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Abstract. Dipole-dipole interactions between distant paramagnetic centers (PCs) where at least one 
PC has spin S > 1/2 are examined. The results provide a basis for the application of pulsed elec- 
tron-electron double resonance method to the measurement of distances between PCs involving high- 
spin species. A projection operator technique based on spectral decomposition of the secular Hamilto- 
nian is used to calculate electron paramagnetic resonance (EPR) line splitting caused by the dipole cou- 
pling. This allows calculation of operators projeeting an arbitrary wave function onto high-spin PC 
eigenstates when the eigenvectors of the Hamiltonian are not known. The effective spin vectors - that 
is, the expectation values for vector spin operators in the PC eigenstates - are calculated. The depen- 
dence of these effective spin vectors on the extemal magnetic field is calculated. There is a qualita- 
tive difference between pairs having at least one integer spin (non-Kramers PC) and pairs of two 
half-integer (Kramers PC) spins. With the help of these effective spin vectors, the dipolar line shape 
of EPR lines is calculated. Analytical relations are obtained for PCs with spin S = 1/2 and 1. The 
dependence of Pake patterns on variations of zero-field splitting, Zeeman energy, temperature and 
dipolar coupling are illustrated. 

1 In troduct ion  

The  d i p o l e - d i p o l e  (d-d) in teract ion o f  pa ramagne t i c  centers  (PCs) depends  s t rong-  
ly on their  mutua l  a r rangement .  This  in te rac t ion  affects  the e lec t ron  p a r a m a g -  
net ic  resonance  (EPR)  spectra o f  the PCs. Thus,  e.g., i f  centers  wi th  spin S = 1/2 
forro pairs  w i t h  the s a m e  d i s t ance  b e t w e e n  par tners ,  then  the s o - c a l l e d  Pake  
double t  is obse rved  in the E P R  spec t rum rather  than a s ingle  absorp t ion  l ine  [1] 
i f  the Pake  double t  is not  obscured  by  b roaden ing  caused  by other  in teract ions .  
In the case o f  a chaot ic  d is t r ibut ion  o f  PCs  in a magne t i ca l l y  di lute  sys tem,  the 
d-d in terac t ion  leads to the Loren tz i an  l ine shape for the E P R  absorp t ion  [2]. 
S tudying  the spec t roscopic  mani fes ta t ions  o f  d-d in teract ion g ives  un ique  infor-  
mat ion  about  the spatial  d is t r ibut ion o f  PCs  ini t ia l ly  present  in the sample  o r a s  
m o d i f i e d  by d i f ferent  p h y s i c o c h e m i c a l  p rocesses .  Pulsed  E P R  methods ,  k n o w n  
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as either PELDOR (pulsed electron double resonance) or DEER (double elec- 
tron-electron resonance), have been widely used recently for measurement of  d-d 
interactions, because these methods eliminate the masking of relatively weak di- 
pole interactions by inhomogeneous broadening of  EPR lines due to other aniso- 
tropic interactions. A series of reviews [3-11] describe methods of  obtaining in_ 
formation about the spatial distribution of PC by pulsed EPR spectroscopy. 

The theory thus far developed to explain PELDOR spectroscopy strictly holds 
only for S = 1/2 spin partners. No systematic discussion of  the d-d interaction 
of  high-spin PCs has so far been performed due to the relatively complex prob- 
lem of  describing the high-spin PC state. This description is a necessary step in 
the study of  d-d interactions themselves. The conventional approach has been to 
generalize equations for S = 1/2 to an arbitrary spin assuming that the fine struc- 
ture or zero-field splitting (ZFS) of  the EPR spectrum of  the high-spin PC can 
be neglected compared to the Zeeman interaction (see, e.g., ref. 12) which is 
not valid in the general case. Most of  the studies of paramagnetic clusters with 
high-spin PCs are devoted to the structure of  some particular system, see, e.g., 
old reviews [13-14] a n d a  few examples from the newest review [11]. These 
systems have been treated as special cases and the role of  ZFS on the d-d inter- 
actions has not been studied systematically. 

Of special note are the results of reŸ 15. The authors give a correct algo- 
rithm for calculation of  the dipole broadening of EPR lines for a system con- 
taining arbitrary spins. However, it has been incorrectly implemented even for 
PC with isotropic g-tensors because the secular contribution of  d-d interactions 
to the shift of  PC energy levels has been calculated not from the total dipole 
interaction Hamiltonian but only from the A and B type components of  the so- 
called Abragam dipole alphabet [1]. Therefore, the results are suitable only for 
isotropic PC when the splitting in zero field is negligibly small compared with 
the Zeeman quantum. 

There are data available [16] on the influence of d-d interactions on PCs with 
S = 1. As follows from ref. 16, the d-d interaction can be neglected if the split- 
ting in zero magnetic field gives nondegenerate levels whose splitting exceeds 
the microwave quantum of  the EPR spectrometer. We explain this effect quanti- 
tatively below. 

Here we systematically consider the manifestation of  d-d interactions on 
doublet spin probes (S = 1/2) with PCs whose ground state has S > 1. This work 
is motivated by the many biological systems containing high-spin centers which 
could be studied using intrinsic free radicals or spin probes introduced by site- 
directed spin labeling techniques. This approach can be applied even when the 
ZFS value is large compared with the EPR microwave quantum so that ir is 
actually impossible to observe any spectra of  the non-Kramers PC. Experimen- 
tal measurements of  doublet-multiplet interactions [17-19] are starting to be re- 
ported and require a more complete theoretical description than is currently 
available. 

