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Spin-polarization effects on the phase relaxation due to dipole-dipole interactions of 
particles with l/2 spin are studied theoretically for magnetically diluted solids. Para- 
magnetic centers with anisotropic g tensor are considered, random modulation of the 
dipole-dipole interaction by spin flip-flops in the process of spin-lattice relaxation (T, 
process) is taken into account. The Tr process is shown to narrow the dipolar contour 
at the center of the line, the limiting dipolar width being proportional to the spin 
polarization p at T, - 0. The angular dependence of the dipolar broadening is inves- 
tigated. The signal decay kinetics are calculated for free induction and electron spin 
echo at arbitrary TI and p. Spin polarization is demonstrated to reduce the contribution 
from the dipole-dipole interaction to the irreversible spin dephasing by the spectral 
diffusion mechanism and to increase the contribution from the instantaneous diffusion 
mechanism to the echo signal decay. 

INTRODUCTION 

The present paper deals with the effect of spin polarization at low temperatures 
and the effect of g-tensor anisotropy upon the phase relaxation of unpaired electron 
spins of paramagnetic centers in magnetically diluted solids, induced by the dipole- 
dipole interaction between the PC spins. The contribution from the dipole-dipole 
interaction to the ESR spectral linewidth, to the free-induction (FI) signal decay and 
to the electron spin-echo (ESE) signal decay kinetics is considered. 

There are many theoretical treatments of phase spin relaxation by dipole-dipole 
interactions. A static (inhomogeneous) broadening of an ESR line due to dipole- 
dipole interactions is discussed in Refs. (1-3). The dipole contour of ESR lines for 
centers with isotropic g tensors was shown to be described by the Lorentzian function 
with the half-width at the half-height for S = l/2 equal to 

Aw,/~ = (47r2/g(3)“2)92p2K1C’, 

where p is the Bohr magneton, and C is the concentration of spins. 
The temperature dependence of the static dipole broadening was studied by 

Altshuler and Mokeev (3). It was shown that AU ,,* is temperature independent for 
particles with a spin S = l/2, and must increase with decreasing temperature for 
those with S r 1. Grinberg et al. (4) investigated the exchange narrowing of a static 
dipole contour. 

In magnetically diluted solids ESR spectra are, as a rule, inhomogeneously broad- 

432 
0022-2364/82/150432-19$02.00/O 
Copyright 0 1982 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 



SPIN-POLARIZATION EFFECTS 433 

ened by the hyperfine interaction, the g-tensor anisotropy, etc. (5). This circumstance 
hampers measurements of the dipole broadening of the ESR spectra. The ESE 
method makes it possible to eliminate the disguising effect of the inhomogeneous 
broadening and to distinguish the contribution from a comparatively weak dipole- 
dipole interaction to the phase relaxation. The dipole-dipole interaction results in 
ESE signal decay by two mechanisms (6, 7): spectral diffusion and instantaneous 
diffusion. The theory of spectral and instantaneous diffusions was developed in a 
number of works reviewed in (8-11) with an exhaustive list of references. 

The published theories of spin phase relaxation in magnetically diluted solids, 
induced by dipole-dipole interactions between centers refer to particles with an 
isotropic g tensor and to a h&$-temperature situation when the Zeeman energy of 
the unpaired electron is low compared to the thermal energy, and the spins are 
oriented along and against the external field with about the same probability. The 
only exception is paper (3), which considers spin-polarization effects on dipole broad- 
ening in a center with an isotropic g tensor. However, the authors discussed the 
static broadening only. Meanwhile, it is very interesting to study spin-polarization 
effects (at decreasing temperature) upon the dipole broadening of ESR lines and on 
the ESE signal decay under the condition that the local dipole field cannot be treated 
as a static one but varied randomly by spin flips. Note that the spin-polarization 
effect upon the ESE signal decay by the spectral diffusion mechanism in magnetically 
diluted systems has been already discussed, and some interesting preliminary esti- 
mates have been obtained (22-14). 

An appreciable spin polarization arises at the following temperatures. Let 
Ho = 3300G be a typical field in ESR spectrometers. The temperature at which the 
Zeeman spin energy is comparable with the thermal energy is T = gpH,/k. Hence, 
for particles with g g 2 we obtain T = 0.4 K. However, there are many paramagnetic 
ions with anisotropic g tensors (see, e.g. (12, 13)) whose effective g factor can reach 
several tens. For instance, at g = 20 spins are highly polarized even at liquid helium 
temperature. 

The present paper is an attempt to give a systematic approach to spin-polarization 
effects on the phase relaxation induced by paramagnetic center dipole-dipole in- 
teractions in magnetically diluted solids. The centers are assumed to have anisotropic 
g tensors, the dipole-dipole interaction being modulated by random spin flips in- 
duced by spin-lattice interactions. 

The basic assumptions of the theory are formulated in the second section. The 
third section deals with the effects of g tensor anisotropy and spin polarization on 
the dipole broadening and FL signal decay. The contribution from dipole-dipole 
interactions to the ESE signal decay by the mechanisms of spectral and instantaneous 
diffusion is discussed in the fourth section followed by a summary of the results 
obtained. 

