 

result in J-spectra which do not feature any chemical shift information (Ledbetter et al., 2009). The regime where the intensity 

of heteronuclear spin-spin interactions is on the order of that of the spin-field interactions occurs typically in the range of µT 

to tens of µT and is referred to as Earth-field NMR (EF-NMR) (Callaghan and Le Gros, 1982; Appelt et al., 2006). 40 

In the simplest form of ZULF experiments, the sample is thermally prepolarized in a permanent magnet (typically 2 T) (Tayler 

et al., 2017) and subsequently shuttled into the magnetic shields for detection at ZF or ULF. Alternatively, ZULF experiments 

may be coupled with hyperpolarization techniques (Theis et al., 2012; Butler et al., 2013b; Barskiy et al., 2019; Picazo-Frutos 

et al., 2022). In particular, parahydrogen induced polarization (PHIP) has become common as a method for enhancing ZULF 

signal (Theis et al., 2011, 2012; Butler et al., 2013b). Once the sample is prepolarized (or hyperpolarized), coherences are 45 

excited using constant magnetic field pulses rather than radiofrequency (RF) pulses and are usually detected using optically 

pumped magnetometers (OPM) rather than inductive coils (Ledbetter et al., 2009). Contrary to high-field instruments, ZULF 

spectrometers have the advantage of being cheap and relatively easy to assemble (Tayler et al., 2017). They are small enough 

to sit on a bench and do not require the use of cryogenics (at least if OPMs are used for detection).  

Most people who have been introduced to the theory of high-field NMR have first encountered the vector model. The 50 

representation of a single spin system as a vector in 3D-space is a powerful tool to build intuition on what happens during an 

NMR experiment. Then, in a second step, the product operator formalism is necessary to understand the outcome of 

experiments involving interacting spins. At ZULF, couplings between spins need to be taken into account even to describe the 

simplest experiment, which consists of detecting the coherence between the singlet S0 and triplet T0 states of a pair of J-coupled 

heteronuclei, e.g. 1H and 13C (Blanchard and Budker, 2016). Polarization oscillates back and forth from one of the 55 

heteronucleus to the other, producing an observable oscillating signal, whose frequency is given by the J-coupling between 

the two spins. The outcome of the experiment is simple – a single line at the J-coupling frequency – although it cannot be 

predicted by the vector model of high-field NMR and Bloch equations. Nonetheless, it is possible to build intuition regarding 

ZULF experiments in several ways. First, when dealing with two-spin systems, one can define spin operators at ZF in analogy 

to that at high-field so as to translate some of the intuitions from high-field to ZULF (Blanchard and Budker, 2016; Butler et 60 

al., 2013b). Second, there is a strong analogy between the energy states of electronic spins in atoms and coupled nuclei at ZF 

(Butler et al., 2013a; Theis et al., 2013). The formalism of addition of angular momenta (widely used in atomic physics, and 

rotational spectroscopy, but less frequently in liquid-state NMR) can therefore be used to describe ZULF experiments. Finally, 

ZULF experiments can easily be numerically simulated and – as is the case for high-field NMR – simulation provides a playful 
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means to understand NMR experiments (Blanchard et al., 2020; Put et al., 2021). This tutorial paper is focused on the last two 65 

approaches.  

We present a step-by-step procedure to numerically simulate ZULF spectra in some simple cases. The process is broken down 

into the following steps: 

1. Define the experimental sequence 

2. Define the spin system 70 

3. Compute the spin Hamiltonian 

4. Define the initial state: compute the initial density matrix 

5. Propagate the density matrix under the Hamiltonians 

6. Extract expectation values from the propagation 

7. Fourier transform the expectation values to obtain a spectrum 75 

We assume that the reader is familiar with general concepts of NMR but that they are not necessarily used to perform spin 

dynamics simulation. We take particular care to detail the technical “tricks” which are generally omitted in research papers 

but are nonetheless essential to perform successful simulations. We present simulated spectra for XAn spin systems with n 

between 1 and 5 with several excitation schemes. The spectra are simulated using MATLAB live scripts which are available 

in the Supplementary Material. The code is abundantly commented and is constructed so as to follow precisely the recipe 80 

presented in this Paper. Each object and operation presented in this Paper can thus be related to lines in the MATLAB code, 

and vice versa. PDF version of the live scripts are available. We strongly advise the reader to read the code in parallel to the 

Paper.In a second step, we interpret the simulated results by performing an analytical analysis of XAn system using a theoretical 

framework coming from atomic physics. We show how to construct an eigenbasis and find the selection rules for the allowed 

transitions. This section is also supported with a code written in Wolfram Mathematica, and with a step-by-step link between 85 

the text and lines in the code supporting the derived equations. 

The reader might wonder whether it makes sense to go through all the details of simulating NMR experiments from scratch 

while there are powerful simulation packages, which are freely available. SpinDynamica (Bengs and Levitt, 2018) and Spinach 

(Hogben et al., 2011), which run on Mathematica and MATLAB, respectively, are probably the most appropriate tools for 

simulations at ZULF. The people who have programmed these have already gone through the hurdles of making them efficient 90 

and versatile for us and even provide code examples for the simulation of NMR spectra at ZULF.1 However, it is the Authors’ 

opinion that performing simple simulations from scratch is the best way to get familiar with the quantum mechanical objects 

of NMR theory. Once one is confident with these objects and their language, one will make the best use of powerful packages 

such as SpinDynamica and Spinach. We note that several PhD theses from the Pines’ group at the MIT present simulation of 

NMR spectra at ZULF (Theis, 2012; Blanchard, 2014; Sjolander, 2017). These theses contain code examples and are a useful 95 

resource for the beginner. 

 
1 See for example http://spindynamics.org/wiki/index.php?title=Zerofield.m 
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In writing this Paper, the Authors wish to pay a tribute to their regretted lecturer and mentor Prof. Kostantin L’vovich Ivanov, 

known as Kostya by many, who was taken by COVID-19 on March 5th 2021 (Yurkovskaya and Bodenhausen, 2021). KS had 

KI as PhD co-supervisor performing research on long-lived states, parahydrogen induced polarization, and chemically induced 

dynamic nuclear polarization (CIDNP). KI’s deep understanding of underlying physics allowed his group to work in very 100 

different directions, for example to combine CIDNP and ZULF NMR. During his PhD in Sami Jannin’s team in Lyon, France, 

QS collaborated with KI on a research project. In the course of their collaboration, KI gave QS guidance on how to simulate 

experiments at ZF. A few advices turned into precious teachings for QS. Sadly, these teachings were brutally interrupted by 

KI’s death. KI’s kindness and availability to give help and advice will ever remain an example for QS and KS.  

2 Theory – numerical simulation of spin dynamics 105 

2.1 Define the experimental sequence 

Most 1D NMR experiments can be broken down into three steps: 

preparation – mixing – detection 

During the preparation, some nuclear polarization is acquired by letting the sample rest in a strong magnetic field (in most 

conventional experiments). Mixing consists of bringing the system to a non-stationary state whose oscillations are recorded 110 

during detection. In common high-field NMR experiments, all the steps are performed in a strong magnet with a nearly constant 

magnetic field. Nuclear polarization is spontaneously acquired due to the high magnetic field and both the mixing and detection 

are performed through the same RF coil using Faraday induction. At ZULF, there is no nuclear polarization so the preparation 

has to be performed in different conditions. A common method is to shuttle the sample between a region of high-field and a 

region of ZULF.  115 

Figure 1 shows a typical experimental setup. A permanent magnet is used to prepolarize the sample and is connected with the 

magnetic shields by a guiding solenoid coil. This coil ensures that the sample experiences a magnetic field with constant 

direction and sufficient strength during the transfer from the region of high-field to inside the magnetic shields (i.e. the coil 

ensures an adiabatic transfer). Once the sample arrives in the magnetic shields at the location of detection, the Helmholtz coil 

continues to produce a magnetic field in the same direction as the solenoid and the spin system is still distributed into Zeeman 120 

populations (Blanchard and Budker, 2016; Tayler et al., 2017). All the steps detailed until here are part of the preparation. In 

practice, the guiding solenoid and the Helmoltz coil produce a magnetic field which is much weaker than the prepolarizing 

magnet. However, this will not be taken into account in the simulation: we consider that the sample spends enough time in the 

prepolarizing magnet to reach Boltzmann equilibrium and that the transfer is sufficiently fast for us to neglect the change in 

polarization during the transfer.  125 

A further step can optionally be added to the preparation which consists of ramping down the magnetic field produced by the 

Helmholtz coil to bring the spins adiabatically to ZF. We will refer to experiments which include or do not include this step as 

the adiabatic field drop and sudden field drop experiments, respectively. In the case of sudden field drop experiments, the 
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mixing step simply consists of switching off the magnetic field non-adiabatically (that is, fast enough to be considered 

instantaneous with respect to the evolution of the spin system). In the case of adiabatic field drop experiments, the sample is 130 

already at ZF at the end of preparation and so populations have to be mixed by applying a magnetic field pulse, before any 

signal can be detected. This is analogous to high-field pulses except that it uses constant magnetic field rather than RF pulses. 

After the mixing, the oscillating magnetic field generated by the sample is detected by an optical magnetometer. In Fig. 1, the 

magnetometer is represented below the sample, that is, aligned along the z-axis with respect to the sample. We assume that the 

OPM is configured so as to be sensitive to magnetic field along the z-axis and the spins are initially prepolarized along the 135 

same axis. Defining this axis as z is a natural choice for high-field NMR spectroscopists but note that other conventions exist 

(see for example Ref. (Ledbetter et al., 2011)). During detection, a weak magnetic field may be applied, either along the z-axis 

or along an orthogonal axis. In the latter case, the experiment is said to be performed under ULF regime. In absence of applied 

magnetic field (and provided the residual magnetic field is properly zeroed at the location of the sample), the experiment is 

said to be performed under ZF regime.  140 

In summary, there are several possible combinations of experimental schemes. All of them start with prepolarizing the spins 

at high magnetic field. After the sample is transported into the magnetic shields, the field is dropped either suddenly or 

adiabatically, in which case a magnetic field pulse is applied. Finally, the oscillating magnetic field produced by the sample is 

detected along the z-axis, with or without a weak magnetic field applied along the x-axis. In the remaining of the paper, these 

sequences presented in Fig. 3B will be broken down into the following steps: 145 

Figure 1: A. Typical experimental setup for ZULF experiments. Note that the sample is represented in two places on the same 
drawing even if there is a single sample. B. Schemes of the experimental sequences for measurements at ZF using a sudden field 
drop or an adiabatic field drop followed by a pulse of static magnetic field. 
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1. Pre-polarization 

2. Transfer and coherence excitation 

3. Detection 

2.2 Define the spin system 

This step consists of listing the different magnetic sites of the molecule whose ZULF spectrum is to be simulated and the 150 

interactions which the spins are subject to. This paper is concerned with small molecules in the liquid state. As is the case for 

high-field NMR, dipolar interactions are averaged out by rapid molecular tumbling and need not to be taken into account 

(except as stochastic perturbation if one intends to include relaxation effects). Therefore, only the J-coupling and the Zeeman 

interactions are considered here. 

In this Paper, we consider spin systems of the form XAn, where X is a 13C spin coupled to n equivalent 1H spins A through a 155 

coupling JAX. A spins are coupled together through JAA. 

2.3 Compute the spin Hamiltonian 

The Hamiltonian is the operator which represents the total energy of the system. Information about the spin system is 

mathematically encoded in the spin Hamiltonian. We will first present how the Hamiltonian for the Zeeman interaction of a 

single spin is computed based on Pauli matrices. Then, we will present the construction of a two-spin system using the 160 

Kronecker product of individual spin spaces to compute the Zeeman and the J-coupling Hamiltonians. Finally, we will show 

how the procedure is extended to an arbitrary number of spins.  

Let us first assume that the system contains a single spin-1/2 interacting with the magnetic field B along the z-axis. The state 

of any spin system can be represented as a linear combination of basis vectors, which are called “kets” in Dirac’s notation and 

are represented by the symbol | ⟩. For a single spin-1/2, two basis kets are necessary to represent the state of the system. We 165 

chose to represent the spin system in the Zeeman basis 

 ℬ୞
ଶ = {|𝛼⟩, |𝛽⟩} = ቄቀ

1
0

ቁ , ቀ
0
1

ቁቅ.          (1) 

The |𝛼⟩ and |𝛽⟩ states correspond to the spin being parallel and antiparallel with the magnetic field, respectively. The general 

state in which the spin may be found is a linear combination of these two basis states. Because these states and their associated 

kets form a basis, their vector representation have the canonical form with only 0 and 1 coefficients. The space spanned by 170 

these two vectors is called a “Hilbert space” and has dimension 2, as indicated by the superscript in ℬ୞
ଶ. Note that the choice 

of the Zeeman basis is convenient for numerical simulation but it not necessary. For example, one may use the coupled basis, 

which will be presented and used in Sec 4. The same basis may be used to perform simulations at high-field or ZULF, although 

one particular basis might turn out to be more convenient. 



