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S1 Theoretical DEER signal from a single A–B spin pair

Here we derive the 3-pulse DEER signal from a single A–B spin pair, without making the high-
temperature approximation. The recapitulates the derivation by Marko et al (Marko et al., 2013),
with adjusted notation. Assuming that the effect of the hyperfine interactions can be folded into the
resonance frequencies of the individual spins, the spin Hamiltonian contains terms for the Zeeman and
dipolar interactions

Ĥlab = ĤZ + ĤD (S1)

In the high-field limit, the Zeeman interaction term expands to

ĤZ = h̄ωAŜAz + h̄ωBŜBz (S2)

where h̄ is the reduced Planck constant, ωA and ωB are the resonance angular frequencies of the two
spins, and ŜAz and ŜBz are the spin operators. In the high-field limit, the dipolar interaction term is

ĤD = h̄ωABŜAzŜBz (S3)

where ωAB is the dipolar coupling angular frequency

ωAB = D
1− 3 cos2 θAB

r3AB

(S4)

with the dipolar constant

D =
µ0

4π

µ2
Bg

2
e

h̄
≈ 2π · 52.04MHznm3 (S5)

where µ0 is the magnetic constant, µB is the Bohr magneton, ge is g-value of the free electron, rAB is
the length of the interspin vector, and θAB is the orientation of interspin vector with respect to the
external magnetic field, B0.
In order to calculate the DEER signal, it is convenient to transform the Hamiltonian from the

laboratory frame to a rotating frame that is rotating with angular frequency ω around the z-axis,
where ω is the detection angular frequency

Ĥ = exp(iωt(ŜAz + ŜBz))Ĥlab exp(−iωt(ŜAz + ŜBz))− h̄ω(ŜAz + ŜBz) (S6)

This gives
Ĥ = h̄(∆ωAŜAz +∆ωBŜBz + ωABŜAzŜBz) (S7)

where ∆ωi = ωi − ω are the angular frequency offsets of the two spins (i = A, B).
Deriving the DEER signal requires propagating the density operator through the course of the

DEER experiment, beginning from the equilibrium density

σ̂eq =
exp(−βĤZ)/kBT

Z
(S8)
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where kB is the Boltzmann constant, T is the temperature, and Z = tr(exp(−ĤZ/kBT )) is the partition
function. In Eq. (S8), we have neglected the dipolar coupling term ĤD in the Hamiltonian, which is
much smaller than the two Zeeman terms. Next, we use

exp(−h̄ωiŜiz/kBT ) = 1̂ cosh

(
h̄ωi

2kBT

)
− 2Ŝiz sinh

(
h̄ωi

2kBT

)
= 1̂ci − 2Ŝizsi (S9)

where 1̂ is the identity operator, and ci and si are abbreviations for the cosh and sinh factors. With
this, we get

σ̂eq =
1̂cAcB − 2ŜBzcAsB − 2ŜAzcBsA + 4ŜAzŜBzsAsB

4cAcB

=
1

4
1̂ − 1

2
ϵAŜAz −

1

2
ϵBŜBz +

1

2
· ϵAϵB · 2ŜAzŜBz (S10)

where

ϵi = tanh

(
βh̄ωi

2

)
(S11)

is the thermal spin polarization of spin i.
The evolution in time of the density matrix is governed by the Liouville–von Neumann equation.

In its integrated form, it is
σ̂(t) = Û(t)σ̂eqÛ

†(t) (S12)

where Û is the total propagator of the DEER sequence and t is the pump pulse position. In the rotating
frame and with ideal pulses, the Hamiltonian is piece-wise constant, and therefore the propagator is
a composition of simple exponential operators:

Û(t) = e−iĤτe−iπŜAye−iĤ(τ−t)e−iπŜBye−iĤte−i(π/2)ŜAy (S13)

For describing the pulses, we assume ideal pulses that are selective for A or B spins, and we neglect
fast oscillating terms and internal interactions during the pulses. All pulses in Û(t) are set to have y
phase. A more visual way to represent the propagator is

U(t) =
(π/2)ŜAy−−−−−−→ Ĥt−−→

πŜBy−−−→ Ĥ(τ−t)−−−−→
πŜAy−−−→ Ĥτ−−→ (S14)

Before applying the propagator to the starting density based on Eq. (S12), we simplify the propa-
gator. This is possible due the simplicity of the rotating-frame Hamiltonian Ĥ, which only contains
terms with ŜAz and ŜBz that all mutually commute.