BASIC ASSUMPTIONS AND INITIAL EQUATIONS OF THEORY 

Spin Hamiltonian of Dipole-Dipole Interactions 

As noted above, in magnetically diluted solids the dipole broadening of ESR lines 
is much less than their inhomogeneous broadening. This fact enables one to take 
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into account only the adiabatic part of the dipole-dipole interaction Hamiltonian 
when considering spin phase relaxation processes (I-11). The nonadiabatic terms 
induce a shift of the center resonance frequencies only in the second order of per- 
turbation theory and hence can be neglected for systems with a substantial broad- 
ening of the ESR spectra. Being responsible for the spin flips, these terms must be 
taken into account in discussing such processes as Zeeman energy transfer, spin 
diffusion, cross-relaxation (a-10). 

Consider a system of paramagnetic centers with the spin Hamiltonian 
^ ^ ^ ^ 

2F = 2Fz + Z&d + Zsl . PI 
Here the first term describes the Zeeman energy, the second corresponds to the spin 
d-d interaction, and the third is the spin-lattice interaction. For centers with an- 
isotropic g tensors the Zeeman spin energy in an external field HO is (15) 

2z = C giPH&SJ = C g#H$ki ) [31 
i i 

where gi is the effective g factor of the ith center, kj is a unit vector in the direction 
of the effective magnetic field, and Ski is the operator of projection of the ith spin 
moment onto the ki direction which is a quantization axis. For a center with an 
axial symmetrical g tensor (15) we have 

gi = [& COS2 f3i + ,& sin2 fli]1’2 , [41 

where gll and g, are the principal g values and Bi is the angle between HO and the 
axis of symmetry. In the case of an axial symmetry without generality limitations, 
the following system of coordinates proves to be convenient. The axis of symmetry 
is the Z axis, the X axis being in the plane passing through the axis of symmetry 
and the external field direction. In this system the direction cosines of the effective 
field are (15) \ 

To determine the adiabatic part, the total spin Hamiltonian must be written as 
the product of the spin projections onto the quantization axes: 

bj 

Let us write the expression for the dipole-dipole interaction parameter for the 
case though rather simple but encountered often in experiments with single crystals. 
Assume the g tensors of all the spins to be axially symmetric, the axes of symmetry 
being parallel. In this case, 

A,, = P2h-‘G3 
u g,g, (gL& sin2 0 + g$gjl cos2 8 

1 I 

- 3[l*gi&j~ sin 0 + n’gj@jll COS O]‘}, [7] 

where rij is the distance between the ith and j th particles, f3 is the angle between Ho 
and the Z axis, and 1 and y1 are the projections of the unit vector rg/rij to the X and 
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Z axis, respectively. Equation [7] can be written in the form 

A, = &32h-1(1 - 3.~0~~ #ii>,‘. PI 
In Eq. [S], gz is not merely the product of the effective g factors of interacting 

particles but 
,$ = [g!Lgj: sin* 13 + g$gi, cos2 O]/gigj . [91 

Hence, for similar centers we obtain 

j2 = (g”; sin2 0 + gi cos* B)/(g: sin2 8 + gi cos2 19). [lOI 
In Eq. [8], tiii is the angle between rij and a certain direction in the plane passing 
through the external Ho field direction and the axis of symmetry. This direction is 
set by the unit vector q with the projections 

qx = gjlgj~ sin e/(gtg& sin2 0 + ,&l&l COS* ~9)~‘~ , 

4* = 0, 

qz = gillgjjl COS c9/(&g& sin* 0 + g&$1 COS* 0)l’* . 

ill1 

Note that in the case of an isotropic g tensor, qx = sin 8, qz = cos 8, i.e., q is directed 
along Ho. If only one tensor is isotropic, q is directed along the effective magnetic 
field of the partner. 

In principle, the above method can be used to analyze the adiabatic part of dipole- 
dipole interactions in arbitrary situations: arbitrary g tensors, systems with various 
types paramagnetic centers, polycrystals, glasses, etc. However, we confine ourselves 
to single crystals containing either one or two types of centers with axially symmetric 
g tensors and parallel axes of symmetry. 

Calculation Scheme for the Contribution of Dipole-Dipole Interactions to FI and 
ESE Signals 

In the adiabatic approximation a dipole-dipole interaction simply shifts the spin 
resonance frequency. This fact makes it possible to write the contribution from the 
dipole-dipole interaction to the FI and ESE signal decays as (1-11) 

u(t) = (exp(-i C A(rJ t dt)mj(t>dt)),t 3 [121 i s 0 

where s(t) = 1 for FI, s(t) = -1 in the time interval (0, T) and s(t) = 1 in the interval 
(7,27) for ESE; in the latter case t = 27, T is the time interval between two microwave 
pulses. In Eq. [ 121, mj is the spin projection of the j th partner on the quantization 
axis, ( * . * )r,l means averaging over all random distributions of spin partners in the 
lattice (( . * .)J an d over all random realizations of the process mj(t) (( . . . ),). In 
averaging over all possible spin orientations it is necessary to take into account also 
the spin flips induced by microwave pulses forming the FI and ESE signals. 