7 
 

The angular momentum of a single spin is associated with the spin angular momentum operators, which can be represented as 175 

a vector with three Cartesian components 

𝑰෠ = ൫𝐼መ௫ , 𝐼መ௬ , 𝐼መ௭൯.            (2) 

These operators act on the Zeeman states in certain ways, e.g. 𝐼መ௫|𝛼⟩ =
ଵ

ଶ
|𝛽⟩. To summarize the set of rules it is convenient to 

use the matrix representation of the operators, with the matrix elements determined by the action of the operator on the |𝛼⟩ 

and |𝛽⟩ states: 𝐼ఓ
௥௦ = ⟨𝑟ห𝐼መ௞ห𝑠⟩, where 𝑟, 𝑠 ∈ {𝛼, 𝛽}; 𝜇 ∈ {𝑥, 𝑦, 𝑧}. This definition makes use of ⟨ |, i.e., the “bra”, an object 180 

which is complementary to the ket and corresponds to the “Hermitean conjugate” of the ket. In the matrix representation of 

quantum mechanics, the Hermitean conjugate of a ket corresponds to the complex transpose of the vector representing the ket. 

The matrix representation of operators in quantum mechanics is very important for performing simulations, as they constructed 

in such a way that any state or operation with the quantum system can be represented using linear algebra. The matrix 

representations of the three Cartesian components of the spin angular momentum operators are proportional to Pauli matrices 185 

𝜎ො௫, 𝜎ො௬ and 𝜎ො௭ 

𝐼መ௫ =
ଵ

ଶ
𝜎ො௫ =

ଵ

ଶ
ቀ

0 1
1 0

ቁ

𝐼መ௬ =
ଵ

ଶ
𝜎ො௬ =

ଵ

ଶ
ቀ

0 −𝑖
𝑖 0

ቁ

𝐼መ௭ =
ଵ

ଶ
𝜎ො௭ =

ଵ

ଶ
ቀ

1 0
0 −1

ቁ

.            (3) 

The interaction of a single spin with a magnetic field 𝑩 is given by the Zeeman Hamiltonian 

𝐻෡୞ = −𝛾𝑩 ∙ 𝑰෠ = −𝛾൫𝐵௫𝐼መ௫ + 𝐵௬𝐼መ௬ + 𝐵௭𝐼መ௭൯,         (4) 

where 𝛾 is the gyromagnetic ratio of the spin in rad.s-1.T-1. The dot product of the vectors of the magnetic field and of the spin 190 

angular momentum (vectors and vector operators are denoted in bold through the text) is expanded on the right member of 

Eq. 4. Note that we have omitted the reduced Planck constant ℏ in Eq. 4, which implies that the energy is expressed in rad.s-1 

rather than in Joules. This is the case throughout this Paper. In many cases, the magnetic field is aligned with one of the axes. 

If it points along the z-axis, i.e., 𝑩 = (0 0 𝐵଴), Eq. 4 simplifies to 

𝐻෡୞ = −𝛾𝐵଴𝐼መ௭ = 𝜔଴𝐼መ௭ =
ଵ

ଶ
ቀ+𝜔଴ 0

0 −𝜔଴ቁ,         (5) 195 

where 𝜔଴ = −𝛾𝐵଴ is the Larmor frequency of the spin. This expression is valid regardless of the intensity of the magnetic 

field. i.e., at high field as well as at ZULF. The Zeeman states, |𝛼⟩ and |𝛽⟩, which correspond the spin being parallel and 

antiparallel with the magnetic field, respectively, are eigenstates of the Zeeman Hamiltonian, i.e., they satisfy the relations 

𝐻෡୞|𝛼⟩ = +1/2|𝛼⟩ and 𝐻෡୞|𝛽⟩ = −1/2|𝛽⟩. Eigenstates of a Hamiltonian are of particular importance; they are states which do 
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not evolve under the effect of that Hamiltonian (ignoring the accumulation of the phase factor, which turns out to be irrelevant 200 

in most of the experiments), i.e., stationary states. 

The single spin whose Hamiltonian is given by Eq. 5 lives in a Hilbert space of dimension 2. To represent a pair of spins 1/2, 

we need to use a Hilbert space with a dimension of 4. To do so, we redefine the angular momentum operators in this higher 

dimensional space. The matrix representations of the angular momentum operators 𝐼መଵ௫, 𝐼መଵ௬ and 𝐼መଵ௭ and 𝐼መଶ௫, 𝐼መଶ௬ and 𝐼መଶ௭ of spin 

1 and spin 2, respectively, are given by the Kronecker product of matrices of single-spin angular momentum operator and the 205 

identity operator, in the appropriate order. For the z-axis angular momentum operators, we have 

𝐼መଵ௭ =  𝐼መ௭⨂1෠ =
ଵ

ଶ
ቀ

1 0
0 −1

ቁ ⨂ ቀ
1 0
0 1

ቁ =
ଵ

ଶ
൮

+1 0 0 0
0 +1 0 0
0 0 −1 0
0 0 0 −1

൲      (6) 

and 

𝐼መଶ௭ = 1෠⨂𝐼መ௭ = ቀ
1 0
0 1

ቁ ⨂
ଵ

ଶ
ቀ

1 0
0 −1

ቁ =
ଵ

ଶ
൮

+1 0 0 0
0 −1 0 0
0 0 +1 0
0 0 0 −1

൲.      (7) 

Similar expressions are obtained for the matrices of x and y operators. They are not shown here but are available in many 210 

textbooks (Hore et al., 2015; Levitt, 2013). Here, we have used the following convention for the Kronecker product  

ቀ
𝑎 𝑏
𝑐 𝑑

ቁ ⨂ ൬
𝛼 𝛽
𝛾 𝛿

൰ = ൮
𝑎 ൬

𝛼 𝛽
𝛾 𝛿

൰ 𝑏 ൬
𝛼 𝛽
𝛾 𝛿

൰

𝑐 ൬
𝛼 𝛽
𝛾 𝛿

൰ 𝑑 ൬
𝛼 𝛽
𝛾 𝛿

൰
൲ = ൮

𝑎𝛼 𝑎𝛽 𝑏𝛼 𝑏𝛽
𝑎𝛾 𝑎𝛿 𝑏𝛾 𝑏𝛿
𝑐𝛼 𝑐𝛽 𝑑𝛼 𝑑𝛽
𝑐𝛾 𝑐𝛿 𝑑𝛾 𝑑𝛿

൲,     (8) 

The two operators defined by Eq. 6 and 7 are the same as the one given by Eq. 5, except that the world of spin 1 now contains 

spin 2, and vice versa. This representation corresponds to a basis that is the Kronecker product of the basis of the individual 

spins 215 

ℬ୞
ସ = ℬ୞

ଶ⨂ℬ୞
ଶ = {|𝛼𝛼⟩, |𝛼𝛽⟩, |𝛽𝛼⟩, |𝛽𝛽⟩}.         (9) 

For the case where the magnetic field points along the z-axis, the total Zeeman Hamiltonian for the two spins can now be 

computed using Eq. 5 in the basis of Eq. 9 as the sum of the two Zeeman Hamiltonians:  

𝐻෡୞ = 𝐻෡୞,ଵ + 𝐻෡୞,ଶ = 𝜔ଵ
଴𝐼መଵ௭ + 𝜔ଶ

଴𝐼መଶ௭ =
ଵ

ଶ

⎝

⎜
⎛

+𝜔ଵ
଴ + 𝜔ଶ

଴ 0 0 0

0 +𝜔ଵ
଴ − 𝜔ଶ

଴ 0 0

0 0 −𝜔ଵ
଴ + 𝜔ଶ

଴ 0

0 0 0 −𝜔ଵ
଴ − 𝜔ଶ

଴
⎠

⎟
⎞

,   (10) 
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where 𝜔ଵ
଴ and 𝜔ଶ

଴ are the Larmor frequencies of spin 1 and 2, respectively. Note that in a Hilbert space of several spin, it is 220 

useful to define projections of total angular momentum operators 

𝐼መ௫ = 𝐼መଵ௫ + 𝐼መଶ௫ 

𝐼መ௬ = 𝐼መଵ௬ + 𝐼መଶ௬.            (11) 

𝐼መ௭ = 𝐼መଵ௭ + 𝐼መଶ௭ 

Note that these operators are represented by the same symbol as their equivalent in the single-spin Hilbert space (see Eq. 3). It 225 

should be clear from the context whether the operator corresponds to a single-spin or multiple-spin Hilbert space. Where 

confusion may remain, we will indicate the dimension of the space eon which the operator acts. 

At this point, the two spins are represented in a common space but they do not interact. The J-coupling Hamiltonian for the 

pair of spins is given by 

𝐻෡௃ = 2𝜋𝐽𝑰෠ଵ ∙ 𝑰෠ଶ = 2𝜋𝐽൫𝐼መଵ௫𝐼መଶ௫ + 𝐼መଵ௬𝐼መଶ௬ + 𝐼መଵ௭𝐼መଶ௭൯ = 𝜋𝐽 ൮

1/2 0 0 0
0 −1/2 1 0
0 1 −1/2 0
0 0 0 1/2

൲,    (12) 230 

where J is the J-coupling between the two spins in Hz. Compared with the Zeeman Hamiltonian (see Eq. 10), the J-coupling 

Hamiltonian has the particularity to have off-diagonal elements in the {|𝛼𝛽⟩, |𝛽𝛼⟩}  subspace, which implies that the J-

interaction mixes the |𝛼𝛽⟩ and |𝛽𝛼⟩ states. In other words, due to the J-interaction, these two states are no longer eigenstates 

of the spin system.  

In the case of a system of n spins 1/2, the same procedure can be applied to define the angular momentum operators and the 235 

Hamiltonians. These operators can be represented as 2n × 2n matrices. Their Zeeman basis can be constructed as in Eq. 9, 

taking all possible combinations of |𝛼⟩ and |𝛽⟩ states of the individuals spins. Eq. 6 and 7 generalize to 

𝐼መ௞௭ =⊗௟ୀଵ
௡ 𝑢ො௟௭

ଶ×ଶ where 𝑢ො௟௭
ଶ×ଶ = ൜

1෠ଶ×ଶ if 𝑙 ≠ 𝑘
𝐼መ௭

ଶ×ଶ if 𝑙 = 𝑘
,        (13) 

where 1෠  and 𝐼መ௞௭  are the identity operator and the z-angular momentum operator of spin k in an n-spin Hilbert space and the 

𝑢ො௟௭
ଶ×ଶ operators are defined in a single-spin Hilbert space. The z-projection of total angular momentum operators is given by 240 

𝐼መ௭ = ∑ 𝐼መ௟௭
௡
௟ୀଵ .            (14) 

Eq. 13 and 14 are shown for z operators but apply similarly for x and y operators. The Zeeman Hamiltonian for a system of n 

spins is given by 

𝐻෡୞ = − ∑ 𝛾௟𝑩 ∙ 𝑰෠௟
௡
௟ୀଵ = − ∑ 𝛾௟൫𝐵௫𝐼መ௟௫ + 𝐵௬𝐼መ௟௬ + 𝐵௭𝐼መ௟௭൯௡

௟ୀଵ .       (15) 

where 𝛾௟ is the gyromagnetic ratio of spin l. The J-Hamiltonian in the same space is given by 245 
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𝐻෡௃ = 2𝜋 ∑ 𝐽௟௞𝑰෠௟ ∙ 𝑰෠௞
௡
௟வ௞ = 2𝜋 ∑ 𝐽௟௞൫𝐼መ௟௫𝐼መ௞௫ + 𝐼መ௟௬𝐼መ௞௬ + 𝐼መ௟௭𝐼መ௞௭൯௡

௟வ௞ ,      (16) 

where 𝐽௟௞  is the J-coupling between spins l and k in Hz. Because a spin is not J-coupled to itself, the sum in Eq. 16 does not 

include terms with l = k. Furthermore, to avoid counting terms twice, terms with l < k are not included either, leaving only l > 

k terms. The expression of the Zeeman Hamiltonian and J-Hamiltonian in Eq. 15 and 16, respectively, are valid both at high 

field and at ZULF. What makes the difference between the two regimes is the relative intensity of the two contributions.  250 