First, inserting the identity operator 1 = e+iπŜBye−iπŜBy to the right of the Ĥt propagator gives

U(t) = e−iĤτe−iπŜAye−iĤ(τ−t) e−iπŜBye−iĤte+iπŜBy︸ ︷︷ ︸ e−iπŜBye−i(π/2)ŜAx (S15)

Next, the bracketed propagator combination can be written as e−iĤBt, where ĤB is the transformed
Hamiltonian

ĤB = e−iπŜByĤe+iπŜBy = ∆ωAŜAz −∆ωBŜBz − ωABŜAzŜBz (S16)

This is possible since, in general, Ûe−iÂÛ † = e−iÛÂÛ†
.

Since Ĥ and ĤB commute (as both contain only z spin operators), we combine them into a single
propagator exponent. The total propagator now reads

Û(t) = e−îHτe−iπŜAye−i(Ĥ(τ−t)+ĤBt)e−iπŜBye−i(π/2)ŜAy (S17)

Inserting the identity operator 1 = e+iπŜAye−iπŜAy to the right of the Ĥ/ĤB propagator yields

Û(t) = e−iĤτ e−iπŜAye−i(Ĥ(τ−t)+ĤBte+iπŜAy︸ ︷︷ ︸ e−iπŜAye−iπŜBye−i(π/2)ŜAy︸ ︷︷ ︸ (S18)
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The propagator combination of the right bracket simplifies to e−iπŜBye−i(3π/2)ŜAy , since ŜAy and ŜBy

commute. The propagator combination of the left bracket can again be rewritten with the transformed
Hamiltonians:

Û(t) = e−iĤτe−i(ĤA(τ−t)+ĤABte−iπŜBye−i(3π/2)ŜAy (S19)

where
ĤA = e−iπŜAyĤe+iπŜAy = −∆ωAŜAz +∆ωBŜBz − ωABŜAzŜBz (S20)

ĤAB = e−iπŜAyĤBe
+iπŜAy = −∆ωAŜAz −∆ωBŜBz + ωABŜAzŜBz (S21)

After combining the adjacent exponential operators with the Hamiltonians in the exponent, we get

Û(t) = e−i(Ĥτ+ĤA(τ−t)+ĤABt)e−iπŜBye−i(3π/2)ŜAy (S22)

The sum of the Hamiltonian terms is

Ĥτ + ĤA(τ − t) + ĤABt = 2∆ωB(τ − t)ŜBz + ωABt · 2ŜAzŜBz (S23)

Since ŜBz and 2ŜAzŜBz commute, we can separate the propagator into two, one for each term. With
this, the final expression for the total propagator is

Û(t) = e−iωABt 2ŜAzŜBze−i2∆ωB(τ−t)ŜBze−iπŜBye−i(3π/2)ŜAy (S24)

or, more visually,

Û(t) =
(3π/2)ŜAy−−−−−−→

πŜBy−−−→ 2∆ωB(τ−t)ŜBz−−−−−−−−−→ ωABt 2ŜAzŜBz−−−−−−−−−→ (S25)

Next, to get the final density σ(t), we apply this propagator to the starting density from Eq. (S10):