In magnetically dilute systems it can be assumed with good approximation that 
different spins flip due to spin-lattice interactions independently. Hence, Eq. [ 121 
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can be reduced to 

v(t) = (II (exP(-Wj) J dt)mj(Odt>)t)r = (II v<tlrj>)r , 
.i 0 .i 

[I31 

where v(tlr) is the contribution of a partner at distance r: 

v(tlr) = (exp(-iA [ s(t)m(t)dt)), . [I41 

In the case of a homogeneous distribution of centers, the averaging of Eq. [ 131 by 
the spatial location results in (1-11) 

v(t) = exp[-C 
s 

(1 - u(tlr))d3r], [I51 

where C is the concentration of paramagnetic centers. Then v(t) can be calculated 
in two different ways. First, one can solve the kinetic equation for the density matrix 
of a pair of spins, find v(tlr), and substitute the result obtained into Eq. [ 151. The 
merit of this calculation scheme lies in the fact that in extreme cases it is possible 
to obtain exact asymptotic relations. However, in the general case, the integral in 
Eq. [ 151 can be calculated only numerically. Second, the averaging over the spatial 
distribution of centers can be performed prior to that over the random process 
m(t). This calculation scheme has been proposed (16) as applied to a high-temper- 
ature limit. 

From Eqs. [ 141 and [ 151 we obtain 

v(t) = ew-C (J d3r(l - ew(-W9f(ON),), 1161 
with the random quantity 

f(t) = s’ s(t)m(t)dt. [I71 
0 

Substituting the expression for A(r) and integrating over d 3r, we obtain 

W = ew --?!?-- -2 - 9c3j,,2 g P 2~i-‘C(]f(t)l), -iC s d3r(sin (A(r)f(t))), . [I81 

The real part of the exponent in Eq. [ 181 describes the FI and ESE signal decays 
due to dipole-dipole interactions, the imaginary part corresponds to changes in the 
spin precession phase in a mean local (dipole) field. It will be shown below that the 
imaginary part of v(t]r) is indeed proportional to the mean polarization ofthe sample, 

p = (1/2)gpC. tanh(gpHo/2kT). [I91 

As a result of the spin precession in the mean local field, the ESE signal acquires 
a phase since the macroscopic polarization of the sample (and thus the mean local 
field) is different within the time intervals (0, 7) and (T, 27). A detailed analysis of 
the precessing magnetization phase at the moment of the ESE signal formation 
could be informative of the mean local field. The mean local field is by no means 
manifested if the first microwave pulse, inducing the echo, turns the sample mag- 
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netization through 90”. Indeed, in this case the macroscopic magnetization of the 
sample goes to zero within the time Tf (FI signal decay time). 

If the mean local field is inhomogeneous throughout the species, the echo signals 
from a different part of the species have different phases, which results in an ad- 
ditional decay of the total ESE signal from the whole sample. Analysis of this decay 
might convey information on inhomogeneities of the mean fields. We will not discuss 
in more detail the very interesting problem of mean local fields (see, e.g. (17, 18)). 

Thus, the FI and ESE decays due to dipole-dipole interactions obey the equations 

v(t) = exp[-C s (1 - Re{u(t]r)})d3r], 

v(t) = exp 
[ 

- ~ 9;3$ ~2~2h-qf(r)l)f]. PObl 

The mean If(l)1 value in Eq. [20b] was calculated numerically by simulating the 
random spin flip dynamics by the Monte Carlo technique. The quantity u(tlr) was 
obtained in an analytic form. All computations were performed for a center with 
S = l/2. In the Monte Carlo calculations we used a standard approach to the 
simulation of the Poisson process (29). 

Calculations of v(tlr) for a Particle with S = l/2 

This quantity can be readily found in the static limit when random spin flips can 
be neglected. The equilibrium density matrix of a pair of spins is 

PO = Z-l exp[-(gdfJ0&k, + &H0~2kJlW, 

Z = Tr {wMgdW&, + gdW&Jl~~l}. 1211 

The spin rotations round .the Y axis by the microwave pulses inducing FI and 
ESE signals are set by the operator 

0 ^ ^ 
Q = ew-@A, + &!‘2,>1. P4 

Immediately after the first pulse the density matrix is 

p(0) = &lo&l = &lo ) 1231 

where 0 is the flip operator in Liouville’s representation. If the pulse turns the spin 
through 8, subsequent to the pulse the state populations conforming to different 
orientations are 