The first section of  this contribution is devoted to the description of a high- 
spin PC, the effective spin vectors (ESVs) are calculated, these vectors are the 
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expectation values for vector spin operators in the PC eigenstates. The second 
part deals with the qualitative difference between Kramers and non-Kramers high- 
spin PC as the partners in the d-d interaction. The third section formulates the 
secular part of  the Hamiltonian of the d-d interaction for a pair of PCs in terms 
of  their ESVs. Pake multiplets of weakly coupled dipole pairs and their depen- 
dence on the system temperature are explained in the fourth section. The final 
section illustrates the influence of the anisotropic ZFS and of  the temperature 
on the Pake patterns of  pairs of PCs one of which is the spin probe with S = 1/2, 
and the other with S = 1, in a disordered medium. This paper develops a gen- 
eral method for calculating the broadening from d-d interactions which can be 
applied to the interpretation of experimentally measured DEER and other types 
of  spectra involving PCs with high spin. 

2 Spin Hamiltonian and ESVs for S > 1 

Let us cons idera  PC having S > 1. A characteristic feature of  such a center is 
the splitting of  its energy levels in the absence of  ah external magnetic field, 
the so-called ZFS. This is caused by electrostatic interactions and provides the 
fine structure in optical spectra of  such species. The spin Hamiltonian in this 
case is of  the form 

~,v~ = ~ + ~o_3~zvs ' (1) 

Here, ~ is the Zeeman interaction of the PC with the external magnetic field 
and d~ZF s is the ZFS Hamiltonian. 

The Zeeman interaction of paramagnetic particles with the external magnetic 
field B 0 = B0b (with b being the unit length vector) may be represented [16] as 

= flB~~g, (2) 

where fl is the Bohr magneton; ~ is the g-tensor of the PC; S is the vector 
spin operator. The plus symbol superscript denotes the Hermitian conjugate (in 
this case, it reduces to transposition). All the vectors are taken as columns in 
the coordinate representation. The properties of the "tensor" ~ are considered in 
detail by Abragam and Bleaney [16]. Equation (2) can readily be rewfitten as 

~~z = PBogo~�91 (3) 

where g~ff is the effective value of the g-tensor of the PC g~e = ~/b + �9 ~ �9 ~+ - b .  
The z'-axis is the direction of spin quantization by the Zeeman interaction and 
is given by the vector ~+b, 

z' [[ ~+b. (4) 
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Thus, the Zeeman Hamiltonian Eq. (2) (and for the S = 1/2 spin probe as well) 
can be solved (diagonalized) by choosing a suitable quantization axis Eq. (4) 
for the PC spin. 

When the ZFS is nonzero, the Hamiltonian for the high-spin PC cannot be 
diagonalized by choosing the quantization axis for the spin. The simplest ZFS 
Hamiltonian is 

~ Z F S  = D{  ~2 - S ( S  + 1)/3} + E(S 2 - ~2} (5) 

in the ZFS coordinate system (X, Y, Z), where D and E are the independent pa- 
rameters of the ZFS. The ZFS axes are chosen to satisfy the following relation: 
0 <_ E/IDI <- 1/3. This can be fulfilled by a simple redefinition of  molecular axes 
(on the problem of the proper choice of the molecular frame see, e.g., reŸ 20). 
Equation (5) gives a complete desc¡ of ZFS with S = 1 and 3/2. For PC with 
higher spin, temas with the fourth (S = 2 and 5/2), sixth (S = 3 and 7/2) and higher 
even powers of  spin operators can appear [16]. In an external magnetic field, the 
spin Hamiltonian G,~P'equals the sum of  the Zeeman Eq. (3) and ZFS Eq. (5) in- 
teractions (igno¡ the usually much weaker hyperfine interactions), 

p_Vt ~ = flBogerrS :, + D { S  2 - S ( S  + 1)/3} + E{S z - ~2}. (6) 

Note that in Eq. (6) the z' and Z axes generally do not coincide; z' is deter- 
mined by the direction Eq. (4) of the effective magnetic field, and the second 
one is determined by the ZFS (molecular axes). It is nontrivial to derive gen- 
eral, analytical eigenfunctions and eigenvalues for Hamiltonian Eq. (6) and is 
possible only for S = 1 and 3/2 (see, e.g., refs. 21-23). 

Fortunately, it is possible to describe important properties of  the high-spin 
PC without knowing the exact eigenvalues and eigenstates of  the Hamiltonian 
(6). Let us denote these as co, and [Z,,), respectively, with index m = - S ,  - S +  1, 
.... S - 1 ,  S. The numbering is chosen to provide [Z,,) = ]m\ when the ZFS van- 
ishes (D = E = 0). Here [m) is the eigenfunction of  the S=, operator with the 
eigenvalue of  m. For further calculations it is useful to use the 2S + 1 classical 
vectors s,, o f  the effective spin, 

These vectors are the expectation values of the PC spin vector when the system 
is in its mth eigenstate. 

Let us introduce the projection operator fim =lxm)<x~l, which projects any 
wave function onto the mth eigenstate. Equation (7) may be rewritten as 

s m = Tr(S/3~), (8) 

which has the advantage that ~b m may be calculated (using the theorem for the 
spectral decomposition of a linear operator) in terms of  the Hamiltonian and its 
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eigenvalues [24] without knowledge of its eigenstates (see also ref. 25 for an 
example of  this approach for HYSCORE spectra calculations and reŸ 26 where 
the Baker-Campbell-Hausdorff problem was solved in closed form), 

& = 1--[ ~ - ej (9) 
j~m ~ -- 8 j  

Equation (9) is valid if there is no degeneracy in the Hamiltonian Eq. (6) eigen- 
system. Such is the case when B 0 e: 0, because only accidental degeneracies may 
occur [20]. 