2.4 Define the initial state: compute the initial density matrix 

The state of a spin system during an NMR experiment is described by a density operator. If |𝜓⟩ is a ket representing the state 

of the system as a linear combination of basis states (like those defined in Eq. 1 and 9), the density operator is given by 

𝜌ො = |𝜓⟩⟨𝜓|തതതതതതതതത,            (17) 

where the upper bar represents the ensemble average over all identical spin systems in the sample – the operation performed 255 

by the density operator. This averaging makes the density operator formalism well-suited for NMR where the experiment 

consists of observing a large number of identical spin systems at the same time, rather than a single spin system. The matrix 

representation of the density operator (and of any other spin operator) is achieved by calculating all the matrix elements 𝜌௥௦ =

⟨𝑟|𝜌ො|𝑠⟩, where |𝑟⟩ and |𝑠⟩ are basis states. For example, the matrix representation of the density operator for the |𝛼⟩ and |𝛽⟩ 

states of a single spin yields 260 

𝜌ොఈ = |𝛼⟩⟨𝛼|തതതതതതതത = ቀ
1
0

ቁ (1 0) = ቀ
1 0
0 0

ቁ

𝜌ොఉ = |𝛽⟩⟨𝛽|തതതതതതതത = ቀ
0
1

ቁ (0 1) = ቀ
0 0
0 1

ቁ
.         (18) 

To start a simulation, we need to determine the density matrix of the system at the initial point of the experiment. We assume 

that the sample has spent enough time in the prepolarizing magnet to reach thermal equilibrium, that is, the spin system follows 

Boltzmann’s distribution of states. In this case, the density matrix is given by 

𝜌ොୣ୯ =
ୣ୶୮൬ି

ಹ෡

ೖా೅
൰

௓
,            (19) 265 

where 𝐻෡, 𝑘୆ and 𝑇 are the Hamiltonian operator of the spin system, Boltzmann’s constant and the temperature, respectively. 

Operation exp( ) denotes the matrix exponentiation. Note that this operation does not consists of applying 𝑓(𝑥) = exp(𝑥) 

to each element of the matrix. It is a more complex operation, which is realized in MATLAB by the built-in function expm 

(rather than exp). 𝑍 is a normalization constant, which ensures that the density matrix has unit trace. It is given by 

𝑍 = Tr ቄexp ቀ−
ு෡

௞ా்
ቁቅ.           (20) 270 
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The prepolarizing step of the experiments that we intend to simulate occurs in a strong magnetic field (in the sense that the 

Zeeman interaction is largely dominating all other interactions), as in a standard high-field experiment. In this case, we can 

compute the thermal equilibrium taking only the Zeeman terms into account. For a single spin with Larmor frequency 𝜔଴ and 

gyromagnetic ratio 𝛾 in prepolarizing field 𝐵୮, the thermal equilibrium density matrix yields 

𝜌ොୣ୯ =
ୣ୶୮൬ି

ℏഘబ಺෠೥
ೖా೅

൰

௓
=

ୣ୶୮൬ା
ℏംಳ౦಺෠೥

ೖా೅
൰

௓
= ቌ

ଵା௉

ଶ
0

0
ଵି௉

ଶ

ቍ =
ଵ

ଶ
1෠ + 𝑃𝐼መ௭ ,       (21) 275 

where 𝑃 is the polarization of the nucleus along the z-axis (for positive γ it corresponds to the population excess of the |𝛼⟩ 

state with respect to |𝛽⟩ state), defined by 

𝑃 = tanh ቀ
ℏఊ஻౦

ଶ௞ా்
ቁ.            (22) 

Note that the use of ℏ in the expression of the Hamiltonian (i.e., expressing the energy in Joules) cannot be avoided here, to 

ensure consistency of units. To obtain the expression on the right-hand side of Eq. 21, we have jumped several steps of 280 

calculation which are all based on the definition of polarization. This expression for the density matrix is exact for a spin whose 

only interaction is the Zeeman interaction, which we have assumed here. 

For a n-spin system, we take the Kronecker product of density matrices of individual spins 𝜌ොୣ୯,௟
ଶ×ଶ 

𝜌ොୣ୯ ≈ ⊗௟ୀଵ
௡ 𝜌ොୣ୯,௟

ଶ×ଶ = ⊗௟ୀଵ
௡ ቀ

ଵ෡మ×మ

ଶ
+ 𝑃௟𝐼መ௭

ଶ×ଶቁ =
ଵ෡

ଶ೙ +
ଵ

ଶ೙షభ
∑ 𝑃௟

௡
௟ୀଵ 𝐼መ௟௭ ,      (23) 

The expression is approximate in the sense that it neglects all spin-spin interactions. This approximation is valid unless the 285 

system is highly polarized, which is the case even at very high field (without hyperpolarization). To avoid confusion, we 

specified that the operators 𝜌ොୣ୯,௟
ଶ×ଶ, 1෠ଶ×ଶ, and 𝐼መ௭

ଶ×ଶ act on a single-spin Hilbert space (2 × 2 matrix). On the contrary, the operators 

1෠  and 𝐼መ௟௭  act on spin states of n-spins, and accordingly their matrix representations have dimensionality of 2n × 2n (for spins-

1/2). As shown by Eq. 23, one may compute the density matrix either using the Kronecker product of operators in a single-

spin Hilbert space or by summing the operators in a Hilbert space of n-spins. 290 

In many text books (Hore et al., 2015; Levitt, 2013), one encounters simplified expressions of the density operator. First, it is 

common to remove the identity component 

𝜌ොୣ୯ → 𝜌ොୣ୯ −
ଵ෡

ଶ೙ ,            (24) 

where 𝑛 is the number of spins in the system. Because all operators commute with the identity, this does not affect the result 

of propagation. The resulting expression is simpler (𝜌ොୣ୯ = 𝑃𝐼መ௭
ଶ×ଶ for a single spin) which is convenient for calculations by 295 

hand. It may also make the numerical propagation faster and more precise. Another common simplification is to drop the 

polarization factor. For a single spin, the two combined simplifications yield 
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𝜌ොୣ୯ →  𝐼መ௭ .            (25) 

Simplifications are useful, but they should be handled with care. The polarization factor 𝑃 is different for spins with different 

gyromagnetic ratio. If it is dropped without introducing further corrections, the relative sizes of the population of spins with 300 

different gyromagnetic ratio will not be respected. In the simulations presented here, we will compute the initial density matrix 

using the transformation of Eq. 24 but not that of Eq. 25. 

2.5 Propagate the density matrix under the Hamiltonians 

We have seen how to compute the initial density matrix and the matrix representation of the Hamiltonian. We now describe 

how the evolution of the system (represented by the density matrix) evolves along time under a given Hamiltonian. This will 305 

be used at several steps of the simulation; when the sample is brought adiabatically to ZF, during the pulse and during the 

signal measurement. 

The evolution of a quantum system along time is given by the time-dependent Schrödinger equation. Its equivalent for the 

evolution of density matrix is the Liouville-von Neumann equation 
ௗ

ௗ௧
𝜌ො(𝑡) = −𝑖ൣ𝐻෡(𝑡) , 𝜌ො(𝑡)൧, which has the solution 

𝜌ො(𝑡) =  𝑈෡(𝑡)𝜌ො଴𝑈෡ିଵ(𝑡),           (26) 310 

where 𝜌ො଴ is the density matrix at 𝑡 = 0 and 𝑈෡ is the propagator during time 𝑡 given defined as 

𝑈෡(𝑡) = exp൫−𝑖𝐻෡𝑡൯,           (27) 

where 𝐻෡ is the total Hamiltonian. The operation of Eq. 26 “takes” the spin system from 𝜌ො଴ to 𝜌ො(𝑡). Again, note that exp( ) 

denotes the matrix exponentiation and not element-by-element exponentiation. An important case of propagator is the rotation 

operator. For an angular momentum operator 𝐼መఓ, with 𝜇 ∈ {𝑥, 𝑦, 𝑧}, the propagator exp൫−𝑖𝐼መఓ𝜃൯ is called a rotation operator; it 315 

represents a rotation of the spins of angle θ around axis μ, when applied to the density matrix using Eq. 26. For a single spin 

subject to a static magnetic field along the z-axis, the total Hamiltonian is the Zeeman Hamiltonian (see Eq. 5) which causes 

the spin to rotate around z-axis; this rotation can be expressed using the rotation operator exp൫−𝑖𝐻෡𝑡൯ = exp൫−𝑖𝜔଴𝐼መ௭𝑡൯ with 

angle 𝜔଴𝑡. 

The brute force calculation of the exponential operator in an arbitrary basis is computationally challenging as it requires 320 

calculating the Taylor expansion of the 𝐻෡  operator. To avoid this, the calculation of the propagator (Eq. 27) is usually 

performed by diagonalizing the Hamiltonian and then taking the complex exponent for each of its eigenvalues, exp(−𝑖𝜔௞𝑡), 

where 𝜔௞ denotes the kth eigenvalue. Therefore, the transformation to the eigenbasis of the Hamiltonian implicitly happens 

during most spin dynamics simulations, meaning that, even if it was not set by the user, this is likely done by the linear algebra 

packages of the software. One may note that the basis does not affect the result of the calculation but the choice of a more 325 

appropriate one may help rationalize the problem. In many cases, the initial choice is the Zeeman basis, in which spin operators 

are readily introduced based on Kronecker products of the Pauli matrices. Depending on the symmetry of the problem it might 



13 
 

be more convenient to change the basis to another one. As we will see in section 4.1, a choice of coupled basis is preferable 

for understanding zero-field J-spectroscopy of coupled spins. 

It is important to remark that Eq. 27 is only valid if the Hamiltonian is constant during the evolution period. The case where 330 

the Hamiltonian is time-dependent is treated below. Note that the propagator is a unitary operator and therefore has the 

convenient property that its inverse is equal to its complex transpose, i.e., 𝑈෡ିଵ = 𝑈෡ற, which is much faster to compute than 

the matrix inverse 𝑈෡ିଵ.  

Eq. 26 and 27 allow to know the state of the system at any time 𝑡 from the initial time 𝑡 = 0. To simulate the signal produced 

by spin system during the course of the experiment, we must calculate the time domain signal at different time points. Note 335 

that in this case the Hamiltonian remains constant during free evolution. To calculate signal at fixed time steps it is convenient 

to first calculate the propagator 𝑈෡(𝑑𝑡) over period 𝑑𝑡. We then apply Eq. 26 recursively to get the new density matrix 𝜌ො(𝑡௞ାଵ) 

from the previous one 𝜌ො(𝑡௞) 

𝜌ො(𝑡௞ାଵ) =  𝑈෡(𝑑𝑡)𝜌ො(𝑡௞)𝑈෡ିଵ(𝑑𝑡),           (28) 

where 𝑡௞ାଵ − 𝑡௞ = 𝑑𝑡. To simulate ZULF spectra, we will also encounter situations where the Hamiltonian is time dependent. 340 

First, the Hamiltonian can vary with time but be “constant by block”. This is for example the case for the sudden field drop; 

the system is under a certain Zeeman Hamiltonian in the beginning of the experiment and suddenly under the ZULF 

Hamiltonian during detection. This situation does not present particular difficulties; the evolution of the system can be 

described step by step both by Eq. 26 and 28.  

Second, the Hamiltonian can vary continuously, as in the case of the adiabatic field drop, where the intensity of the magnetic 345 

field is ramped down to zero. This event can be simulated by propagating the evolution of the system during time intervals 

which are sufficiently short for the Hamiltonian to be considered constant during this time interval. The propagator must then 

be computed for each time increment. The form of the equation for propagation is similar to Eq. 28 

𝜌ො(𝑡௞ାଵ) =  𝑈෡(𝑡௞ → 𝑡௞ାଵ)𝜌ො(𝑡௞)𝑈෡ିଵ(𝑡௞ → 𝑡௞ାଵ),        (29) 

where the propagator is given by 350 

𝑈෡(𝑡௞ → 𝑡௞ାଵ) = exp൫−𝑖𝐻෡(𝑡௞)𝑑𝑡൯,          (30) 

where 𝐻෡(𝑡௞) is the Hamiltonian at time 𝑡௞. Note that the choice of 𝐻෡(𝑡௞) rather than 𝐻෡(𝑡௞ାଵ) in Eq. 30 is arbitrary but in the 

limit of small intervals, the choice has no consequence. 