P~,~,~,~(O) = 
C 

0 
q cos2 2 + sin2 2 0 (l+q), II ~241 

P-~,~,-~,~(O) = 
[ 

6 
cos2 y -t q sin2 2 r3 (l+q), II 

where 
9 = exp(-gpHolkT>. WI 
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Averaging Eq. [ 141 over the initial states [24], we obtain the following result for 
the FI signal 

t+t(tlr) = cos (AL/~) + i tanh (g/?HO/2kT) cos /3 sin (At/2). WI 
Hence, in the high-temperature limit 

vrr(tlr) = cos @t/2), [271 

which describes the FI signal modulation by the dipole-dipole spin interaction in 
a pair. Note that the imaginary part v(t) in [26] is proportional to the equilibrium 
spin polarization, 

tanh (g@HO/2kT) = (1 - q)/( 1 + q). WI 
Likewise, in the static limit, from Eq. [ 141 we find that the dipole-dipole inter- 

action of a spin with its partner contributes to the ESE signal of this spin as follows: 
e(2) #a 

2)&27]r) = co? - + sin2 - cos (AT) 
2 i 1 2 

($2) 
-i tanh (g@&,/2kT) cos #‘) sin2 7 sin (AT), 

i 1 
[29] 

where O(l) and Oc2) are the spin-partner rotation angles after the first and the second 
pulses. The imaginary part v(tlr) is again seen to be proportional to the mean po- 
larization. In the high-temperature limit we obtain the known result (II): 

(j(2) p 
t&27/r) = cos2 - + sin2 - cos AT. 

2 2 [301 

In the general case, when the random spin flips average the dipole-dipole inter- 
action, u(t\r) is calculated by kinetic equations for the density matrix of the 
spin pair. 

Changes in the density matrix of a pair of centers induced by the dipole-dipole 
interaction and by random flips obey the equation 

dP 
- = -i[A&,&kz, p] + &. 
at 

1311 

The form of the relaxation operator l? in the high-temperature limit already has 
been discussed (II). At an arbitrary temperature the form of R can be found as 
proposed in Ref. (20). A formal solution of Eq. [31] can be given as 

f-40 = h@). ~321 

For S = l/2, write the kinetic equations for the matrix p elements in the basis 
of states 

11) = lW2>? 12) = ld32), 13) = kb2)> 14) = IPIP,), 

where ai and pi are the eigenstates of the operator Siki conforming to the eigenvalues 
+ l/2 and -l/2. According to (II, 20), we obtain the following equations, e.g., for 
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ah3 A 1 
-SF- 2 - + - P13 - mP13 - - wl(1 + dP13 + %q2P24 , 2 

aP24 A 1 -= i - P24 - Kq2p24 - - wl(l + dP24 + wP13 , 
at 2 2 

[331 

where Wi is the mean rate of a random flip of the ith spin from IO!) to ]/I) state, i.e., 
I+‘;’ is the mean lifetime of the ith spin in the excited state; W’;‘qT’ is the mean 
lifetime of the ith spin in the ground, unexcited state, with 

qi = exP(-gi/WdkT>. 1341 

The matrix elements p13 and ~24 describe variations of the transverse magnetization 
of spin 1. In Eq. [33] the terms 

1 
- 5 Wl(l + 4dPl3, - ; Wl(l + qdp24 

describe the transverse relaxation of spin 1 due to its own random flips. The terms 
of Eq. [33] proportional to IV, characterize random changes of the dipole frequency 
shift of spin 1 resulting from spin-2 flips. Quite analogous equations can be written 
for p12 and p34 determining the transverse magnetization of spin 2. 

The characteristic numbers of Eq. [33] are 

x 
12 

= _ Wl(~~ + 41) _ W2(1 + q2) 

2 2 
f (R2+ + iR2-), 

where 

R2+ = (1/2(2)‘12) sign (A){[(@(1 + q2)2 - A2)2 + 4WzA2(1 - q2)2]‘/2 

+ W$( 1 + q2)2 - A2} 1’2, 

R2- = ( l/2(2)“2){ [( IV;< 1 + q2)2 - A2)2 + 4W;A2( 1 - q2)2]1’2 

- W:(l + q2)2 + A2)1’2. 

The solution of Eq. [33] is expressed by the relations 

[351 

P*3(0 + P24(0 

P13@) - P24(0 

where 
Lo1 = K[cosh(R2t) + (I%‘,( 1 + q2)/2R2) sinh (Rzt)], 

LO2 = -iK(A/2R2) sinh (R2t), 

LO3 = iK[(2Rz - Wl(l + q2)2/2R2)/A] sinh (R2t), 

LO4 = K[COSh (R2t) - ( W2( 1 + q2)/2R2) sinh (R2t)], 

R2 = R2+ + iR2-, K = eXp(- w2( 1 + q2)t/2). 

1371 
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In evolution operator [36] the term exp(- I+‘,( 1 + q&/2) describes the proper phase 
relaxation of spin 1. The operator Lo corresponds to the contribution from the 
partner to the relaxation of spin 1. 

Using the operators 0 and 2, that describe the spin motion induced by the 
microwave pulses (which form the signals observed) and the contribution from the 
dipole-dipole interaction to the spin dynamics, we obtain for the FI and ESE: 

PF&> = iw&o 3 
^ ^^ ^ 

PETE = ~0(7)Q2~0(7)Q~P0~ [381 

where 0, and o2 are the operators of spin-2 flips by the microwave pulses at time 
moments t = 0 and t = T, respectively. 