Equation (9) clearly shows that the /3 mis  a polynomial of the system Hamil- 
tonian of the order 2S, 

2S 
& = C ~ Z c m , j ~  j. (lO) 

j=O 

Here, the coefficients cmj depend on the eigenvalues ~, ( - S  < n < +S), Cm,2S : 1, 
and 

1 (11) Cm = [ - [  �9 
j~m IEm -- ~ j  

Some of the coefficients Cmd a re  listed in Table 1. 
The projection operators have a very simple form when ZFS vanishes (D = 

E = 0). In such situation ~# '= ~ and 

Sz' -- J 

Projection operators provide some powerful results without knowledge of exact 
eigenvalues. For instance, we can calculate the ESV of the mth eigenstate in Eq. 
(8) with the help of Eq. (10) as 

2S 
S m = C m Z C m , j ~  j . ( 1 2 )  

j=l 

Here, the vectors % (1 < j  _< 2S) depend on the form of the Hamiltonian as a 
whole, c j  = Tr(ScYfJ), and may be calculated separately in analytical form for 
different values of S and for different types of  ZFS Hamiltonians. For example, 

Here 

Ol = S ( S  + 1)(2S + 1) hco0k. 
3 

h co o = go~r fl  Bo , (13) 
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Table  1. Coefficients c,,j as functions of  the Hamil tonian  invariants.  

J r 

2S 1 
2 S -  1 s., 
2 S -  2 6~ - Tr(~q~2)/2 
2S - 3 - c~  + Tr(cJC~)/3 + c,.Tr(~-YCz)/2 
2S - 4 ~~ - Tr(~Cga4)/4 - c,.Tr(dC3)/3 + {Tr(~~~t'C2)} 2 /8  

0 1 - L ~ J J  = c ~ l d e t ( ~ l )  ' i f  cm ~ 0 

and the unit vector k is directed along the z '-axis given in Eq. (4), 

k = ~ , + b / g e f  f .  (14) 

We calculated vectors crj for spin values 1, 3/2, 2 using Mathematica 5.0. The 
results for the ZFS Hamiltonian Eq. (5) may be presented in the form 

~j = h COo~k, (15) 

where the three-dimensional (3-D) operators ~ are diagonal in the system of  
the principal axes of  the ZFS Hamiltonian. This means that if  vector k is paral- 
lel to a principal axis, then all vectors oj and s m are also parallel to the same 
axis. These operators are not tensors because their components, in some cases, 
depend on the orientation of  the vector k. Such is the case for j = 4 with S = 2. 
The "principal" values of  operators T are listed in Table 2 for S = I, 3/2, 2. 
Making use of  Eq. (15), one can rewrite Eq. (12) as 

where 
s m =/~,.k,  (16) 

2S 
~m = h'O0Cm Z Cm,j~. (17) 

j=l 

An altemative forro of  Eq. (16) is 

~-0~m - s., = g+B0,  (18)  

where Eqs. (13) and (14) were taken into account. 
Let us note that when the ZFS vanishes (D = E = 0), the ESVs may be cal- 

culated directly using their definition in Eq. (7) so that 
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Table 2. Principal components of operators T for different spin values. 

689 

s j r~~ ~,~~ r~,~~ 

1 1 2 2 2 
2 -2/3(D - 3E) -2/3(D + 3E) 4D/3 

3/2 1 5 5 5 
2 -4 (D  - 3E) - 4 ( 9  + 3E) 8D 
3 3(3D • - 4DE + 13E 2) 3(3D 2 + 4DE + 13E 2) 3(592 + 7E 2) 

+ 41/4(hO9o) 2 + 41/4(hCOo) 2 + 41/4(hCOo) 2 

2 1 10 10 10 
2 -- 14(D - 3E) - 14(/9 + 3E) 28D 
3 6(9D 2 - 16DE + 43E 2) 6(9D 2 + 16DE + 43E 2) 2(51D 2 + 57E z) 

+ 34(h6Oo) 2 + 34(hcoo) z + 34(hCOo) 2 
4 -70D 3 + 318D2E - 642DE 2 -70D 3 - 318D2E - 642DE 2 248D 3 + 312DE 2 

+ 954E 3 + 31(hcoo) 2 - 954E 3 + 31(hO9o) 2 + 31(hCOo) 2 
• { - D  + 6E + 39cos(20 0 • { - 9  - 6E + 3Dcos(20) • {5D + 3Dcos(20) 
+ 6Ecos(2r237 + £ + 6Ecos(2#)sin20} 

a Here 0 and ~ are polar and azimuthal angles of the extemal magnetic field direction in the princi- 
pal system of the PC ZFS tensor. 

s m ( D  = 0) = mk.  (19)  

T h e  ope ra to r  /~~ is p r o p o r t i o n a l  to the  3-D u n i t y  o p e r a t o r  1", /~m(D = 0 ) =  m i  
in th i s  case .  