σ̂eq =
1̂
4
− ϵA

2
ŜAz −

ϵB
2
ŜBz +

ϵAϵB
2

· 2ŜAzŜBz
(3π/2)ŜAy−−−−−−→

1̂
4
+

ϵA
2
ŜAx −

ϵB
2
ŜBz −

ϵAϵB
2

· 2ŜAxŜBz
πŜBy−−−→

1̂
4
+

ϵA
2
ŜAx +

ϵB
2
ŜBz +

ϵAϵB
2

· 2ŜAxŜBz
2∆ωB(τ−t)ŜBz−−−−−−−−−→

1̂
4
+

ϵA
2
ŜAx +

ϵB
2
ŜBz +

ϵAϵB
2

· 2ŜAxŜBz
ωABt 2ŜAzŜBz−−−−−−−−−→

1̂
4
+

ϵA
2
ŜAx cos(ωABt) +

ϵA
2

· 2ŜAyŜBz sin(ωABt) +
ϵB
2
ŜBz

+
ϵAϵB
2

· 2ŜAxŜBz cos(ωABt) +
ϵAϵB
2

· ŜAy sin(ωABt) = σ̂(t)

(S26)

(Note that the ŜBz propagator has left the density unchanged.)
The echo signal is

V (t) = tr(ŜA+σ̂(t)) (S27)

The only two terms from the final density in Eq. (S26) that give a non-zero trace with ŜA+ are those
containing ŜAx and ŜAy, since tr(ŜA+ŜAx) = 1 and tr(ŜA+ŜAy) = i. Therefore, only these terms
survive:

V (t) =
ϵA
2

cos(ωABt) + i
ϵAϵB
2

sin(ωABt) =
ϵA
2

[
cos(ωABt) + iϵB sin(ωABt)

]
(S28)

Dropping the prefactor (which is absorbed into the overall amplitude factor V0), we get the final result

V (t) = cos(ωABt) + iϵB sin(ωABt) (S29)
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S2 Theoretical DEER signal from A-spins in a homogeneous distribution
of B-spins

For a sample with an A-spin in a uniform, random, spatial distribution of B-spins, the total sig-
nal is a product of all individual VAB signals from Eq. (S29), additionally averaged over all B-spin
configurations

Vinter(t) =

〈
NB∏
b=1

VAB(rb, t)

〉
(S30)

Here, NB is the number of B-spins in a configuration, rb is the vector from the A-spin to the bth
B-spin, and the angled brackets indicate an average over B-spin configurations. To arrive at this
product form, the dipolar couplings among B spins are neglected.
With the assumption that the positions of the B-spins are uncorrelated, the averaged product can

be replaced with the product of the averages.

Vinter(t) =

NB∏
b=1

⟨VAB(rb, t)⟩ (S31)

Additionally, with the assumption that all B-spins are equally distributed, all averages are equal and
independent of b, yielding

Vinter(t) = ⟨VAB(r, t)⟩NB (S32)

Defining a (large) spherical region SR with a radius R, Vinter(t) is obtained by calculating the signal
for all NB B-spins within SR and then taking the limit R → ∞

Vinter(t) = lim
R→∞

(⟨VAB(r, t)⟩R)NB (S33)

with
⟨VAB(r, t)⟩R = 1 + pB⟨cos(ωt)−1⟩R + iϵpB⟨sin(ωt)⟩R (S34)

based on Eq. (S29). The averages over the oscillatory terms are

⟨cos(ωt)−1⟩R =
1

VR

∫
SR

dr
(
cos(ω(r)t)− 1

)
≡ 1

VR
CR(t) (S35)

⟨sin(ωt)⟩R =
1

VR

∫
SR

dr sin(ω(r)t) ≡ 1

VR
SR(t) (S36)

where VR = 4π
3 R3 is the volume of the sphere. The integrals CR(t) and SR(t) cannot be evaluated

analytically, but if we take the limit R → ∞, the integrals give

C(t) = lim
R→∞

CR(t) = − 8π2

9
√
3
·D|t| (S37)

S(t) = lim
R→∞

SR(t) =
8π

27

[
3 +

√
3 ln(2−

√
3)
]
·Dt (S38)

The derivations are given separately below in sections S2.1 and S2.2 below. Note that C(t) is propor-
tional to |t|, whereas S(t) is proportional to t. Using C(t) and S(t) instead of CR(t) and SR(t), Eq.
(S34) becomes