As a result, we have the following equations for the FI and ESE signal decays. 
For the FI of a chosen spin: 

Re{ v&]r)} = exp(- I+‘( 1 + q)t/2){cosh(R+t) cos (R-t) 

+ (l/2@ + R!))[( W( 1 + q)R+ + AR- tanh (gpHo/2kT) 

X cos tic’)) sinh(R+t) cos (R-t) -I- (W( 1 + q)R_ - AR+ tanh 

x (gpHo/2kT) cos ~9~‘)) cash (R+t) sin (R-t)]}, [39] 

where IV, q, Rk, g, 0 are referred to a partner. For the ESE: 

n&27/r) = (l/2) exp{ - W( 1 + q)T} {cash (R+T) + cos (2R-7) 

+ [( W2( 1 + q)2 + A2 cos dC2))/4(R2, + R?)][cosh (~R+T) 

- cos (2R-7)] + [W(l + q)/(R: + R?)][R+ sinh (2R+7) 

p 
+ R- sin (2R-7)] + A tanh (gpHo/2kT) cos f?(l) cos2 1 

X (R- sinh (~R+T) - R, sin (~R-T))/(R: + R?)}. [40] 

Substitute Eq. [39, 401 into Eq. [20a] and obtain the FI and ESE signal decays due 
to the dipole-dipole interaction between centers. The Fourier transformation of the 
FI signal gives the dipole contour of the ESR line and the dipole line broadening. 

FI SIGNAL DECAY AND ESR LINE BROADENING 

Static Limit 

In the static limit Eqs. [20] and [26] yield the following expression for the FI 
signal decay kinetics 

%dt) = ew(-Awl&l), [411 

where AW~,~ is dipole broadening (see, e.g. [l]), and the dipole contour of the ESR 
line is described by the Lorentzian 

g(o) = (l/4- b,2/(u2 + A&2), 1421 
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FIG. 1. Angular dependence of dipole broadening in single crystals containing paramagnetic centers 
of the same type. (I) Er3’ in CaW04, K = 45; (2) Yb3+ in CaWO,, K = 14; (3) Fe3+ in PbTi03, K = 8.83; 
(4) co ‘+ in CaC03, K = 2.0; (5) Ni+ in LiF, K = 0.65. 

where w is the frequency deviation from resonance. The results [41] and [42] are 
well known for a center with an isotropic g tensor (1-3). For particles with aniso- 
tropic g tensor the dipole broadening is described by the following relation. 

The dipole broadening due to interactions of centers of the same type is (see Eq. 
[lOI> 

41r2 -2 2fi-lC 
Aw2 = 9(3)l/2 g P 2 

g2 = (g”; sin2 0 + gi cos2 B)/(g: sin2 f3 + gf cos2 0). [441 

In Eq. [44], 0 is the angle between the axis of symmetry and the field direction H,,. 
The dipole line broadening of paramagnetic centers of one type (marked by 1) 

due to the dipole-dipole interactions with centers of some other type (marked by 
2) in the case, when the axes of symmetry of both species are parallel, is (see Eq. 
[91) 

4?r2 -2 2 -Lc 
hw2 = 9(3>‘,2 g12P h 9 

where 

1451 

[461 

and g, and g2 are effective g factors [4]. 
Figure 1 shows the angular dependence of AU,,,? for several K = (gJg1J2 con- 

forming to different particular systems (21). Note that the angular dependence of 
the dipole broadening is not merely determined by the product of the effective g 
values of the two centers [4]. The real angular dependence of Aw,,~ is stronger than 
that of the product of the effective g values. Figure 2 illustrates this statement by 
curves showing a deviation of g2 from g&. These results agree with experimental 
data available for the angular dependence of dipole broadening for Er3+ ions in 



442 MARYASOV, DZUBA, AND SALIKHOV 

0 30 60 90 

ANGLE IN DEGREES 

FIG. 2. iz Deviation from a simple product of effective g values of two paramagnetic centers. 

CaW04 (22). Note that in the static limit the ESR dipole linewidth is independent 
of spin polarizations for S = l/2. This result has been obtained earlier (3) and differs 
fundamentally from that known for magnetoconcentrated solids (23). The second 
moment of the dipolar frequency shift decreases with falling temperature (23), 

(Aws-,$ - 1 - tanh’ (gp&/2kT). [471 

The fact that in magnetodilute solids the static dipole broadening does not go to 
zero with falling temperature can be interpreted as follows. As known, in dilute 
systems the spin environment of different paramagnetic centers differs essentially. 
Therefore, even at a full polarization of the spins, local dipole fields differ strongly 
at different centers, i.e., a spread of local fields (dipole ESR line broadening) is 
preserved even at a complete polarization of spins. However, the spin polarization 
manifests itself in a shift of the line centre. 