2.6 Extract expectation values from the propagation 

The propagation procedure described above gives access to the density matrix along time. To simulate the time domain signal, 355 

we need to extract a physical quantity from the density matrix as it evolves with time. The measured physical quantity of a 

ZULF experiment is the magnetic field produced by the nuclear spins of the sample at the location of an OPM. In first 
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approximation, we can consider the whole sample as a point dipole interacting with the OPM and that this total dipole is the 

sum of the dipoles of the individual spin systems (Figure 2 gives a visual representation of the approximation). Whether this 

approximation is appropriate or not depends on the geometry of the experimental setup. We have chosen the z-axis as the 360 

quantization axis (defined by the detector, i.e., the OPM). Therefore, the physical quantity that we need to compute is the total 

magnetic field produced by the spins along the z-axis at the location of the vapor cell 

〈𝐵௭〉 =
ఓబ

ଶగ 

〈ఓෝ೥
౪౥౪〉

௥య 
=

ఓబ

ଶగ 

ே〈ఓෝ೥〉

௥య 
,           (31) 

where 〈𝜇̂௭
୲୭୲〉, 𝜇଴, 𝑁, 〈𝜇̂௭〉 and 𝑟 are the magnetic moment of the sample along the z-axis, the permeability of free space, the 

number of identical spin systems in the sample, their individual magnetic moment along the z-axis and the distance between 365 

the center of the sample and the center of the vapor cell, respectively. 

For each identical spin system, we then compute the magnetic moment as the sum of the contributions of each spin 𝑙.  

〈𝐵௭〉 =
ఓబ

ଶగ 

ே

௥య 
∑ 〈𝜇̂௟௭,〉

௡
௟ୀଵ =

ఓబ

ଶగ 

ேℏ

௥య 
∑ 𝛾௟〈𝐼መ௟௭〉௡

௟ୀଵ ,         (32) 

where 𝜇̂௟௭, 𝛾௟ and 𝐼መ௟௭  are the magnetic moment, the gyromagnetic ratio and the angular momentum along the z-axis of spin 𝑙, 

respectively. Note that n and N represent the number of spins in the molecule and the number of molecules in the sample, 370 

respectively. The notation 〈 〉 denotes the expectation value of a quantity. Particularly important ones are those that can be 

physically measured in the experiment. In the density matrix formalism that we are using, the expectation value of a physical 

quantity related to an operator 𝐴መ is given by  

〈𝐴〉 = Tr൛𝐴መ𝜌ොൟ,            (33) 

where Tr{ } denotes the matrix trace, i.e. the sum of all diagonal elements of the matrix representation of the operator. Note 375 

that the expectation value of 𝜇̂௟௭ (or 𝐼መ௟௭) is proportional to the polarization level of spin l which was accounted for in Eq. 21 

Figure 2: Comparison of the real geometry of the sample of the OPM with the approximated one. The arrows represent local 
magnetization vectors parallel to the total magnetization vector.  
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and Eq. 22. Therefore, the total magnetic moment calculated with Eq. 32 depends on the polarization of the different spin 

species.  

If 𝜌ො(𝑡) is the density matrix at time 𝑡, we obtain the signal 𝑆(𝑡) measured by the OPM by plugging Eq. 32 into 33 

𝑆(𝑡) = 〈𝐵௭〉(𝑡) =
ఓబ

ଶగ 

ேℏ

௥య 
Tr൛𝑂෠𝜌ො(𝑡)ൟ,          (34) 380 

where we have defined a “detection operator” 

𝑂෠ = ∑ 𝛾௟𝐼መ௟௭
௡
௟ୀଵ .            (35) 

To obtain Eq. 34, we have used the fact that taking the trace of a matrix is a linear operation and so the trace of a sum is the 

sum of the traces.  

In the case of a sample with volume 𝑉 =  100 μL of 13C-formic acid prepolarized at 2 T at 298 K, with molar mass of 46 g/mol 385 

and density of 1.22 g/ml one finds that the amplitude of oscillating magnetic field generated by the sample at distance of 𝑟 =

 1 cm is of the order of 10 pT using the above equations. This estimation does not take into account demagnetization effects 

caused by distribution of spins in space, giving the upper limit for the expected field. Experimentally measured magnetic fields 

are about 10 times smaller (Tayler et al., 2017).  

2.7 Fourier transform the expectation values to obtain a spectrum 390 

The time domain signal is what is measured by the ZULF NMR spectrometer. The final step of the simulation is to transform 

the measured signal from the time domain to the frequency domain using a discrete Fourier transform. Programming 

environments such as MATLAB or Mathematica are equipped with built-in functions for fast Fourier transformation. We will 

not discuss the mathematics behind this process but we will give a few practical hints. Contrary to high-field NMR, ZULF 

spectra can be obtained with real magnetic field units (rather than arbitrary units). We will show how such units can be 395 

obtained. 

Let us call 𝑡 and 𝑆 the arrays of numbers containing the time and corresponding time domain signal values, respectively, which 

resulted from the previous steps (note that, in MATLAB’s programming environment, such arrays are usually called vectors). 

Let us call 𝐾 the number of elements of both arrays (which corresponds to the number of points in the time domain signal). 

For now, 𝑆 consists of a sum of oscillating signals which do not decay with time because our simulation did not include 400 

relaxation effects. If we perform a Fourier transform on 𝑆, we will obtain non-Lorentzian lineshapes (with distinctive sinc 

patterns). We must therefore artificially include relaxation by multiplying the signal with an apodization function, to force the 

signal to decay to 0. For liquid state signals, the most common choice is a monoexponential decay which can be expressed as: 

𝑆′௞ = 𝑆௞ exp(−𝜋𝑙୆𝑡௞) = 𝑆௞ exp ቀ−
௧ೖ

మ்
ቁ,          (36) 
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where 𝑆௞, 𝑡௞, 𝑙୆, 𝑇ଶ are the kth elements of 𝑡 and 𝑆, the line broadening in Hz and the coherence time constant in s, respectively. 405 

Note that the coherence time constant is often referred to as the spin-spin relaxation constants or transverse relaxation time 

constant. The signal intensities  𝑆′௞ define the apodized signal array 𝑆′. As shown in Eq. 36, we may choose to express the 

apodization function either using the coherence time constant 𝑇ଶ or the line broadening 𝑙୆ (in Hz), which are related by 𝜋𝑙୆ =

1/𝑇ଶ. The former is the time constant at which the time domain signal decays while the latter is the full width at half height 

(FWHH) of the signals. In order to avoid “truncating” the decay of the time domain signal and the related spectral artefacts, 410 

we must fulfil the condition 𝑇ଶ ≪ 𝑡ୟ୯, where 𝑡ୟ୯ = max{𝑡௞} is the acquisition time (or the length of the signal in the time 

domain). Typically, we may choose 𝑇ଶ and 𝑡ୟ୯ so that  𝑡ୟ୯ = 5𝑇ଶ. Table 1 summarizes the parameters which were used in this 

Paper. 

The apodization function of Eq. 36 yields Lorentzian signals as one would expect. However, without further apodization, the 

baseline of the spectra will have some distortions (Zhu et al., 1993), with the main distortion being a small offset of the baseline. 415 

This problem arises because the time domain signal has its first point at time 𝑡 = 0, so that the Fourier transform gives the 

integral of the first segment of twice larger amplitude than it should be. As proposed by Otting, this baseline offset can be 

removed by weighting the first point of the time domain signal by factor ½ (Otting et al., 1986). However, because the integral 

of the Fourier transform is proportional to the first point of the time domain signal, this apodization does not preserve the 

integral. To obtain spectra without baseline offset and preserving the integral, we propose to use an apodization function which 420 

weights all points by 2 expect for the first one 

𝑆′′௞ = ൜
𝑆′௞  

2𝑆′௞  
if 𝑘 = 1

otherwise
 .           (37) 

We show in the Supplementary Material that this apodization function preserves the integral (see Supplement B1). 

In MATLAB programming language, the function for fast Fourier transformation fft() takes array 𝑆′ as input and returns the 

frequency domain array which corresponds to the simulated spectrum. Optionally, one may add a second argument 𝐿 to fft() 425 

to include zero-filling in the Fourier transform. Including zero filling has the advantage of increasing the number of points per 

FWHH on the spectrum without increasing the computation time of the propagation. Due to MATLAB’s Fourier transform 

convention, it is convenient to retransform the signal with fftshift() in order to obtain a Fourier transformed signal with 0 as 

the middle frequency. We then divide the output of the MATLAB’s Fourier transform by the number of points 𝐿 

𝑆(𝜈) =
ଵ

௅
ℱ 𝑆(𝑡),            (38) 430 

where ℱ designated the Fourier transform. The frequency domain signal obtained after this whole procedure has units of 

magnetic field (e.g. pT). Changing the zero-filling 𝐿 changes the intensity of the frequency domain signal but preserves the 

integrals.  

MATLAB’s fft() function does not generate the frequency array associated with the Fourier transformed signal. The frequency 

array 𝜈 in Hz can be generated based on the following expression 435 
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𝜈௞ =
௞

௅
𝑓, 𝑘 ∈ ቘ−

௅

ଶ
;

௅

ଶ
− 1቙,          (39) 

where the sampling frequency in Hz is given by 

𝑓 =
௄ିଵ

௧౗౧
.             (40) 

The sampling frequency of the time domain signal gives the maximum frequency that can be appropriately sampled. Figure 3 

illustrates the consequence of choosing a sampling frequency which is lower than the maximum frequency. If the sampling 440 

frequency is lower than the signal to be sampled, the Fourier transformed signal lies outside the spectral width (between −𝑓/2 

and +𝑓/2). However, due to the “refolding effect” of the Fourier transform, the signal still appears on the spectrum but at 

irrelevant positions. To avoid this, one may repeat the simulation increasing the sampling frequency and keeping other 

parameters constant. If the sampling frequency is sufficient, the spectrum should not be affected. 

The choice of the parameters discussed in this section and above influences the outcome of the simulation in the same way as 445 

it does for the experiment. Once an NMR simulation is running, one might want to play with combination of 𝑓, 𝐾, 𝑡ୟ୯, 𝑇ଶ and 

𝐿 until the simulated spectra display convenient features. If one intends to simulate spectra to match experimental data, one 

might simply perform the simulation with the same 𝑓, 𝐾, 𝐿, and 𝑡ୟ୯ values. Table 1 summarizes the parameters which were 

used in this Paper. 

Figure 3: Illustration of signal sampling and the effect of undersampling. The left panels represent a cosine oscillating at 1 Hz in 
grey sampled with various frequency f (1.3, 3.7 and 7.3 Hz). The blue dots represent the samples. In each case, the Fourier transform 
is shown on the right panels. When the sampling frequency is lower than 1 Hz, the peak cannot appear at 1 Hz and is therefore
found at a fictitious position. 
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Parameter 
name 

Meaning 
Value used in 

Figure 4 

K Number of points of the time domain signal 4096 

L 
Number of points of the time domain signal including zero filling 

/ number of points of the Fourier transform 
65536 

taq Acquisition time 5 s 

f Sampling frequency or spectral width 819.200 Hz 

τd Dwell time (time between acquisition points) 1.2207 ms 

T2 Coherence’s relaxation time constant 1 s 

lb Line broadening 0.3183 Hz 

Table 1: List of parameters that were used to simulate the time domain signals and spectra in Figure 4. 450 

The procedure described here yields an NMR signal which is symmetric around 0. As a consequence, each signal is found both 

in the positive and negative frequencies and the integral is split into the two duplicates. Because the experimental procedure 

that we are simulating does not differentiate negative and positive frequencies, we discard the frequency domain signal 

corresponding to negative frequencies and multiply the abscissa of the frequency domain signal corresponding to positive 

frequencies by a factor 2. This operation corresponds to “folding” the spectrum around 𝜈 = 0. Note that in high-field NMR, 455 

the measured signal is complex and is therefore not split into a positive and a negative half. The central frequency of the 

spectrum at high field is given by the carrier frequency of the spectrometer (e.g., typically 400 MHz for 1H at 9.4 T). Sec. 2.8 

describe this difference between high field and ZULF-NMR in more details. 

Whether the time domain signal which results from the simulation is real or complex, the Fourier transform yields a complex 

frequency domain signal. To get a spectrum consisting of a signal intensity as a function of the frequency, we must use the 460 

real part the frequency domain signal. Depending on the experiment that we are simulating, we might find that some or all 

spectral components of the frequency domain signal are not in phased. To compensate for this, one might apply a phase 

correction by multiplying each point of the frequency domain signal by a complex constant exp 𝑖𝜙 where φ is the phase 

correction before taking its real part 

𝐼୰(𝜈) = Re{𝐼ୡ(𝜈) exp 𝑖𝜙},            (41) 465 

where 𝐼r(𝜈) and 𝐼c(𝜈) are the real and complex frequency domain signals, respectively.  