T h e  t r a n s i t i o n  p r o b a b i l i t y  b e t w e e n  the  mth  and  n th  e n e r g y  l eve l s  o f  the  PC 
m a y  be  a lso  c a l c u l a t e d  to s e c o n d  o rde r  in the  m i c r o w a v e  p e r t u r b a t i o n  w i t h  the  
he lp  o f  p r o j e c t i o n  opera to r s ,  

w., , .  oc T r { P . b t ~ S P ~ b , ~ S } ,  (20)  

w h e r e  b Z is a v e c t o r  o f  un i t  l e n g t h  d i r ec t ed  a l o n g  the  m a g n e t i c  c o m p o n e n t  o f  
the  weak ,  l i nea r ly  p o l a r i z e d  m i c r o w a v e  f ie ld  r e s o n a n t  w i t h  the  two  l eve l s  so tha t  

hco = [~. - eml " 

3 Kramers  and Non-Kramers  PCs in the Case of ZFS Large Compared 
with Zeeman Interaction 

T h e r e  is n o  f o r m a l  d i f f e r e n c e  b e t w e e n  i n t e g e r  sp in  ( n o n - K r a m e r s )  and  h a l f - i n t e -  
ge r  ( K r a m e r s )  sp in  s ta tes  in  the  a b o v e  e q u a t i o n s .  Yet  the  E S V s  do d e p e n d  in a 
d i f f e ren t  m a n n e r  o n  the  s t r e n g t h  o f  the  ex t e rna l  m a g n e t i c  f i e ld  B 0 for  K r a m e r s  
a n d  n o n - K r a m e r s  p a r a m a g n e t i c  c e n t e r s  b e c a u s e  o f  the  p r e s e n c e  o f  d e g e n e r a t e  
e i g e n v a l u e s  for  K r a m e r s  cen te r s  in ze ro  field.  
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Let us consider the general case of ZFS Hamiltonian Eq. (5) with D, E :~ 0. 
This Hamiltonian has no degenerate eigenvalues for any integer value of  spin. 
The transition energies are of the order of  E in the worst cases [16, 20]. When 
the external magnetic field is weak compared with the transition energies of  the 
system so that 

E 
B~ << ge~rfl (21) 

the vectors of  effective spin are also small, 

Is.,Ioc genflB~ << 1. (22) 
E 

It is possible to say that the magnetic moment (and effective spin) in non-Kramers 
systems is quenched in weak external magnetic fields and consequently the di- 
polar broadening vanishes. 

The situation is quite different in the case of Kramers systems. In accordance 
with Kramers theorem, each energy level is at least twofold degenerate in the 
absence of  an external magnetic field. When D :~ 0, the degeneracy of  Hamilto- 
nian Eq. (5) is exactly twofold. This degeneracy is eliminated in first order by 
application of  an external magnetic field. In the case of  the weak magnetic field 
given in Eq. (21) the only factor in the denominator of Eq. (11) has a value 
proportional to the Zeeman splitting Eq. (13) thus providing 

lim s m l= )cm (D, E, b) > const > 0. 
Bo--~O 

(23) 

This means that Kramers systems always possess magnetic moment (and effec- 
tive spin). 

A non-Kramers system having axial ZFS with E = 0 (see Eq. (5)) also has a 
degenerate eigensystem. In this situation the eigenstates in zero magnetic field are 
[z(m))  = In)  with e,, = D{m 2 -  S(S + 1)/3}, where the axis Z is taken as the 
unique quantization axis for the PC spin, and m is the projection of  the spin 
onto this axis. The eigenstate with m = 0 is not degenerate, while pairs of  eigen- 
states with the same values of  [m[ have the same energy. This means that al- 
though ]s0] oc gotr,aBo/ID], for m ~: 0 an analog of Eq. (23) is valid. We do not 
consider here the improbable case when the vector k is perpendicular to the 
symmetry axis Z of  the ZFS Hamiltonian so that the external magnetic field does 
not eliminate the degeneracy of the eigensystem in first order. Thus, in all ex- 
ternal magnetic fields, Kramers PCs will always produce dipolar broadening of  
other Kramers PCs. Non-Kramers PCs with nondegenerate levels have their di- 
pole spin moments quenched at very low fields and will not produce dipole 
broadening of  other PCs, nor will they be broadened by other PCs. 
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4 D-D Interaction Hamiltonian for Point Dipoles in the Secular 
Approximation 

In the general case, the d-d interaction for point PCs is described by the Hamil- 
tonian (see, e.g., reŸ 16) 

~~'J = l[(ft~ . f  t j) -3 (n .  ~ti)(n �9 ~tj)], 
r,j 

(24) 

where n is the unit vector in the direction connecting the interacting PCs; r o 
is the intrapair distance, and # i i s  the magnetic moment operator of  the ith 
PC, ~ i  = - ~ g i S i  �9 

The system Hamiltonian for two PCs coupled by d-d interaction is ~ = ~ + 
+ ~y~~~.2, where ~ is the spin Hamiltonian of  the ith PC given in Eqs. (1) 

and (6), here i = 1, 2. The Hamiltonian Eq. (6) parameters (and spins) may dif- 
fer for the first and the second PCs and the principal axes of ZFS interactions 
need not coincide in the general case. We shall use an additional subscript to 
denote the PC, e.g., gi.eff, Si, Di are the effective value of g-tensor, spin, and ZFS 
parameter of the ith PC, respectively. For spin operators we shall use designa- 
tions like Si,x for principal axes of  the ith PC ZFS Hamiltonian. 

In this paper we assume (the typical condition in DEER) that the d-d inter- 
action is small and its influence will be taken into account a s a  first-order per- 
turbation. This suggests the following requirements: the zero-order Hamiltonian 
dt£ = G~r~ + eY'~ must have the nondegenerate eigenvalues, and all the transi- 
tion energies should be greater than the dipolar coupling. These requirements may 
be written in the form 

min (�91 + E2,nj ) --  (�91 + �91 ) �87 ~~d 1'2 " 
(m I ,ny )r k ,n k ) 

(25) 

Here, mi, m k and ni, n k number the eigenstates of  the 1st and the 2nd PCs, re- 
spectively (m = -S~, - S  I + 1 . . . . .  S~; n = -$2, - S  2 + 1 . . . . .  Sz), ~,k is kth eigen- 
value of ith PC. The total number of  eigenstates is (2S~ + 1)(2S 2 + 1) for the 
system in question. It is quite natural to number those with a pair of numbers 
(m,n),  where m and n refer to mth and nth eigenstates of the 1st and the 2nd 
PCs, respectively. 