⟨VAB(r, t)⟩R = 1 + pB
C(t) + iϵS(t)

VR
(S39)

with a small error for finite R that will vanish once we take the limit R → ∞. Given a volume
concentration of B-spins of cB, the number of B-spins within SR is NB = cBVR, and the volume is
VR = NB/cB. Combining this with Eq. (S39) and inserting into Eq. (S33) gives

Vinter(t) = lim
R→∞

(
1 + pBcB

C(t) + iϵS(t)

NB

)NB

(S40)
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The limit R → ∞ corresponds to VR → ∞ and NB → ∞, so that we get

Vinter(t) = lim
NB→∞

(
1 + pBcB

C(t) + iϵS(t)

NB

)NB

= exp
[
pBcB(C(t) + iϵS(t))

]
(S41)

Inserting the expressions for C(t) and S(t) from Eqs. (S37) and (S38) yields the final expression

Vinter(t) = exp (−k|t|+ iαϵkt) = exp(−k|t|) · exp(iαϵkt) (S42)

where

k =
8π2

9
√
3
pBcBD ≈ 5.0651 pBcBD α =

√
3 + ln(2−

√
3)

π
≈ 0.13213 (S43)

S2.1 The cos integral

Here we solve the C(t) integral from Eq. (S37). Its explicit form is

C(t) =

∫ 2π

0
dϕ

∫ π

0
dθ sin θ

∫ ∞

0
dr r2

[
cos

(
Dt

r3
(1− 3 cos2 θ)

)
− 1

]
(S44)

Since the integrand is independent of ϕ, the ϕ integral reduces to a prefactor of 2π. Next, we simplify
the notation using the substitution z = cos θ∫ π

0
dθ sin θ =

∫ 1

−1
d cos θ =

∫ 1

−1
dz (S45)

Since the integrand is symmetric about z = 0, we can reduce the z integration interval to [0, 1] and
prepend a factor of 2. The integral now is

C(t) = 4π

∫ 1

0
dz

∫ ∞

0
dr r2

[
cos

(
Dt

r3
(1− 3z2)

)
− 1

]
(S46)

Next, we make the substitution x = r−3 with

dx

dr
= − 3

r4
dr = −r4

3
dx r2dr = −r6

3
dx = − 1

3x2
dx

∫ ∞

0
r2dr =

1

3

∫ ∞

0
x−2dx (S47)

Inserting this substitution gives

C(t) =
4π

3

∫ 1

0
dz

∫ ∞

0
dx

cos(Dt(1− 3z2)x)− 1

x2
(S48)

The integral of (cos(ax)−1)/x2 over x can be solved using integration by parts with u(x) = cos(ax)−1
and v′(x) = 1/x2. This gives∫

dx
cos(ax)− 1

x2
=

1− cos(ax)

x
− a

∫
dx

sin(ax)

x
(S49)

The first term is zero for both x = 0 and x = ∞, so that we get∫ ∞

0
dx

cos(ax)− 1

x2
= −a

∫ ∞

0
dx

sin(ax)

x
= −a · π

2
sgn(a) = −π

2
|a| (S50)

This gives

C(t) = −2π2

3
|Dt|

∫ 1

0
dz |1− 3z2| (S51)

Evaluating the remaining z integral gives∫ 1

0
dz |1− 3z2| =

∫ 1/
√
3

0
dz (1− 3z2) +

∫ 1

1/
√
3
dz (3z2 − 1) =

2

3
√
3
+

2

3
√
3
=

4

3
√
3

(S52)

so that we finally get

C(t) = −2π2

3
|Dt| · 4

3
√
3
= − 8π2

9
√
3
·D|t| (S53)

where we have also used the fact that D is positive.
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S2.2 The sin integral

Next, we solve the integral S(t) from Eq. (S38). This turned out to be somewhat involved. The
explicit form is