In summary, the Fourier transform procedure that we have described has the following steps: 

1. Apply a monoexponential apodization window to the time domain signal so that it decays to 0 (see Eq. 36) 

2. Apply the apodization described by Eq. 37 to avoid baseline artefacts on the frequency domain signal 
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3. Obtain the complex frequency domain signal by Fourier transforming the time domain signal using a fast Fourier 470 

transform algorithm 

4. Generate the corresponding frequency axis using Eq. 39 and 40 

5. Remove the negative frequencies from both the frequency axis and the frequency domain signal and multiply the 

abscissa of the frequency domain signal by 2 to account for the partition of the signal integral between positive and 

negative frequencies 475 

6. Take the real part of the signal 

2.8 Comparison with high-field NMR 

We conclude this theory section by listing the main differences between high-field and ZULF NMR, which are summarized 

in Table 2. As is the case for the rest of the paper, our description is limited to small molecules containing spin-1/2 in the liquid 

state.  480 

At high magnetic field, the Zeeman interaction dominates the dynamics and the J-coupling. Furthermore, the Larmor frequency 

of the spins (which results from the Zeeman interaction) is slightly shifted by the presence of the electron cloud around the 

nuclei. This phenomenon, called the chemical shift, gives a slightly different Larmor frequency for nuclei in different positions 

in a molecule, which spreads over typically 10 ppm and 200 ppm around the Larmor frequency for 1H and 13C spins, 

respectively. At ZULF, the J-coupling dominates while the Zeeman interaction is a perturbation and the chemical shift plays 485 

no role (in that it is a small perturbation of a small perturbation).  

In Figure 1 and in the simulations presented in this paper, we have assumed that the detector was positioned below the sample 

(along the z-axis in our axis convention) and that it was sensitive to magnetic field along the z-axis. Although this choice is 

typical, it is not the only possibility. In common high-field experiments, the oscillating signal emitted by the spins is recorded 

perpendicular to the static magnetic field. Detection at ZULF is performed with magnetometers that are sensitive to the total 490 

magnetic field produced by the sample. The operators corresponding to this observable is the sum of the magnetic moment of 

the spins along the sensitive axis of the OPM (see Eq. 34). In typical experiments, a single detector is used, which results in a 

real signal. Note that an imaginary ZULF signal could be obtained if the OPM has several sensitive axes or more than one 

detector is used. High-field NMR uses Faraday induction in pick-up coils. Signals originating from different nuclei are usually 

not observed in the same experiment because their Larmor frequencies are too far apart and the NMR coils are sensitive over 495 

a limited bandwidth. The operators corresponding to inductive detection in pulsed NMR is non-Hermitean and therefore yields 

complex signals. An extra step of the acquisition process at high-field that is not required at ZULF is modulating the signal 

recorded by the coil with a carrier frequency. Indeed, the NMR coil picks up a signal at the Larmor frequency of the spins, 

which is too high to be digitized (e.g., 400 MHz for 1H a 9.4 T). Instead, the signal is mixed with a carrier frequency and only 

the difference is digitized, over a small bandwidth (e.g. over 10 ppm, corresponding to 4 kHz for 1H spins at 9.4 T). The signals 500 

at ZULF can be detected without mixing the frequency as the they are sufficiently low to be digitalized directly. For more 
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details on the signal modulation at high field, the reader is referred to Chapter 4 of J. Keeler’s book Underdstanding NMR 

spectroscopy (Keeler, 2010). 

The code in Supplement B2 presents in great detail the simulation of the spectra for a pair of J-coupled 1H and 13C spin pair at 

ZF and ULF and at high field for both 1H and 13C  (9.4 T). The code is decomposed in sections corresponding to Sec. 2.1 to 505 

2.7 of the text above and, whenever possible, the equations presented in this paper are referenced in the code. The reader is 

encouraged to open this code to understand the difference between simulating a spectrum at high field and ZULF. The code 

can be opened in PDF, including with the figures, for those who do not have a MATLAB license.  

  

 ZULF High-field 

Main interaction J-coupling 𝐻෡௃ Zeeman interaction 𝐻෡୞ 

Perturbations Zeeman interaction 𝐻෡୞ J-coupling 𝐻෡௃, chemical shift 𝐻෡ୌ 

Detection method 
Magnetometry  

(OPM, SQUID,  …) 
Faraday induction 

Observables 𝜇̂ௌ,௭ + 𝜇̂ூ,௭ = 𝛾ூ𝐼መ௭ + 𝛾ௌ𝑆መ௭ 𝐼መ– = 𝐼መ௫– 𝑖𝐼መ௬ 

Signal type Real Complex 

Table 2: Comparison between high-field and ZULF NMR for typical experiments. Note that quadrature detection (and thus 510 
imaginary signals) is possible at ZULF, although uncommon. 

3 Results of numerical simulations  

3.1 Excitation schemes on an XA spin system 

The ZF and ULF spectra of an XA spin system with a J-coupling of 140 Hz were simulated for different experimental 

sequences, assuming that the sample consists of 100 µL of solution where the spin system has a concentration of 27 mol.L-1. 515 

The code and its PDF version are presented in Supplement B3. Figure 4 shows the experimental sequences, the simulated time 

domain and frequency domain signals. For all simulations, the sample was assumed to have spent sufficient time in a 

prepolarizing field of 2 T at 298 K to be at Boltzmann’s equilibrium. The polarizations of the 13C and 1H spins were calculated 

using Boltzmann’s distribution (see Eq. 19) and used to compute the single-spin density matrices of the 13C and 1H 

spins,  𝜌ොୣ୯( 𝐶ଵଷ ) and 𝜌ොୣ୯( 𝐻ଵ ) (see (21)). The density matrix of the two-spin system was computed taking the Kronecker 520 

product of the single-spin density matrices 𝜌ො଴ = 𝜌ොୣ୯( 𝐶ଵଷ )⨂𝜌ොୣ୯( 𝐻ଵ ) (see Eq. 23). The identity was removed from the 2-spin 

density matrix using Eq. 24. The resulting density matrix was assumed to represent the initial state of the simulation (as 

explained above, only the Zeeman terms are considered to contribute to the initial state). For each experimental sequence, the 
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spectrum was simulated both at 0 nT (including only the J-Hamiltonian 𝐻෡௃, see Eq. 12) and with a field of 0.5 μT along the x-

axis, that is, orthogonal to both the direction of the prepolarizing field and the sensitive axis (including both the J-Hamiltonian 525 

𝐻෡௃ and the Zeeman Hamitlonian 𝐻෡୞, see Eq. 12 and 10). The time domain signal was computed by propagating the density 

matrix under the effect of the Hamiltonian for a total time of 5 s (parameter taq) discretized into 4096 points (parameter K), 

corresponding to time intervals 𝑑𝑡 of 1.2207 ms (parameter τD). Prior to the propagation loop, the ZF and ULF propagators for 

this particular time step 𝑈෡ (see (30)) and the observable operator 𝑂෠ (see Eq. 35) were computed only once.  

The density matrix was propagated from time 𝑡௞  to time 𝑡௞ାଵ = 𝑡௞ + 𝑑𝑡  under the Hamiltonian (ZF or ULF) using the 530 

sandwich formula 𝜌ො௞ାଵ = 𝑈෡𝜌ො௞𝑈෡ିଵ = 𝑈෡𝜌ො௞𝑈෡ற (see Eq. 29). At each time point k of the propagation (realized by a “for” loop), 

the signal intensity of the time domain signal was extracted from the density matrix using the trace Tr൛𝑂෠𝜌ො௞ൟ (see Eq. 33) in 

pT. In theory, the trace of Hermitean operator should be real. However, due to the finite machine precision of the numeric 

algorithm, the trace can sometimes contain a non-zero imaginary part. This residual imaginary part is discarded by taking the 

real part of the trace Re൫Tr൛𝑂෠𝜌ො௞ൟ൯. This point might appear secondary but dealing with complex numbers while thinking they 535 

are real can lead to mistakes. After propagation, a monoexponential apodization function was applied to the time-domain signal 

(see Eq. 36), with a coherence time constant 𝑇ଶ of 1 s. A second apodization functions was applied to avoid baseline artifacts 

(see Eq. 37). The apodized time domain signal was Fourier transformed with zero-filling to 65’536 points, using MATLAB’s 

built-in functions. The real part of the Fourier transform is shown on Figure 4. The frequency axis of the spectra was computed 

using Eq. 39 and 40. The spectra are symmetric around zero and so it is common to work only with the positive frequencies 540 

as shown in Figure 4. 

Simulating the sudden field drop experiment is the simplest case presented here. Because the coherence excitation scheme (or 

mixing) only consists of bringing the spin from high magnetic field to ZF or ULF, the simulation only consists of propagating 

the high-field thermal equilibrium density matrix under the ZF or ULF Hamiltonian. The ZF spectrum consists of one line at 

the J-coupling and one at zero frequency (see Figure 4A). Including a field of 0.5 μT field along the x-axis (ULF case) splits 545 

the J-peak as well as the line at zero frequency. 

The simulations presented in Fig. 4B-D feature an adiabatic field drop. We used a monoexponential field drop from 𝐵ୱ୲ୟ୰୲ =

200 μT to 0 occurring over 𝑡ୢୣୡୟ୷ = 0.5 s with a decay time constant of 𝜏 = 0.05 s, described by 

𝐵(𝑡) = 𝐵ୱ୲ୟ୰୲
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 ,          (42) 

which fulfils the conditions 𝐵(0) = 𝐵ୱ୲ୟ୰୲ and 𝐵൫𝑡ୢୣୡୟ୷൯ = 0. During the field drop, the Hamiltonian 𝐻෡(𝑡) = 𝐻෡௃ + 𝐻෡୞(𝑡) is 550 

time-dependent. This step thus cannot be simulated in a single propagation step. Instead, it must be discretized in sub-steps 𝑑𝑡 

that are sufficiently short for the Hamiltonian to be considered time-independent. Here, the 0.5 s time length was discretized 

into 5000 steps of 0.1 ms. At time 𝑡 = 0, the density matrix is the thermal equilibrium density matrix 𝜌ොୣ୯ obtained above. At 

each time step 𝑡௞ , the propagator 𝑈෡(𝑡௞ → 𝑡௞ାଵ) = exp൫−𝑖𝐻෡(𝑡௞)𝑑𝑡൯  is computed (see (30)) and the density matrix is 
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propagated from time 𝑡௞ to time 𝑡௞ାଵ = 𝑡௞ + 𝑑𝑡 (see (29)) under the Hamiltonian 𝐻෡(𝑡௞) = 𝐻෡௃ + 𝐻෡୞(𝑡௞). We name 𝜌ොୟୢ୧ୟ the 555 

density matrix obtained after this process. A question arises here: is this magnetic field drop that we have chosen sufficiently 

slow to be considered adiabatic? In other words, is 𝜌ොୟୢ୧ୟ stationary? A simple way to ensure that it is the case is to simulate 

the spectrum at ZF after the magnetic field drop without any excitation pulse, that is, taking 𝜌ොୟୢ୧ୟ as the density matrix at time 

𝑡 = 0, 𝜌ො଴. If the transition is adiabatic, the system should remain stationary, i. e., the time-domain signal should feature no 

oscillation and the spectrum no peak. Figure 4B shows the result of this procedure, which confirms that the transition is 560 

adiabatic. The only feature of the ZF spectrum in Figure 4B is the line at zero-frequency. This line originates from the non-

oscillating magnetization decaying with 𝑇ଶ which is the result of the apodization function that we have applied. Verifying that 

the spectrum ZF spectrum is flat also ensures that the field drop was discretized in sufficiently short time intervals 𝑑𝑡. 

The density matrix after the adiabatic field drop 𝜌ො
adia

 obtained above was used for the simulations presented in Fig. 4C-D. In 

the experimental sequences of Fig. 4C-D, the adiabatic field drop is followed by a magnetic field pulse either along the z- or 565 

x-axis. This was simulated by propagating 𝜌ො௔ௗ௜௔  under the pulse Hamiltonian to obtain 𝜌ො଴ = 𝑈෡୮൫𝜏୮൯𝜌ොୟୢ୧ୟ𝑈෡୮
ற൫𝜏୮൯, where 

𝑈෡୮൫𝜏୮൯ is the propagator of the pulse Hamiltonian 𝐻෡୮ = 𝐻෡௃ + 𝐻෡୞, which acts on the density matrix during pulse length 𝜏୮. 