Averaging of Dipole-Dipole Interactions by Random Spin Reorientations 

Random spin flips modulate dipole-dipole interactions, averaging them (6-11). 
Let us analyze the way the random spin flips affect the FI signal and dipole ESR 
line contour. 

First of all consider a pair of spins. The frequency of the spin considered is either 
-A/2 or +A/2 shifted by the partner, depending on the orientation of the latter. 
Random spin flips result in exchange between these two frequency shifts. At a 
sufficiently high reorientation rate, when W > IAI, the spectrum becomes exchange- 
narrowed, two lines at the frequencies + A/2 are replaced by one with an average 
frequency shift equal to 

Au(r) = -(A(r)/2) tanh (gpH0/2kT). t481 

In the general case, the pair problem is solved by Eq. [39]. At a fast exchange, 
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FIG. 3. Time evolution of JLID for different spin-polarization degrees: (1) p = 1, (2) p = 0.8, (3) 
p = 0.6, (4) a = 0.4, (5) a = 0. At sufficiently long times the curves conforming top # 0 are asymptotically 
described by Eq. [53] (shown by dashed lines for p = 0.4 and 0.6). 

W 9 IAl, Eq. [39] yields for the time range t > T1 

Re{wdtlr>) c exp[-M&)T,t] cos (Am(r). t). ]491 

Here TI is the spin-lattice relaxation time equal to (20) 

T, = l/W(l + q); [501 

M2 is the spin frequency shift dispersion due to the dipole-dipole interaction with 
a partner, 

M2 = A2( 1 - tanh2 (gpH,/2k7))/4. ]511 

Note that Eq. [51] includes the same temperature factor as Eq. [47]. 
In the limit of a very high W, Eq. 1491 yields 

Re{ w&b->> = cos (Au(r). t). [521 

This result can be definitely interpreted. Under exchange narrowing the spin con- 
sidered precesses in the average field of the partner. If the condition of fast exchange 
is met for all partners in the species, by substituting Eq. [52] into Eq. [20a] we 
obtain the following asymptotic relation for the FI decay kinetics ( W --+ co) 

vn(t) = exp(-Aw,,21tl tanh (gpH,/2kT)}. ]531 

At a high temperature, when the spin polarizations are negligible, the FI expo- 
nential decay [53] does not manifest itself. In this case (T - co, q - I), Eq. [49] 
gives 

Re{+dW) = exp{ -A*t/S W}. ]541 

The contribution from the dipole-dipole interaction with all centers, according to 
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Eqs. [54] and [20a] obeys the equation obtained also in Ref. (4) 

Q-I(t) = exp(-a(t)‘/*), [551 

87r(n)"* 
a = 901/2 ~2/32h-‘C(T~)‘~2, T, = l/2%‘. 

In the general case of arbitrary temperature and random spin flips, to analyze the 
FI decay kinetics one has to make numerical calculations by either Eqs. [2Oa] and 
[39] or Eq. [2Oa]. The FI decay kinetics can be expressed via a universal function 
&in which depends on two dimensionless parameters: tIV( 1 + q) = t/T, and the 
degree of spin polarization, 

p = tanh (g/3Ho/2kT). 

According to Eq. [20], the FI signal can be written as 

+dt) = exp{ -2AwJ,Jdp, t/TO}. [571 

Figure 3 shows numerical calculations of J HD. Curve 1 coincides with Eq. [41] 
and conforms to the case of a complete spin polarization; curve 5 corresponds to 
the high-temperature limit [55 1. For transient temperatures the curves of Fig. 3 
follow Eq. [53] at t + TI. The tangent of the slope of the straight line at t % Tl 
varies proportionally to the polarization degree p. 

At t < T, 
JnD = t/2T, - (l/8)(1 - p*>(t/T1)*. 

Figures 4 and 5 illustrate the way random spin flips affect the dipole line contour. 
The dipole contour is seen to be narrowed by random spin flips. In the high-tem- 
perature limit (Fig. 4, see also (4)) the dipole contour shape cannot be described by 

1.2 

3 
A 

0.0 1 
-2 -1 ’ 1 2 

WAo,h 

FIG. 4. Plots of the dipole contour of ESR lines, expressed through dimensionless variables in the high- 
temperature limit, vs the spin-lattice relaxation time. Different curves conform to different values of the 
parameter R = Aw,,*T,. (1) R + 00 static limit, the Lorentz distribution, (2) R = 1, (3) R = 0.5. As the 
spin relaxation flip rate increases, the line narrows at R FT 1. 
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FIG. 5. Plots of the dipole contour vs the spin-lattice relaxation time (R = Aw,,zT,) at p = 0.6: (1) 
R - m,(2)R = 1, (3) R = 0. 

the Lorentz function [42]: at the centre the line is narrower than the Lorentz func- 
tion, and at the wings it falls as the Lorentz distribution with Awr,~ half-width. As 
the relaxation flip rate increases, the line half-width at half-height tends to zero. The 
situation differs for falling temperature. As the random flip rate grows, the line half- 
width goes to (see Eq. [53]) 

As,,, = Awl,,, tanh (gpH,/%kT) = pAwI, . [581 

At the center the narrowed line obeys the Lorentz distribution with A&,, half-width, 
at the wings it decreases gradually in line with the Lorentz distribution with AwlI 
half-width (see Fig. 5). Remember that the line contour is obtained by the Fourier 
transformation of the Fl decay. 