A degeneracy in the zero-order Hamiltonian requires more accurate treatment 
of  the dipole coupling within the degenerate levels. This gives rise to the so- 
called cross-singular effects in the spectrum [27]. We will not consider such 
effects here because they can be treated by a simple extension of the approach 
used below, although resulting in lar more complicated expressions. 

In the common, simple situation when Eq. (25) is valid, the first-order sys- 
tem eigenstates are products of eigenfunctions of the two PCs Eq. (24) and the 
projection operator onto the (ro,n) system eigenstate is also a product of the in- 
dividual projection operators, 
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^ ^ ^ 
P~,.,.) = P~,mP2,.. (26) 

Here, ~,k is the projection operator onto kth eigenstate of ith PC in its own 
subspace of  (2S i + 1) dimensions. To avoid confusion, we use parentheses for 
the subscript of  projection operators acting in the joint space of  the two spins. 

To first order in the dipolar perturbation, the energy of  the state (m,n)  is 
•(m,n) = Cl,m "}" 82,n + ZŸ where the energy correction A is A~,. = Tr{~m,.)~t• 
By Eq. (26), one can obtain 

where 
Aro, . = A0 {(MI, , .  - M 2 , . )  - 3 ( n  �9 M l , m ) ( n  - M 2 , . ) } ,  

4 : )  F 3  

(27) 

(28) 

and the effective dimensionless magnetic moment vector Mi, k of  the ith PC in 
its kth eigenstate is introduced, Mi, k = ~is~, k. Here si, k is the ESV of the ith PC 
in its kth eigenstate, as defined in Eq. (8) and calculated in Eqs. (16) and (18). 

5 P a k e  M u l t i p l e t s  

A high-spin PC has a complicated EPR spectrum due to the influence of  the 
fine interactions. The ZFS gives the possibility of  transitions between all pos- 
sible PC eigenstates under the influence of  a resonant microwave field. This 
means that a PC with spin S may have S(2S  + 1) resonance lines in the fre- 
quency domain. We write "may have" here because some of  the eigenstates may 
be unpopulated and transitions between two such unpopulated levels will have 
zero intensity. The number of  resonance lines in the magnetic field domain spec- 
trum may be different from that in the frequency domain because the non-mono- 
tonic dependence of  transition energies on extemal magnetic field strength can 
produce so-called looping transitions in the presence of  ZFS terms. 

We can easily find the selection rules for our system by a generalization of  
Eq. (20) for the transition probability, 

W(m,.),(j,k ) OC Tr{~m,n)bl(�91 + ~2S2)~j,k)bl(~q + g282)}. 

For weakly coupled PCs, the factorization Eq. (26) of projection operators is valid 
so that the spectrum of  the system is the sum of  two individual spectra, 

W~m,.~,~j,,) = W~,r.J.,k + W2,.S.,,j, 

where 6~j is the Kroneker delta ( - S  l < m, j <_ SI; - S  z < n, k <_ Sz). The dipole 
coupling of  the two PCs in question leads to the splitting of  each of  the EPR 
lines from both PCs into Pake multiplets, e.g., the transition between the mth 
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and j th  levels of the first PC is split into 2S 2 + 1 lines having resonance fre- 
quencies of  ~,m,_,j(k) in the frequency domain, 

h c o ~ , m . j ( k )  = . , , .  - e , , j  + 4 . , ,  - A j , , .  (29) 

Here, k is the index of  the second PC eigenstate. Taking into account the weak- 
ness of  the dipole interaction Eqs. (25) and (27), Eq. (29) may be rew¡ as 

Here 
hO)l,m~__~j(k ) = Oel, m - Oel, j + (~l,m4_~.j(k). (30) 

(~l,m<._~j(k) = Zl 0{(ffMl,m~_.~j . M 2 , k )  - 3 ( n .  6M,.m~:)(n - M2.k) } , ( 3 1 )  

�91 = sign(ei, m - ct,j){Ml, m - M i , j } .  (32) 

The relative intensity It,m~j(k) of the kth component of the Pake multiplet 
of the m ~ j transition of the first PC is proportional to the population nz, k of 
the kth level of  the second PC given, at equilibrium, by the Boltzmann distribu- 
tion (see also ref. 12), so that 

1 ( C2," ~ = - - e x p  - -~ , (33) 

where k Bis the Boltzmann constant, T is the absolute temperature, and Z 2 is the 
partition function of  the second PC, 

Z2 k=~'~seXp --C2-Ÿ = _ ( ~BJ)" 

The temperature may strongly affect the dipolar splitting pattem. In the case of 
low temperatures when 

]D2[,E 2 >> ksT ,  (34) 

only the lowest level(s) will be populated. We shall not consider here all pos- 
sible cases, but the case of strong ZFS for the second PC will be considered as 
a brief example for which Eq. (21) is valid. The number of populated levels in 
this case depends on the type of PC and on the relation between the Zeeman 
and the mean thermal energies. For a second Kramers PC, the Pake multiplet 
reduces to a Pake doublet ir the Zeeman energy is small so that the popula- 
tions of the Kramers doublet sublevels are nearly equal, and there will be just 
a single line if the thermal energy is small so that just the lowest sublevel of  
the Kramers doublet is populated (see ref. 28 for details). In the case of  a non- 
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Kramers system, the Pake multiplet at very low temperature reduces to a sin- 
glet regardless of  the relation between thermal and Zeeman energies except. in 
rare curve crossing situations. 