The Zeeman Hamiltonian depends on the magnetic field intensity of the pulse 𝐵௣ and its direction (see Eq. 15). For the z-axis 

pulse, we used a pulse intensity and length of 50 μT and 150 μs, respectively. For the x-axis pulse, we used a pulse intensity 

and length of 50 μT and 910 μs, respectively. These choices are justified in the next section. The resulting density matrices 𝜌ො଴ 570 

were used as the density matrix at time 𝑡 = 0 of the time-domain signal, which was computed and Fourier transformed as 

described above. In the case of the z-axis pulse experiment, the peaks of interest (J-peak at 140 Hz) were found to be out of 

phase; a phase correction 𝑒௜థ with 𝜙 = 𝜋/2 was thus applied to the Fourier transform. Adjusting the phase for the J-peak 

caused the lower-frequency peaks to be out of phase. Interestingly, in Figure 4D, the intensity of the J-peak is higher than for 

the other excitation schemes while the lower-frequency peaks are suppressed, indicating that all the available polarization has 575 

been transferred to the J-peak.  

3.2 Rabi oscillation curves 

The pairs of magnetic field intensity and length of the pulses used for the simulation in Figure 4D were chosen by simulating 

Rabi curves both for the z- and x-axis pulses. The high-field NMR equivalent to the Rabi curve is the “nutation experiment”, 

which consists of recording a series of NMR detections keeping the RF pulse power constant and varying the pulse length (or 580 

the pulse length is kept constant and the amplitude is varied (Tayler et al., 2017)). The nutation or Rabi curve is the plot of the 

signal intensity as a function of the varied parameter. It allows to determine the pair of RF power and pulse length which 

maximizes the signal intensity. Except in the presence of rapid relaxation effects or RF field inhomogeneities, the observed 

curve is sinusoidal. At ZULF, the Rabi curve is more complex and depends on the spin system under scrutiny. To simulate the 

Rabi curve at ZF, we repeated the simulation of the ZF spectra for an experiment with an adiabatic field drop (using the same 585 
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parameters as above) followed by a pulse of 50 μT along the z- and x-axis, varying the pulse length from 0 to 3000 μs (the 

code and its PDF version are presented in Supplement B3). The time-domain signal was Fourier transformed as described 

above and the frequency-domain signal was integrated from 138 to 142 Hz. The signal integral of the J-peak is plotted as a 

function of the pulse length in Figure 5. The signal integral of the sudden drop experiment is shown as a horizontal dashed line 

for comparison. When a pulse along the z-axis is used, a simple sinusoidal curve is obtained and its maximum matches that of 590 

Figure 4: Excitation schemes for an XA spin system corresponding to a 13C and 1H spins with a J-coupling of 140 Hz 

and corresponding simulated time domain signals and spectra. The vertical dashed line indicates the J-coupling. The 

time domain signal was computed by propagating the density matrix under the effect of the Hamiltonian for a total 

time of 5 s (parameter taq) discretized in 4096 points (parameter K), corresponding to time intervals dt of 1.2207 ms 

(parameter τD). A monoexponential apodization function was applied to the time domain signal, with a coherence time 

constant 𝑻𝟐 of 1 s. The apodized time domain signal was Fourier transformed with a zero-filling to 65’536 points. 
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the sudden drop experiment (see Figure 5A). The first maximum is reached for pulse length of 150 μs. When a pulse along x-

axis is used, a more complex pattern is obtained and the maximum is found to be 1.64 times higher than the sudden drop 

experiment (see Figure 5B). The first global maximum is reached for pulse length of 910 μs. 

3.3 XAn spin system 

The simulations shown up to this point only deal with an XA spin system, which typically corresponds to 13C-formate (or 13C-595 

formic acid), where the 13C spin interacts with a single 1H through a J-coupling of 195-222 Hz (Blanchard and Budker, 2016; 

Tayler et al., 2017) (depending on experimental conditions). 13C,15N-cyanide groups are also interesting two-spin systems 

which were used in ZULF experiments (Blanchard et al., 2020, 2015). We now extend the simulation to incorporate multiple 

A spins. An XA2 spin system is for example met in 13C-glycine (Put et al., 2021). XA3 spins are met in a number of molecules 

containing methyl groups such as 13C-pyruvate (Barskiy et al., 2019). XA4 (for example 15N-ammonium cation (Barskiy et al., 600 

2019)) and XA5 are less common but they are presented here to show the pattern that arises when adding spins.  

Figure 6 shows the simulations for sudden drop experiments with detection at ZF and ULF of XAn spin systems with n = 1, 2, 

… 5 where X is a 13C spin and An are 1H spins with a J-coupling of 140 Hz between X and A spins and 10 Hz among A spins 

(The code and its PDF version are presented in Supplement B4). All the relevant mathematics to construct the operators of a 

m = n + 1 spin system is given in the Theory Section. For an XA5 spin system, the Hilbert space has 26 = 64 dimensions (and 605 

Figure 5: Rabi curves at ZF with excitation pulses along z- (A) and x-axes (B) applied to an XA spin system. The horizontal dashed 
line represents the signal integral of the sudden drop ZF experiment. The time domain signal was computed by propagating the 
density matrix under the effect of the Hamiltonian for a total time of 5 s (parameter taq) discretized in 4096 points (parameter K), 
corresponding to time intervals dt of 1.2207 ms (parameter τD). A monoexponential apodization function was applied to the time 
domain signal, with a coherence time constant 𝑻𝟐 of 1 s. The apodized time domain signal was Fourier transformed with a zero-
filling to 65’536 points. The frequency domain signal was then integrated from 138 to 142 Hz. The Rabi curve represents the integral 
compared with the excitation pulse length. pT should be recalculated. 
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related operators). To avoid constructing each operator manually, recursive formulae were used (see Eq. 13 and 23). The time-

domain signal was computed by propagating the density matrix under the effect of the Hamiltonian for a total time of 5 s 

(parameter taq) discretized into 8192 points (parameter K), corresponding to time intervals dt of 0.6104 ms (parameter τD). A 

monoexponential apodization function was applied to the time domain signal, with a coherence time constant 𝑇ଶ of 1 s. The 

apodized time domain signal was Fourier transformed with a zero-filling to 32’768 points.  610 

Figure 6: Simulation of ZF and ULF spectra after sudden field drop for XA, XA2, XA3, XA4 and XA5 spin systems with a J-coupling 
of 140 Hz between X and A spins and 10 Hz among A spins. The time domain signal was computed by propagating the density 
matrix under the effect of the Hamiltonian for a total time of 5 s (parameter taq) discretized into 4096 points (parameter K), 
corresponding to time intervals dt of 1.2207 ms (parameter τD). A monoexponential apodization function was applied to the time 
domain signal, with a coherence time constant 𝑻𝟐 of 1 s. The apodized time domain signal was Fourier transformed with a zero-
filling to 32’768 points. 



26 
 

Increasing the number of A spins increases the number of spectral components in the spectrum. A known result of ZULF NMR 

appears on this simulation: for odd numbers of n, the ZF spectrum features lines at integer multiples of the J-coupling k*JAX 

with 𝑘 ∈ ⟦1; (𝑛 + 1)/2⟧ while for even number of n, it features lines at half-integer multiples of the J-coupling coupling 

k*JAX/2 with 𝑘 ∈ ⟦1; 𝑛/2⟧. Adding a 0.5 μT field along the x-axis during detection (that is, performing ULF detection) splits 

the J-lines. The higher the multiple of the J-line, the greater the number of splittings. Note that the intensity of NMR signals 615 

at high-field increase upon adding more equivalent spins to the spin system. The analysis of Fig. 6 shows that this logic does 

not apply to the J-lines for the ZULF case, where the spectrum completely changes upon changing of spin topology. For 

example, note that the amplitude of the J-line for the XA system has the same intensity as the J-line for the XA2 system 

(appearing at 3/2*JAX frequency). Likewise, the two J-lines for the XA3 system has the same total intensity as the two J-lines 

for the XA4 system. An empirical law of conservation of the total spectral intensity for the J-lines can be deduced by looking 620 

at Fig. 6: indeed, the total intensity of all J-lines is the same for any XAn system, assuming equal sample volume, 

prepolarization, etc. On the other hand, the intensity of low frequency peaks shown in Fig. 6 is proportional to the total number 

of spins in the spin system, like in high-field NMR. This is of course expected as these signals are associated with the precession 

of total magnetization around residual ULF field, and total magnetization is proportional to the number of spins.  

4 Interpretation 625 

We are now going to show how to calculate ZULF NMR spectra considering energy levels and transition probabilities rather 

than through the numerical propagation of the density matrix. We will derive analytical solutions for the XAn system but the 

same approach can be used for more complex spin systems. This approach was investigated in references (Butler et al., 2013a; 

Theis et al., 2013; Emondts et al., 2014). Here we aim to present it with more explanations and explicit derivations, but we 

limit ourselves to only the simplest spin systems. 630 

The relative contribution of 𝐻ෝZ (see Eq. 10) and 𝐻ෝ𝐽 (see Eq. 12) terms depends on the magnetic field strength. In the high-field 

extreme, for a heteronuclear spin system, 𝐻ෝZ is the dominant term and 𝐻ෝ𝐽 is considered as a first-order perturbation. In this 

case, hetero nuclei are said to be weakly coupled and their eigenstates coincide with the Zeeman states (e. g. those in Eq. 9). 

At zero-field, the weak coupling approximation is not valid, the Zeeman states do not correspond to the eigenstates of system. 

However, it is still possible to calculate analytically the eigenstates for some spin systems, and the simplest case is when all 635 

the spins are identical (An system). In this case, the Hamiltonian is represented by only the 𝐻ෝ𝐽 term and it commutes with the 

square of the total angular momentum operator 

𝐹෠ଶ = 𝐹෠௫
ଶ + 𝐹෠௬

ଶ + 𝐹෠௭
ଶ 

𝐹෠ఓ = ∑ 𝐼መ௟ఓ; ௡
௟ୀଵ 𝜇 ∈ {𝑥, 𝑦, 𝑧} ,          (43) 

ൣ𝐻෡௃, 𝐹෠ଶ൧ = 𝐻෡௃𝐹෠ଶ − 𝐹෠ଶ𝐻෡௃ = 0 640 
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where n is the number of spins in the system. It is well known that any pair of commuting Hermitean operators share their 

eigenspaces (Levitt, 2013). The set of eigenstates which forms an eigenbasis for both operators simultaneously is unique in 

cases where there are no degeneracies (all the eigenvalues for both operators are different). When there are degeneracies, the 

common eignenbasis is not unique. It turns out that 𝐻෡௃  and 𝐹෠ଶ operators have degeneracies, and this results in the existence of 

an infinite number of different shared eigenbases. Let us describe how to find such a set of eigenstates. 645 

4.1 Eigenstates at zero-field 

The eigenstates of a 𝐹෠ଶ  operator can be expressed in terms of the total spin and its projection quantum numbers. The 

conventional way for expressing them is to use the |𝐹, 𝑚ி⟩ notation, where F denotes the total spin and mF denotes the 

projection onto a quantization axis (𝑚ி ∈ {−𝐹, −𝐹 + 1, … , 𝐹 − 1, 𝐹 }). For example, by definition, for a single spin 1/2, we 

have the sates |𝛼⟩ ≡ ห1 2ൗ , 1
2ൗ ൿ; |𝛽⟩ ≡ ห1 2ൗ , − 1

2ൗ ൿ. For a pair of spins, we have the three triplet states: |𝑇ାଵ⟩ ≡ |1,1⟩; |𝑇଴⟩ ≡650 

|1,0⟩; |𝑇 ଵ⟩ ≡ |1, −1⟩, and the singlet state |𝑆଴⟩ ≡ |0,0⟩. Any |𝐹, 𝑚ி⟩ state is an eigenstate of the 𝐹෠ଶ and 𝐹෠௭ operators with the 

following eigenvalues 

𝐹෠ଶ|𝐹, 𝑚ி⟩  = 𝐹(𝐹 + 1)|𝐹, 𝑚ி⟩

𝐹෠௭|𝐹, 𝑚ி⟩ = 𝑚ி|𝐹, 𝑚ி⟩
 .          (44) 

To find the total spin of a system constituted by n spins, one must sum up the angular momenta of the individual spins, which 

is a common procedure in the field of atomic physics but not so much in NMR. All possible values of the angular momentum 655 

of the interacting spins are added up to constitute a set of uncoupled quasiparticles with different total spin. The total spin 𝐹 

of a system constituted by two spins 𝐼 and 𝑆 can take the values with steps of 1 between the sum 𝐼 + 𝑆 and the absolute value 

of their difference 

|𝐼 − 𝑆| ≤ 𝐹 ≤ 𝐼 + 𝑆 .           (45) 

For a pair of spins 1/2, the possible values are 𝐹 = 0,1. For n spins, the summation should be proceeded until all the possible 660 

pairs of the angular momentum of the individual spins are summed up. As an illustration, consider a coupled system of 3 spins 

1/2 (see Figure 7). First, any two spins are added up together to give F = 1 (a triplet) and F = 0 (a singlet). Then, the remaining 

spin-1/2 is added up to the quasiparticles formed in the previous step (spins 1 and 0 in this case). As a result, the initial A3 

system is decomposed into three subsystems with total spins of F = 3/2, 1/2, (addition of 1 and 1/2) and F =1/2 (addition of 0 

and 1/2).  665 

 

Figure 7: Procedure for adding up the angular momenta for the A3 spin system. 
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A useful property of such decomposition can be illustrated at this point: the total spin operator commutes with all rotation 

operators (e.g. exp (−𝑖𝜃𝐼መ௭)) and therefore 3D rotations will never mix terms of the wavefunction belonging to different total 670 

spin, e.g. spin 3/2 with 1/2. At ZF there is no distinction between directions and therefore the eigenstates must be invariant 

with respect to 3D rotations. This also partially explains the existence of infinite number of eigenbases for 𝐹෠ଶ, as all different 

orientations of {𝑥, 𝑦, 𝑧} system correspond to different bases. 