S(t) =

∫ 2π

0
dϕ

∫ π

0
dθ sin θ

∫ ∞

0
dr r2 sin

(
Dt

r3
(1− 3 cos2 θ)

)
(S54)

Again, the ϕ integral adds a prefactor of 2π. Applying the same cos θ → z and 1/r3 → x substitutions
as for C(t) gives

S(t) =
4π

3

∫ 1

0
dz

∫ ∞

0
dx

sin
(
Dt(1−3z2)x

)
x2

(S55)

As a result of the r → x substitution, the integrand now diverges for x → 0. Therefore, we need to be
cautious and write the overall integral in terms of a limit:

S(t) =
4π

3
lim
u→0

∫ 1

0
dz

∫ ∞

u
dx

sin
(
Dt(1−3z2)x

)
x2

(S56)

(In principle, we could already write the initial integral expression with a limit rmax → ∞.) Depending
on t and z, the argument of the sin function can be positive or negative. To solve the x integral, we
need a non-negative argument. Utilizing sin(ξ) = sgn(ξ) sin |ξ|, we get

S(t) =
4π

3
sgn(Dt) lim

u→0

∫ 1

0
dz sgn(1−3z2)

∫ ∞

u
dx

sin
(
|Dt||1−3z2|x

)
x2

(S57)

The integral of sin(ax)/x2 over x can be solved using integration by parts with u(x) = sin (ax) and
v′(x) = 1/x2. For a ≥ 0, this gives∫

dx
sin(ax)

x2
= aCi(ax)− sin(ax)

x
(S58)

with the cosine integral function Ci(·), defined only for non-negative arguments. For x → ∞, both
terms evaluate to 0, so that the overall integral can now be written as

S(t) =
4π

3
sgn(Dt) lim

u→0

∫ 1

0
dz sgn(1−3z2)

[
sin(|Dt||1−3z2|u)

u
− |Dt||1−3z2|Ci(|Dt||1−3z2|u)

]
(S59)

We can pull |Dt| out of the integral and replace |Dt|u → x. We get

S(t) =
4π

3
Dt lim

x→0

∫ 1

0
dz

[
sin((1−3z2)x)

x
− (1−3z2)Ci

(
|1−3z2|x

)]
(S60)

The divergence of the integrand is due to the cosine integral function. To deal with this, we rewrite
it using

Ci(ξ) = γ + ln(ξ) + Cin(ξ) (S61)

where γ is Euler’s constant and Cin(·) is the modified cosine integral function which satisfies Cin(0) =
0. The full integral is now

S(t) =
4π

3
Dt lim

x→0

∫ 1

0
dz

[
sin((1−3z2)x)

x
− (1−3z2)

[
γ + ln |1−3z2|+ lnx+Cin(|1−3z2|x)

]]
(S62)

The only term in the integrand that diverges for x → 0 is (1−3z2) lnx. However, the z integral over
this term is zero, since the z integral over (1−3z2) is zero. Therefore, we can drop the lnx term
from the integrand. The divergent term along x disappears due to symmetry along z! A similar
argument allows us to drop the (1−3z2)γ term as well. All remaining terms in the integrand are finite
everywhere and converge for x → 0, so we can swap the x limit and the z integral. (In more technical
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terms, the integrand converges uniformly over the entire z interval, and we can apply the Lebesgue
dominated convergence theorem to interchange the x limit and the z integral.)

S(t) =
4π

3
Dt

∫ 1

0
dz lim

x→0

[
sin((1−3z2)x)

x
− (1−3z2) ln |1−3z2| − (1−3z2)Cin(|1−3z2|x)

]
(S63)

For x = 0, the first term becomes (1−3z2), which integrates to zero. The third term equals zero for
x = 0 (since Cin(0) = 0). We are left with

S(t) =
4π

3
Dt

∫ 1

0
dz (3z2−1) ln |1−3z2| (S64)

Evaluation of this with Mathematica yields

S(t) =
8π

27

[
3 +

√
3 ln(2−

√
3)
]
Dt (S65)