CONTRIBUTION FROM DIPOLE-DIPOLE INTERACTION TO THE ESE SIGNAL DECAY 

Static Limit 

It is well known that in the static limit (IV - 0) dipole-dipole interactions con- 
tribute to the ESE signal decay only by the mechanism of so-called instantaneous 
diffusion (6-11). 

Equations [29] and [20a] yield 

v&27) = exp[-( sin2 $)),Awr12.2T], [591 

which coincides with the known (9-11) expression for the ESE signal decay by the 
instantaneous diffusion mechanism at high temperatures. Since the dipole broad- 
ening for centers with S = l/2 is temperature independent, the contribution from 
the instantaneous diffision mechanism does not depend on the spin polarization 
either. In Eq. [59], (. . s)~ means averaging over the rotation angles of spins with 
different resonance frequencies (9-11). 
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The Case of Very High W 

In the other extreme case of very high rates of random spin flips, dipole-dipole 
interactions between centers contribute to the ESE signal decay only by the mech- 
anism of spectral diffusion (6-9). At a high W (W > IAI, WT > 1) we obtain from 
Eq. [401 

t&2+) w exp{ -A2(r)( 1 -p+/2 W( 1 + 4)). t601 
Averaging over all possible paramagnetic center spatial distributions according to 
Eq. [20a] gives 

uESE(27) a exp(-a,(T)‘/2), 1611 
where 

8~(2n)"~ 
a1 = 9(3)1/2 j2/32h-1C[T,( 1 - P~)]“~, T, = l/W(l + q). 1621 

Hence, the spin polarizations are seen to decrease the contribution from spectral 
diffusion to the spin dephasing, a, --+ 0 at p - 1. At a high W the d-d interaction 
contribution to the ESE signal decay is determined by the dispersion of local fields 
(see Eqs. [51] and [60]), a fact which results in the term 1 - n2 in Eqs. [60]-[62] 
(cf. Eq. [47]). 

Arbitrary Temperatures and Arbitrary W 

In the general case, the ESE signal decay due to d-d interactions follows Eqs. 
1201 and [40]. The phase relaxation of a definite spin depends on the angles of spin- 
partners rotations induced by the microwave pulses forming ESE signals (see Eq. 
[41]). To begin with, consider a system of two species of spins, A and B. Let us 
assume that microwave pulses affect only spins A, and find the contribution of spins 
B to the spin A echo signal decay. 

This situation often occurs in ESE experiments (6-11). Moreover, just this case 
is of great interest in investigations of spin-polarization effects on phase relaxation 
(12, 13). The contribution of a spin B to the echo signal of a spin A is described 
by Eq. [40], the rotation angles of the spin B assumed to be zero. As a result, 

2)*(2T]r) = (l/2) exp(-T/Ti){cosh (~R+T) + cos (2X7) + [(TT2 + A2)/4(R$ + R?)] 

X (cash (2R+T) - cos (2-T)) + [T;‘/(R: + R?)](R+ * sinh (~R+T) 

+ R- sin (2R-T)) + Ap(R- sinh (~R+T) - R, sin (2R-T))/@ + R?)}. [63] 

In the case of a uniform distributions of B spins in the sample, their total contribution 
to the A ESE signal decay is described by the expression obtained by substituting 
Eq. [63] into Eq. [20a], 

where 
%&7) = exp[-2*P2fi-‘CTlJ&, T/TJI, [641 

JB(p, T/T,) = g-2p-2hT~1 s d3r(l - %(2T]r)). WI 

The function JB depends on two dimensionless parameters: T/T~ and the degree of 
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0 10 20 30 40 0 10 20 30 40 

r/ T, r/ T, 

FIG. 6. Time evolution of JB (a) and the reduced JJ(l - p’)“’ (b) at various degrees of B spin 
polarization: (1) p = 0, (2) p = 0.6, (3’) p = 0.9, (4) p = 0.95, (5) p = 0.99. 

B polarization, p. At p - 0, Eqs. [64] and [65] coincide with the results of theory 
of phase relaxation by the spectral diffusion mechanism obtained in the high-tem- 
perature limit (see, e.g. (II)). At Ti - co, JB - 0, at r, - 0 Eq. [64] turns into 
Eq. [61]. At a complete spin polarization (p - l), JB - 0. At intermediate polar- 
izations of B spins (0 < p <: l), JB is calculated numerically (see Fig. 6a). Analysis 
of the curves shows that at moderate spin polarizations, when p Q 0.5, the following 
approximate relation holds at any T/T, (see Fig. 6b): 

JB(P, 7/T,) = (1 - p*)“*Jda = 0, ~/TI). [661 

As r/T, - co asymptotic relation [66] must hold at any p; however, this ap- 
proximation is achieved the later, the higher the spin polarizations (see Fig. 6b). In 
general, as expected, the polarization of B spins reduces their contribution to the 
ESE signal decay. 