6 Examples 

The high-spin PC with Hamiltonian Eq. (6) requires 11 parameters for a com- 
plete description of  the positions of  its spectral lines, namely, the ZFS param- 
eters D, and E; three principal values of  the g-tensor; three Euler angles relat- 
ing it to the ZFS frame; and the three components of  the external magnetic field 
B 0. The second PC also requires 11 parameters, eight to describe its Zeeman and 
ZFS interactions, and three Euler angles relative to the orientations of  the two 
PCs. The point dipole interaction adds three more parameters: the vector r con- 
necting the two interacting PCs. The temperature T is also required to account 
for relative intensities of  the Pake components. 

The total number of  parameters N t in the most general case is 26 in a single 
crystal. For orientationally random or powder systems, this number is reduced 
by 2 because of  the averaging over possible orientations of  the external mag- 
netic field in the molecular frame. In disordered systems, N t = 24, which is too 
large for a systematic exploration of  Pake pattems in the general case. When 
the anisotropy of  the PCs is caused mainly by ZFS interactions so that the g- 
tensor anisotropies are negligible, the number of  parameters may be reduced by 
5 for each of  PCs, making N t = 16 in a single crystal and N t = 14 in disor- 
dered systems. These parameter spaces are still too large to thoroughly explore. 

A model situation of  an S = 1/2, isotropic spin probe interacting with a high- 
spin, isotropic g-tensor PC is described with I1 parameters for the single crys- 
tal and with 9 parameters for a disordered system. These 9 may be reduced to 
5 if  we scale the Pake pattern of  the spin probe in the frequency domain using 
Eq. (28) and if  the ZFS parameters of  the second PC are scaled by its Zeeman 
quantum given in Eq. (13). With five independent variables, it is still quite a 
challenge to thoroughly explore the full range of  patterns that may be encoun- 
tered. It is an even greater challenge to interpret experimental spectra and ob- 
tain a unique set of  parameters. In this regard, measurements made at several 
different temperatures and microwave frequencies, combined with as much a 
priori information as possible, can be invaluable for obtaining a unique and 
accurate interpretation of experimental measurements. 

Below we discuss two cases where analytical relations for the dipole split- 
ting may be obtained. 

S 1 = S z = 1/2. In the simplest and well-known situation of S 1 = S z = 1/2 each 
PC has just two eigenstates and Eq. (19) is valid for both PCs. The d-d interac- 
tion produces Pake doublets for both PCs. Equation (30) simplifies to 

h• : g,x~flBo + mAo{(~~k , �9 ~2k2) - 3 (n-g ,k , ) (n .  gzk2)}. 
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Here m = ___ 1/2 is the projection of the spin of  the second PC onto its quantiza- 
tion axis. Taking into account Eq. (14), the above formula may be written in 
terms of  the external magnetic field direction b, 

hcol(m ) = gi,efrflBo + m(  A o / gl,effg2xff ){(Glb . G2 b) - 3(n. G l b ) ( n  �9 G2b)}. 

Here tensors G i (i = 1, 2) [16] are used, Gi = g /gŸ A detailed analysis of  this 
type of systems is provided in our earlier paper [28], see also refs. 29 and 30. It 
was shown that centers of  the Pake doublet components of  an isotropic PC (spin 
probe or label) do not coincide due to the g-tensor anisotropy of the partner. The 
line shape of each Pake doublet component is similar to the EPR line shape with 
nonaxial g- or hyperfine tensors. Moreover, the line shapes of  the components 
change with temperature, while the line shape does not change in the case of  iso- 
tropic g-tensors. Pairs with an EPR unobservable partner with g• = 0 were found 
to have a "rectangular" or "square-wave" EPR absorption line shape. 

Any high-spin PC whose ground state is a Kramers or non-Kramers doublet 
may behave like a system having effective S = 1/2 in the case of  large ZFS Eq. 
(21) if the low temperature condition Eq. (34) holds. The anisotropy of  the g-ten- 
sor for this effective spin may be very large and will depend mostly on the E/D 
ratio and on total S [31]. Equation (18) may be used with the g-tensor for the 
effective spin, but only the two states having the lowest energies should be con- 
sidered. Also, when the second PC is a Kramers system with ZFS large compared 
with the Zeeman interaction but does not meet the low-temperature condition Eq. 
(34), each pair of  levels that are degenerate at zero field can be treated as a sepa- 
rate spin with effective S = 1/2 and its own g-tensor. The resonance line of  the 
first PC will be approximated well by the superposition of Pake doublets from each 
pair of  effective S = 1/2 levels scaled by the appropriate Boltzmann factors. 

S~ = 1/2, Sz = 1. A doublet-triplet pair shows the effects of  weak dipole cou- 
pling. The single resonance line of  the first PC having S = 1/2 is split into a 
triplet (usually overlapping), while each of three resonance lines of  the 2nd trip- 
let PC with S = 1 is split into Pake doublets. 

Ir is easy to calculate matrix elements of  the operators Fz, m for the triplet 
PC because there are only two terms in Eq. (17), 

/~2,m = �91176 q- /~21" (35) 