One can check that the total number of the spin states remains the same after the procedure of adding up the spins. On the one 

hand, the number of states formed by n coupled spins 𝐼 equals to (2𝐼 + 1)௡, which is 8 in the considered case. On the other 675 

hand, a manifold with a total spin F has 2𝐹 + 1 different states associated with different possible projections of the spin on 

the quantization axis. Therefore, there are 4 + 2 + 2 states in the considered case. 

The explicit form of the resulting eigenstates can be obtained in terms of “uncoupled” spin states, which are constructed as 

Kronecker product of the individual Zeeman states (see Eq. 9). The resulting state |𝐹, 𝑚ி⟩ of the addition of two angular 

momenta (𝐼 and 𝑆) can be represented as the following linear combination 680 

|𝐹, 𝑚ி⟩ = ∑ 𝐶ூ,௠಺,ௌ,௠ೄ

ி,௠ಷ |𝐼, 𝑚ூ , 𝑆, 𝑚ௌ⟩௠಺,௠ೄ
,         (46) 

where 𝐶𝐼,𝑚𝐼,𝐽,𝑚𝐽

𝐹,𝑚𝐹  are called Clebsch-Gordan coefficients and are defined by 

𝐶ூ,௠಺,ௌ,௠ೄ

ி,௠ಷ = ⟨𝐼, 𝑚ூ;  𝑆, 𝑚ௌ|𝐹, 𝑚ி⟩.          (47) 

Each Clebsch-Gordan coefficient is specified by 6 numbers: the total spin of the coupled state 𝐹, its projection 𝑚ி and the 

total spins of the uncoupled states and their projections (𝐼 , 𝑆 , 𝑚ூ , 𝑚ௌ). Coefficient 𝐶ூ,௠಺,ௌ,௠ೄ

ி,௠ಷ  represents “how much” of 685 

uncoupled state |𝐼, 𝑚ூ , 𝑆, 𝑚ௌ ⟩ there is in a coupled state |𝐹, 𝑚ி⟩. The analytical values of the Clebsch-Gordan coefficients can 

be calculated using recursive expressions, and are available in many software packages and textbooks. Table S1 in the 

Supplementary Material provides the relation between the coupled and uncoupled states for the considered A3 system and 

shows explicitly how to calculate them. The full set of all possible |𝐹, 𝑚ி⟩ states forms the new basis that is better suited than 

the Zeeman basis for ZULF NMR. In fact, this basis coincides with the eigenstates at ZULF for An and for XAn systems, but 690 

this basis is also a good starting point for more complicated cases. We will refer to this new basis as to “coupled” basis because 

it is appropriate for the description of strongly coupled spins. 

4.2 Eigenenergies at zero-field 

Having the eigenstates, we can now proceed with finding the eigenvalues of the Hamiltonian; these values correspond to the 

energy of the states and therefore determine the frequencies of ZULF NMR transitions. It turns out that An systems are not 695 

detectable at ZULF; it is shown in the next section (where intensities of transitions are calculated) that they give rise to no 

observable transition. At least two types of nuclei with different gyromagnetic ratios are necessary for an observable transition 
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to exist. Therefore, we consider an XAn system from now on. We will denote the operators associated with the X spin as 𝑆෠ and 

with A spins as 𝐼̂. It is also convenient to introduce total spin operators for A spins: 𝐹෠஺ఓ = ∑ 𝐼෠𝑙ఓ
𝑛
𝑙=1 , 𝜇 ∈ {𝑥, 𝑦, 𝑧}. The 

Hamiltonian at ZF for this spin system is given by 700 

𝐻෡୅ଡ଼ = 2𝜋𝐽஺௑ ∑ 𝑺෡௡
௟ୀଵ ∙ 𝑰෠௟ + 2𝜋𝐽஺஺ ∑ ∑ 𝑰෠௟

௡
௞வ௟ ∙ 𝑰෠௞

௡ିଵ
௟ୀଵ .        (48) 

The 𝐻෡୅ଡ଼ Hamiltonian can be expressed in terms of the total spin operators using algebraic tricks. We find an expression for 

the first term of Eq. 48 in terms of 𝐹෠ଶ, 𝐹෠஺
ଶ and 𝑆መଶ by developing 𝐹෠ଶ 

𝐹෠ଶ = ൭𝑺෡ + ෍ 𝑰෠௟

௡

௟ୀଵ

൱

ଶ

= 𝑆መଶ + 2𝑺෡ ∙ ෍ 𝑰෠௟

௡

௟ୀଵ

+ ൭෍ 𝑰෠௟

௡

௟ୀଵ

൱

ଶ

= 𝑆መଶ + 2 ෍ 𝑺෡ ∙ 𝑰෠௟

௡

௟ୀଵ

+ 𝐹෠஺
ଶ  ⇔ 

∑ 𝑺෡ ∙ 𝑰෠௟
௡
௟ୀଵ =

ଵ

ଶ
ቀ𝐹෠ଶ − 𝑆መଶ − 𝐹ො𝐴

2
ቁ.          (49) 705 

Similarly, we find an expression for the second term of Eq. 48 in terms of 𝐹෠஺
ଶ and 𝐼̂𝑙

2
 by developing 𝐹෠஺

ଶ 

𝐹෠஺
ଶ = ൭෍ 𝑰෠௟

௡

௟ୀଵ

൱

ଶ

= ෍ 𝐼መ௟
ଶ

௡

௟ୀଵ

+ 2 ෍ ෍ 𝑰෠௟

௡

௞வ௟

∙ 𝑰෠௞

௡ିଵ

௟ୀଵ

⇔ 

∑ ∑ 𝑰෠௟
௡
௞வ௟ ∙ 𝑰෠௞

௡ିଵ
௟ୀଵ =

ଵ

ଶ
ቀ𝐹ො𝐴

2
− ∑ 𝐼መ௟

ଶ௡
௟ୀଵ ቁ.         (50) 

By substituting the results of Eq. 49 and 50 into Eq. 48, we obtain a form of the Hamiltonian for which the energies will be 

more easily calculated 710 

𝐻෡୅ଡ଼ = 2𝜋𝐽஺௑
ଵ

ଶ
൫𝐹෠ଶ − 𝑆መଶ − 𝐹෠஺

ଶ൯ + 2𝜋𝐽஺஺
ଵ

ଶ
൫𝐹෠஺

ଶ − ∑ 𝐼መ௟
ଶ௡

௟ୀଵ ൯.       (51) 

The 𝐻ෝAX Hamiltonian commutes with the 𝐹ො
2
 operator, and therefore they share eigenstates |𝐹, 𝑚𝐹⟩. So, the eigenenergies can 

be written as the expectation values of |𝐹, 𝑚𝐹⟩ with respect to 𝐻ෝAX 

𝐸ி,௠ி = ⟨𝐹, 𝑚ி|𝐻෡୅ଡ଼|𝐹, 𝑚ி⟩.          (52) 

To calculate explicitly the eigenvalues, we substitute the Hamiltonian of Eq. 51 into 52 and use the following properties 715 

𝐹෠ଶ|𝐹, 𝑚ி⟩ = 𝐹(𝐹 + 1)|𝐹, 𝑚ி⟩

𝑆መଶ|𝐹, 𝑚ி⟩ = 𝑆(𝑆 + 1)|𝐹, 𝑚ி⟩

𝐹෠஺
ଶ|𝐹, 𝑚ி⟩ = 𝐹஺(𝐹஺ + 1)|𝐹, 𝑚ி⟩

𝐼መ௟
ଶ|𝐹, 𝑚ி⟩ = 𝐼௟(𝐼௟ + 1)|𝐹, 𝑚ி⟩

,          (53) 

to obtain the final expression for the energy of level |𝐹, 𝑚ி⟩ 
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𝐸ி,௠ி =  
௃ಲ೉

ଶ
[𝐹(𝐹 + 1) − 𝑆(𝑆 + 1) − 𝐹஺(𝐹஺ + 1)] +

௃ಲಲ

ଶ
 [𝐹஺(𝐹஺ + 1) − 𝑛𝐼௟(𝐼௟ + 1)],    (54) 720 

expressed in Hz. Here, quantum number 𝐹 corresponds to the total spin of the full XAn system, 𝑆 corresponds to the spin of 

the nucleus X, 𝐹஺ is the total spin of the An spins, and 𝐼௟  is the spin of individual nuclei A. The energy does not depend on the 

spin projection, resulting in degeneracy of all 2F + 1 levels with equal F. 

The spin number 𝑆 is the same for all eigenstates (e.g. it is ½ for 13C); similarly, all spins Il are the same and for 1H spins they 

are equal to ½. The remaining two quantum numbers F and 𝐹஺ can have different values depending on the state, therefore 725 

removing degeneracy between some of the levels. Figure 8 presents the energy levels of XA, XA2, and XA3 systems at ZF 

calculated using Eq. 54. Mathematica codes to perform these calculations are available in the Supplementary Material 

(Supplement C). 

 

 730 

Figure 8: Energy levels for XA, XA2, and XA3 spin systems calculated according to (54). The numbers above the energy levels 
represent the z-projection of the angular momentum of the states mF. Allowed transitions are shown by green arrows. JAX was set to 
140 Hz and JAA was set to -12 Hz, these are typical values for 1JCH and 2JHH J-couplings. The energy difference for the allowed 
transitions equals to JAX for the XA system, 3/2JAX for the XA2 system, and two frequencies of 2JAX and of JAX for the XA3 system. 
This agrees with the numerical simulations shown in Figure 6. 735 

4.3 Selection rules 

We have now found the eigenstates and their energies but not all transitions between any pair of states are allowed. The last 

step is to find the transition intensities and thus get the analytical appearance for the ZF NMR spectrum of an XAn system. 