Let us consider a general case of spin excitation by microwave pulses. The con- 
tribution from dipole-dipole interactions to the ESE signal decay is described by 
the equation 

v&27) = exp{ -g?2@2hP’CTl[JB + (sin* 7) gJAo 

($2) ($0 ($2) 
+ sin* z + 2 sin* 1 COS* y 1671 

where 

JAO = (1/2)g-*p-*ti T;’ exp(-T/T,) 

x s d3r[A2/2(R: + R?)](cosh (2R+7) - cos (2X7)), [68] 
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FIG. 7. JAo(7/T,) at various polarization degrees. Dashed line is the asymptote thereto all curves tend 
at T/T, - 0, it corresponds to the static limit [59]. 

JAI = (p/2)gP2pA2fi T;’ exp(-r/T,) 

X s d3r[A/(R: + R?)](K sinh (~R+T) - R, sin (2R-7)). [69] 

Here (. . * )$ means averaging over the rotation angles of spins with different 
resonance frequencies (9-11). 

Numerical calculations of (sin2 (o/2)), are reported in Ref. (II). In extreme cases, 
Eq. [67] is much simpler. In the static limit (W = 0), JB = JAI = 0 and Eq. [67] 
reduces to Eq. [ 591. In the high-temperature limit JAI becomes zero and JAo coincides 
with JA derived in phase relaxation theory at high temperatures (II). In the limit 
of fast spin flips JAo, JAI - (TL/7)JB and JAo, JAI can be neglected compared to JB. 

Figures 7 and 8 demonstrate time evolution of JAo and JAI for various polarization 

0 2. 5 5 7. 5 
Z/T, 

FIG. 8. JAI(+/T,) at various spin polarization degrees. 
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degrees. It is seen that JAo and JAI pass through a maximum with increasing 7/T,, 
and equal zero at T/T, - co. The maximum values of these functions increase with 
the spin polarization, at p - 1, (Jao)max = (Ja,)max = 47r2/9(3)“2. Note that at 
p -+ 1, JB -+ 0 and the ESE signal decay is contributed to mainly by JAo and JAI. 

CONCLUSION 

A very interesting experiment concerned with measuring the contribution from 
dipole-dipole interactions to ESE signal decays at a high degree of spin polarization 
has been proposed and successfully realized (12, 13). A system of two paramagnetic 
center species with substantially different g values was studied, namely, Yb3+ 
(g,, = 1.054) and Tb3+ (gll = 17.777) ions. The decay of the ESE signal from ions 
with a lower g value (Yb3+ in the study cited) was measured, and the contribution 
from the dipole-dipole interaction with particles with a higher g value (Tb3’) was 
analyzed. In the case of Tb3+ in the range of helium temperatures, gpHo b kT, and 
the spins are highly polarized. It has been shown (12, 13) that polarizations of Tb3’ 
spins reduce the contribution to Yb3’ spin phase relaxation by the mechanism of 
spectral diffusion induced by a random modulation of dipole-dipole interactions 
between Tb3+ and Yb3+ due to random flips of Tb3+ spins. The method proposed 
(12, 13) opens the way for experimental investigations of effects of dipole-dipole 
interaction between paramagnetic centers at high-spin polarizations. 

Considerable scope for studying spin polarization effects upon ESR spectra shape 
is offered by construction of spectrometers with the operating magnetic field strength 
of some 5 X lo4 G (2-mm wavelength) (24). In such fields spin polarizations are 
significant at helium temperatures even for paramagnetic particles with g values 
equal to 2. The experimental results cited (12, 13) and the above theoretical con- 
siderations show spin polarizations to affect substantially the process of phase re- 
laxation induced by dipole-dipole interactions. Unlike the high-temperature situ- 
ation, at low temperatures random spin flips do not average the dipole ESR line 
broadening to zero (see Eqs. [53] and [58]). At the same time, random spin flips 
average to zero the contribution from instantaneous diffusion to the ESE signal 
decay (see Eq. [6 11) in the same manner as the high-temperature limit. Spin polar- 
izations reduce the contribution of dipole-dipole interactions to the irreversible spin 
dephasing by the spectral diffusion mechanism (see Figs. 6 and 7). In the general 
case of spin polarization, the ESE signal decay kinetics cannot be obtained from the 
corresponding kinetics in the high-temperature limit by a simple reduction of pa- 
rameters. Altshuler et al. (13) have made an attempt to realize this reduction. How- 
ever, this procedure can be applied only to description of the ESE signal decay limits 
at T/T, -+ co and the ESE decay in systems with low polarizations (see Eq. [66]). 

In the present work we considered a comparatively simple situation: a center with 
S = l/2 under the assumption that spin-lattice relaxation is the basic mechanism 
of random spin flips. In the future it would be desirable to consider particles with 
arbitrary spins and to investigate mutual spin flips. 
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