Here �91 m = 2g2xffflBoC2, m and D2 is the 3-D ZFS tensor. The ZFS Hamiltonian 
Eq. (5) of  the triplet PC may be written as d~2,zF s = SzDzS2 with principal val- 
ues of  E -  D/3,  - E -  D/3, 2D/3. Let us emphasize that the elements o f / ~  de- 
pend on the direction of the extemal magnetic field because the eigenvalues e2,m 
and g2,eff (if the g-tensor of  the triplet PC is anisotropic) depend on this direc- 
tion. Figure I illustrates the dependence of the ESVs s2, m given in Eq. (16) and 
of  the square of  their length on the orientation of the extemal magnetic field 
and its strength, and on the parameters of  ZFS. This graphic was calculated for 
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Fig. 1. Dependence of the ESVs on the spin Hamiltonian parameters for a triplet PC with isotro- 
pic g-tensor. The basic set of parameters was as follows: D/gflB o = 1, E/D = 0.2, O= rd4, ~ = rd6, 
where 0 and r define the orientation of  the extemal magnetic field in the ZFS frame. Each col- 
umn corresponds to the number of the PC eigenstate m: left, m = 1; middle, m = 0; right, m = - 1 .  
Each row illustrates the dependence of the vectors on varied parameter: top, D/gflBo; second, E/D; 
third, polar angle 0 (rads); bottom, azimuthal angle ~ (rads), while the rest of the parameters are 
held constant. The solid line shows the square of  length of the respective effective vector, [sm[ 2 , 
its components in the ZFS frame are shown as dashed (J0, dotted (10, and dashed-dotted (Z) lines. 
The ESVs decrease drastically as the absolute value of D/gJ3B o increases, see the top row. The 
smoothest dependence occurs for the E/D value. The dependence on angles, especially on azimuthal 

one, clearly demonstrates the nonlinearity of  Eq. (18). 

a t r i p l e t  P C  w i t h  i s o t r o p i c  g - t e n s o r .  F i g u r e  2 i l l u s t r a t e s  t h e  a s y m p t o t i c  q u e n c h -  
i n g  o f  t he  e f f e c t i v e  s p i n  m o m e n t  in  a c c o r d a n c e  w i t h  Eq .  (22 ) .  

F o r  s p i n  S 2 = 1 t h e  e i g e n v a l u e s  o f  t h e  H a m i l t o n i a n  Eq .  ( 6 )  m a y  b e  p r e s e n t e d  
in  f i n a l  f o r m  [ 2 1 - 2 2 ,  25] ,  so  t h a t  
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Fig. 2. Asymptotie dependence of the ESVs of triplet PC in the limit of low extemal magnetic field. 
Parameters are the same as for the top row in Fig. 1 but the range of D variation is 10 times greater. 
Eigenstate numbers ate indicated for the three lines. The graph shows that Eq. (22) is nearly exact 

when E/gflB o > 5, E/D was taken as 0.2 for this example. 

r 4 , , / 2  [-A 2 + 2 r ~ ( m + 2 ) ]  
~2,~ =l~~-~/ cos l 3 _ (36) 

Here m = - l ,  0, 1 and 

p2=lTr(~Z~22)  - 2 + ' - , S B  o G2 'Bo  + l T r { / ) ~ } ,  (37) 

parameter  2 is defined by the relation 

/ x 3 / 2  

Tr{/)23}. 

With respect to the classical definition [21, 22], the sign of  p2 in Eq.-(-37) is 
changed for simplicity and the invariants rather than the coordinate forros are 
used for parameters.  

The eigenvalues Eq. (36) possess an important symmetry,  

oe2,m(-D ) = -�91 (38) 

because e o s ~  changes its sign when parameters  D and E change sign simulta- 
neously thus providing Az(-D ) = r e -  22(L) ) . This relation leads to Eq. (38) after 
simple algebra. The consequence is another important symmetry,  



698 A.G. Maryasov et al. 

/='2,m (--/~2) = --/='2,_m (/~2). 

Let us calculate the Pake multiplets for each paramagnetic center. The single 
line o f  the first PC is split into a triplet because of  its d-d interaction with the 
second PC. The positions of  the triplet lines are given in Eqs. (30)-(32),  in our 
case 

A0 
hco,(m) g,,~frflBo -t {(O,b - - -+ = . g21-'2,mg2 b )  

gl,effg2,eff 

-- 3(¡ G~b)(¡ �9 ~z/~2,m~~b)}. (39) 

Here m = - 1 ,  0, 1. Each of  the three transitions of  the second PC is split into 
a doublet,  so that 

dŸ o hco2a~~(m ) h s + m {(G,b - - -+ = " g26/-'2,ja, g2 b ) 
gl,effg2,eff 

- 3 ( n . G ~ b ) ( n  - - -+ �9 gz6f ' z , j~ , ,g2 b)}, (40) 

where m = + 1/2, 
[22], 

-('22J'" is the undisturbed transition frequency o f  the triplet PC 

h-C22J'" = e2,j - c:,. = 2x/~-2 sign[n - J]~2,y+n+4, (41) 

�9 [ , h  + ~ , , 1  

~=,~ = ~,nL~ J, 
and 

8 ~ ~ , j ~ .  = s i ~ ( e ~ , j  - c~,~  - P ~ , . )  

= 2g2,o~~Bosign(e~j - c2,,,) { i ( G j q , j  - G,,,q,n) + D2 ( G j  - C2 , , , ) } .  ( 4 2 )  

The upper line in Eq. (42) is rather general for all values of  S 2, the lower 
line is based on Eq. (35) and is valid for S 2 = 1 only. In the case o f  weak anisot- 
ropy in the tensor o~2, the value o f p z  is independent o f  orientation and the tran- 
sition frequencies Eq. (41) are presented in refs. 21-22 and 25. 

Although Eqs. (39) and (40) are valid for interacting PCs with S~ = 1/2 and 
arbitrary S2, analytical expressions for /~2 are available now only for the case 
o f  S 2 = 1/2 and 1, see Eq. (35). 