There are certain selection rules specifying which transitions are in principle possible and which are forbidden, like those in 

high-field NMR, where only single quantum transitions are allowed. A general expression for the transition intensity between 740 

any two eigenstates |𝐹, 𝑚ி⟩ and |𝐹′, 𝑚′ி⟩ is given by 

𝑌 =  ⟨𝐹′, 𝑚′ி|𝜌ො଴|𝐹, 𝑚ி⟩ൻ𝐹′, 𝑚′ிห𝑂෠ห𝐹, 𝑚ிൿ.         (55) 

We will explicitly calculate the transition intensity for the sudden field drop experiment. In this case, both the initial state 𝜌ො଴ 

and the observation operator 𝑂෠  are proportional to 𝛾ூ𝐹෠஺,௭ + 𝛾ௌ𝑆መ௭  (as a reminder, 𝐹ො𝐴,𝑧 = ∑ 𝐼̂𝑙,𝑧
𝑛
𝑙=1 ). Therefore, the transition 

intensity becomes 745 
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𝑌 =  ൻ𝐹′, 𝑚′ிห𝛾ூ𝐹෠஺,௭ + 𝛾ௌ𝑆መ௭ห𝐹, 𝑚ிൿ
ଶ

.         (56) 

This expression is an example of Fermi’s golden rule that is used to calculate transition’s amplitude in different problems on 

quantum mechanics. Similar expression can be found for the high-field NMR. By expressing the coupled states |𝐹, 𝑚ி⟩ in 

terms of uncoupled basis (see Eq. 46) we find that 

൫𝛾ூ𝐹෠஺,௭ + 𝛾ௌ𝑆መ௭൯|𝐹, 𝑚ி⟩ = ൫𝛾ூ𝐹෠஺,௭ + 𝛾ௌ𝑆መ௭൯ ෍ 𝐶ிಲ,௠ಲ,ௌ,௠ೄ

ி,௠ಷ |𝐹஺, 𝑚஺, 𝑆, 𝑚ௌ⟩

௠ಲ,௠ೄ

 750 

= ∑ 𝐶ிಲ,௠ಲ,ௌ,௠ೄ

ி,௠ಷ (𝛾ூ𝑚஺ + 𝛾ௌ 𝑚ௌ)|𝐹஺, 𝑚஺, 𝑆, 𝑚ௌ⟩௠ಲ,௠ೄ
,        (57) 

where mA and mS are the z-projection of the total spins FA (for n protons, the maximum value of FA equals to n/2 and for each 

value of FA, mA ∈ {−𝐹஺, −𝐹஺ + 1, … , 𝐹஺ − 1, 𝐹஺}) and z-projection of the spin S (in case if S is carbon-13, mS ∈ {−
ଵ

ଶ
,

ଵ

ଶ
}) 

respectively. Now let us express the remaining ⟨𝐹′, 𝑚′ி| state in terms of uncoupled basis as well and combine (56) and (57) 

𝑌 = ቌ ෍ 𝐶
ிಲ

ᇲ,௠ᇲ
ಲ,ௌᇲ,௠ᇲ

ೄ

ிᇲ,௠ᇲ
ಷ ⟨𝐹஺

ᇱ, 𝑚ᇱ
஺, 𝑆, 𝑚ᇱ

ௌ|

௠ᇲ
ಲ,௠ᇲ

ೄ

෍ 𝐶ிಲ,௠ಲ,ௌ,௠ೄ

ி,௠ಷ  (𝛾ூ𝑚஺ + 𝛾ௌ 𝑚ௌ) |𝐹஺, 𝑚஺, 𝑆, 𝑚ௌ ⟩

௠ಲ,௠ೄ

ቍ

ଶ

 755 

=  ቀ∑ 𝐶
ிಲ

ᇲ,௠ᇲ
ಲ,𝑆′,𝑚′𝑆

𝐹′,𝑚′𝐹 𝐶ிಲ,௠ಲ,𝑆,𝑚𝑆

𝐹,𝑚𝐹  ൫𝛾𝐼𝑚𝐼 + 𝛾𝑆 𝑚𝑆൯⟨𝐹஺
ᇱ, 𝑚ᇱ

஺, 𝑆′, 𝑚′𝑆ห𝐹஺, 𝑚஺, 𝑆, 𝑚𝑆⟩𝑚′𝐴,𝑚′𝑆,𝑚𝐴,𝑚𝑆
ቁ

2
   (58) 

The last term ൻ𝐹𝐴
′, 𝑚′

𝐴, 𝑆′, 𝑚′ௌห𝐹𝐴, 𝑚𝐴, 𝑆, 𝑚ௌൿ is nonzero only if 

𝛥𝐹஺ = 𝐹஺
ᇱ − 𝐹஺ = 0

𝛥𝑚஺ = 𝑚஺
ᇱ − 𝑚஺ = 0

𝛥𝑆 = 𝑆ᇱ − 𝑆 = 0
𝛥𝑚ௌ = 𝑚ௌ

ᇱ − 𝑚ௌ = 0

.           (59) 

These selection rules mean that the only allowed transition are those which conserve the total spins FA and S (S is conserved 

automatically because it can be only 1/2, but FA can have different values), as well as their projections onto the reference axis. 760 

Eq. 58 therefore simplifies to 

𝑌 = ൫∑ 𝐶ிಲ,௠ಲ,ௌ,௠ೄ

ிᇱ,௠ᇱಷ 𝐶ிಲ,௠ಲ,ௌ,௠ೄ

ி,௠ಷ (𝛾ூ𝑚஺ + 𝛾ௌ𝑚ௌ)௠ಲ,௠ೄ
൯

ଶ
.       (60) 

It is important to notice that, in case where 𝛾ூ = 𝛾ௌ, each element of this sum becomes zero. This is shown in the Wolfram 

Mathematica code for all observable transitions in XA, XA2, and XA3 systems and can be rationalized in general case by the 

following way (see Supplement C1). The operator 𝛾ூ𝐹෠஺,௭ + 𝛾ௌ𝑆መ௭ (which is proportional to the initial state 𝜌ො଴) can be rewritten 765 

as 𝛾ூ൫𝐹෠஺,௭ + 𝑆መ௭൯ + (𝛾ௌ − 𝛾ூ)𝑆መ௭ . The first term in this expression commutes with the 𝐻෡୅ଡ଼  Hamiltonian (see Eq. 48) and 

therefore it does not produce any observable coherences, whereas the second term does not commute with the 𝐻෡୅ଡ଼ and leads 

to ZULF signals. 
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Finally, there are two more selection rules that are derived by implementing Wigner–Eckart theorem. The considered case is 

equivalent to “dipole” transition, where the transition is observed between two states connected by operator of rank 1 (e.g. 770 

Eq. 56). This is a common situation in atomic physics, and we adapt this result without evaluation: the reduced matrix element 

coming from Wigner–Eckart is shown to be non-zero if and only if 

𝛥𝐹 = ±1
𝛥𝑚ி = 0

.            (61) 

The whole set of selection rules given by Eq. 59 and Eq. 61 allows us to find which transitions are observable in XAn systems 

at ZF. These transitions are shown in Figure 8 by the green arrows. It can be seen that JAA-couplings shift the energy levels 775 

but do not affect the frequencies of the observable transitions. This is a common situation that J-couplings between 

magnetically equivalent spins do not contribute to the observed NMR spectrum. As can be seen from the analysis presented 

above, this statement holds for each case of the ZF NMR spectra of XAn systems. 

In this section, we found analytically the allowed transitions for XA, XA2 and XA3 for the case of sudden field drop to ZF. 

The XA spin system has a single transition at JAX; The XA2 spin system has a single transition at 3/2 JAX; and the XA3 spin 780 

system has one allowed transition at JAX and another one at 2 JAX. Allowed transitions found analytically here correspond to 

the numerical simulation: XA single line at JAX, XA2 single line at 3/2 JAX, etc.. This derivation explained the appearance of 

the ZF spectra but not that of the ultralow-field spectra. To understand how the degeneracy of the ZF eigenstates are split by 

the presence of a bias field, one has to use perturbation theory. We refer the interested reader to Refs (Ledbetter et al., 2011; 

Appelt et al., 2010).  785 

4.4 Rabi oscillation curves 

We finish this section on the interpretation of the numerical simulations by giving a short explanation of the Rabi oscillation 

curves presented in Sec. 3.2 (see Fig. 5). The successful implementation of excitation pulses in ZULF-NMR experiments 

requires two conditions to be fulfilled (Butler et al., 2013b). First, the DC field of the pulse should be strong enough so that 

heteronuclei (here, 1H and 13C spins) can be considered weakly coupled. The field of 50 μT satisfies this condition, as the 790 

difference of Larmor frequencies between 1H and 13C spins is larger than 1.5 kHz ≫ JXA = 140 Hz. Second, the pulse must be 

much shorter than the evolution under the J-coupling. Here, the longest pulses that were simulated had a duration of 3 ms, 

while the characteristic time of the evolution under the J-coupling is 1/JXA ≈ 7.1 ms. Provided these two conditions are met, 

the product operator formalism can provide a convenient explanation for the results of Fig. 5. Both Rabi oscillation curves in 

Fig. 5 are rather unusual for high-field NMR but the reader who is familiar with the product operator formalism at high field 795 

will see that there is a strong connection between the algebra describing pulsed experiments at high field and at ZULF. Here, 

we give a brief summary of how this formalism can be used to understand the Rabi oscillation curves. We recommend the 

interested reader to look at the following references for a more detailed derivation (Butler et al., 2013b; Blanchard, 2014; 

Tayler et al., 2017). 
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After the adiabatic field drop, the magnetization of the sample is proportional to 𝛾ு𝐼መ௭ + 𝛾஼𝑆መ௭ and does not evolve. In addition, 800 

part of the population is also on the zero-quantum term 𝑍መ௭ = 2൫𝐼መ௫𝑆መ௫ + 𝐼መ௬𝑆መ௬൯, which produces no observable magnetization. 

Magnetic field pulses are applied to convert one or both of these terms into the observable zero-quantum term 𝑍መ௫ = 𝐼መ௭ − 𝑆መ௭. 

In the case of Fig. 5.a where the pulse is applied along the z-axis, the pulse converts 𝑍መ௭ into 𝑍መ௬ = 2൫𝐼መ௫𝑆መ௬ + 𝐼መ௬𝑆መ௫൯. The state 

of the system after the pulse is 𝜌ො൫𝜏௣൯ = 𝑍መ௭cosൣ(𝛾ு − 𝛾஼)𝐵௭𝜏௣൧ + 𝑍መ୷sinൣ(𝛾ு − 𝛾஼)𝐵௭𝜏௣൧. The excited unobservable 𝑍መ௬ term 

then starts to evolve into the observable term 𝑍መ௫ under the action of the 𝐻෡௃ Hamiltonian, generating an oscillating magnetic 805 

field along the z-axis. The resulting ZULF signal has a sine rather than a cosine time dependence and requires a 𝜋 2⁄  phase 

correction of the spectrum to have an absorption line as was described in Sec. 3.2. The signal is maximized when the pulse has 

duration 𝜏௣ = 𝜋 [2(𝛾ு − 𝛾஼)𝐵௭]⁄ , which is around 157 μs in the considered case. This is consistent with the simulated Rabi 

oscillation curve of Fig. 5a. In the case of Fig. 5.b where the pulse is applied along the x-axis, both initial terms of the density 

operator, 𝛾ு𝐼መ௭ + 𝛾஼𝑆መ௭  and 𝑍መ௭ , are converted into the observable term 𝑍መ௫ . The conversion follows a sinൣ(𝛾ு + 𝛾஼)𝐵௫𝜏௣/810 

2൧sinൣ(𝛾ு − 𝛾஼)𝐵௫𝜏௣/2൧ function allowing one to excite slightly stronger signals over a slightly longer pulse duration.  

5 Conclusion 

We have shown how to numerically simulate spectra at both zero- and ultra-low fields for sudden drop and pulsed experiments. 

We have then explained the results of the numerical simulation for sudden drop experiments at ZF by constructing the 

eigenbasis of the ZF Hamiltonian and finding the allowed transitions among the eigenstates. The other numerically simulated 815 

cases (i.e. pulsed experiments) can be explained using the analytical approach that we have presented here. It requires an 

additional step which is to describe how a pulse converts the populations of states. The reader who is acquainted with the 

product operator formalism commonly used in high-field NMR might be interested in an alternative approach based of 

commutation rules as presented in Refs (Blanchard and Budker, 2016; Butler et al., 2013b). We have chosen to describe the 

simplest cases, i.e., experiments with thermal prepolarization with AXn systems. Using this methodology, the reader can 820 

proceed with simulating more advanced cases, where analytical solutions do not exist. This includes calculation of ZULF 

spectra of molecules with multiple spins (Wilzewski et al., 2017) and molecules containing three and more types of nuclei e.g. 

1H, 13C, 15N, 2D (Alcicek et al., 2021); the evolution during dynamical decoupling sequences (Bodenstedt et al., 2022a), or the 

ZULF-TOCSY type of spin-locking experiments (Kiryutin et al., 2021), spin evolution at intermediate fields, where 

perturbation approaches are not valid (Bodenstedt et al., 2021). Complicated spin dynamics may occur under action of 825 

composite pulses allowing (Jiang et al., 2018; Bodenstedt et al., 2022b). The formalism we presented here is a good starting 

point for the description and understanding of hyperpolarized ZULF experiments e.g. those involving transfer of spin order in 

parahydrogen experiments at low fields. Simulations are also useful to study different kinds of imperfections such as field 

inhomogeneities, timing errors, etc. We hope that this Tutorial Paper has allowed us to share our excitement with the reader. 
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Code availability 830 

The codes used to simulate the spectra presented in this Paper are available online (https://doi.org/10.5281/zenodo.7664138). 

PDF versions of the codes are available as Supplementary Material to the Paper. 
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