When the g- tensor  anisotropy o f  both PCs is negligible, it is useful to re- 
write Eq. (39) in the dimensionless presentation described above, 

c3(m, b) = hco~(m) - g tq  o = {(b-/='2,m b )  - -  3(n-b)(n-/=2.mb)}. 
glg2Ao 
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Fig. 3. Dependence of the Pake pattern on ZFS and temperature of isotropic spin label (S = 1/2) 
caused by dipole coupling with a triplet (S = 1) PC. Temperatures are indicated in units of Zeeman 
quantum of the t¡ PC for the three lines in each panel, a Isotropic triplet PC which produces a 
standard Pake pattern with three components whose amplitudes are temperature dependent, b ZFS 
makes the non-Kramers doublet be the ground state of the triplet PC. D = -40,  E = 0, O= ~/3. c 
ZFS removes all degeneracy of the triplet PC, D = -40,  E = 0+4, O= ~x/3, r = n/6. The relatively 
small E term leaves the triplet PC with considerable effective spin to broaden the doublet PC. d 
Parameters are the same as for e but E = 2. Here the effective spin of the triplet is significantly 

quenched, reducing the dipolar broadening in the Pake pattern. 

He re  gi is the  g - f a c t o r  o f  the  i th PC.  M a k i n g  use  o f  Eq.  (35) ,  for  the  t r ip le t  PC,  
one  can  o b t a i n  

c~(m,b)  : �91 {82,m [ l  - -  3 ( n .  b )  2 ] + (b./~)2 b )  - 3 ( n .  b ) ( n - / ) : b ) } .  

In  the  a b s e n c e  o f  ZFS ,  the  r i g h t - h a n d  s ide  o f  th is  e q u a t i o n  is equa l  to the  we l l -  
k n o w n  r o ( l - 3 c o s  2 �91 w i t h  �91 b e i n g  the  a n g l e  b e t w e e n  vec to r s  r and  B 0. 

T h e  P a k e  p a t t e m  o f  the  f i rs t  PC w i t h  S = 1/2 in a d i s o r d e r e d  s y s t e m  m a y  
b e  wr i t t en  in d i m e n s i o n l e s s  un i t s  as 

U(c~) = ~ ~ d(cos �91 ~ d # c~(cD - c~(m, b)) exp 
m - t  0 Z 2 ( b )  ~. kBT )" 
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Fig. 4. Pake patterns of isotropic spin label (S = 1/2) caused by dipole coupling with a triplet (S = 1) 
PC with D = 2, E = 0.4, ~b = n/6 in the high-temperature approximation. The angles 0 and r define 
the orientation of the vector ¡ in the ZFS frame. The energy is in units of the Zeeman quantum of 

triplet PC. 

Here �91 and ~b are polar and azimuthal angles of  the magnetic field direction in 
the molecular frame of  the high-spin PC, ~x)  is the Dirac delta-function. The 
Boltzmann population Eq. (33) is taken into account. Appearance of the delta-func- 
tion under the integral sign allows, in principle, simplification of  the equation, but 
this requires solving the equation cb -c3 (m,b )=  0 with respect to the direction 
of the vector b. This is n o t a  simple task because components of  the operator F 
given in Eq. (35) also depend on the direction of the external magnetic field. 

For PCs with isotropic g-tensors, Fig. 3 illustrates the dependence of the fre- 
quency domain Pake pattems on ZFS parameters of  the second PC and on the 
temperature. The changes within each panel are caused by changes in the Boltz- 
mann population among the triplet PC as the temperature changes. The changes 
between panels are due to quenching of the spin or dipole moment of  the triplet 
as the degeneracies at low field of this non-Kramers PC are removed. 

Figure 4 shows that the pair geometry has strong impact on the Pake pattern 
as the orientation of the triplet ZFS axes relative to the direction between the 
two PCs is changed. 

7 Conclus ions  

The d-d interactions of  high-spin paramagnetic centers in the secular approxi- 
mation for point dipoles may be described using vectors of  the effective spins 
for each PC. These vectors are the expectation values of  the spin vector opera- 
tor when the PC is in one of  its eigenstates, so the whole set consists of  2S + 1 
vectors for a PC having spin S. To calculate these vectors we use spectral de- 
composition of  the PC Hamiltonian based on the Caley-Hamilton theorem. This 
technique allows calculation of  projection operators onto the PC eigenstates us- 
ing the Hamiltonian eigenvalues without calculation of its eigenvectors. We find 
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that these ESVs for spins up to 2 are related to the extemal magnetic field via 
the formally linear equation (18). Linearity occurs only in the absence of  ZFS, 
which is always the case for spin S = 1/2. For higher spins, matrix elements of  
the operator F' also depend on the extemal magnetic field making this relation 
nonlinear in the presence of  ZFS. Analytical expressions are derived for spin 
S = 1 in the weak d-d interaction limit. 

The ESVs behave qualitatively differently for Kramers (half-integer spin) and 
non-Kramers (integer spin) PCs in the limit that the extemal magnetic field is 
weak compared with the ZFS. For non-Kramers systems these vectors are pro- 
portional to the ratio of Zeeman energy to the ZFS, reaching zero at low fields. 
The splittings of the EPR spectra caused by dipole interactions with such non- 
Kramers PCs vanish at low fields. For Kramers PCs, in contrast, the ESVs tend 
to limiting nonzero values when external magnetic field decreases and the Pake 
patterns are always produced. 

The d-d interaction leads to the appearance of  Pake patterns in EPR spec- 
tra. Variations of  these patterns with temperature and extemal magnetic fŸ 
strength (microwave quantum of EPR spectrometer) can provide important in- 
formation for the structure determination of  a dipole-coupled pair of  PCs if the 
number of  parameters to be determined can be suitably constrained. To this end, 
it is desirable to perform DEER measurements of  long-range distances involv- 
ing high-spin PCs over a wide range of microwave frequencies, magnetic fields, 
temperatures, and frequency offsets. 
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