S3 Numerical calculations

S3.1 Monte Carlo simulation of intermolecular signal

To verify the analytical expression of the polarized background signal in Eq. (S42) and to investigate
how it depends on neighboring spins, we performed Monte Carlo simulations. We start with Eq. (S30),
and use an average over a finite number Nconf of configurations and a product over a finite number
NB of B-spins:

Vinter(tj) ≈
1

Nconf

Nconf∑
c=1

NB∏
b=1

VAB(rb, tj) (S66)

with the analytical signal Eq. (S29) for VAB(rb, tj). tj is a set of time points over which Vinter is
evaluated.
The input parameters to this Monte Carlo model are the polarization ϵ, the pump efficiency pB,

the B-spin concentration cB, the number NB of B-spins per configuration, and the number Nconf of
configurations. For each configuration, an A-spin is placed at the origin of a spherical volume of radius
R = (3NB/4πcB)

1/3, and NB B-spins are placed at random uniformly distributed positions rb within
the sphere using

rb = R
u
1/3
r√

n2
x + n2

y + n2
z

nx

ny

nz

 (S67)

where ur is drawn from the standard uniform distribution U(0, 1), and nx, ny, and nz are drawn from
the standard normal distribution N (0, 1).

Figure S1 shows Monte Carlo simulations as a function of the number of excited B-spins in a
configuration. The signal predicted analytically is captured perfectly. These simulations provide
interesting insight into B-spin contributions to the decay. Remarkably, it is sufficient to consider
configurations with only a single excited B-spin (pBNB = 1) in order to accurately recapture the
initial 20% drop of the signal from its value at time zero. Both in-phase and out-of-phase signals are
close to converged with 5 excited B-spins (pBNB = 5). With 50 excited B-spins, the entire decay
curve is visually indistinguishable from the analytical model. These simulations show that the decay
is dominated by just a few excited B-spins that are closest to the A-spin.

S3.2 Nearest-neighbor distance distribution

In a uniform three-dimensional distribution of spins with number concentration c, the distribution of
nearest-neighbor distances rnn is given by (Berberan Santos, 1985)

P (rnn) = 4πc r2nnexp

(
−4

3
πc r3nn

)
(S68)
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Figure S1: Monte Carlo model simulating the inter-molecular DEER signal Vinter for maximum po-
larization (ϵ = 1) and pB · cB = 1 mM, assuming a sample with one A-spin and 75,000
configurations of a varying number NB of uniformly distributed B-spins. Changing pB · cB
only affects the time scale. The analytical signals are shown as black dashed lines.
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Figure S2: Nearest-neighbor distributions of spins in uniform three-dimensional distributions with
overall concentrations 1 mM and 0.1 mM, based on Eq. (S68). The modes are at 6.4 and
13.8 nm, respectively.

The mode of this distribution is at (2πc)−1/3 ≈ 0.542 c−1/3, and the mean is at Γ(1/3)/(36πc)1/3 ≈
0.554 c−1/3. The nearest-neighbor distance distributions for c = 1 mM and 0.1 mM are shown in
Fig. S2.
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S4 Fit parameters

This section contains all of the fit parameters for the Q-band and G-band monoradical data (Table S1)
and the G-band biradical data (Table S2) at various temperatures. Fitting was done using Eqs. (14)-
(16), defined in the main text, with MATLAB’s lsqcurvefit. All fit parameters are listed with the their
95% confidence intervals.

Table S1: The monoradical data were fit according to Eq. (14), where the fit parameters are the decay
rate constant k, the overall signal amplitude V0, the zero-time shift t0, and an additional
phenomenological fit factor qB.

Q-band 11 K 50 K

Parameter Fit value 95% confidence values Fit value 95% confidence values

k 0.2784 0.2773, 0.2794 0.1639 0.1633, 0.1646
V0 1.0064 1.0048, 1.0081 1.0051 1.0042, 1.0060
t0 3.4343 3.4308, 3.4378 2.4444 2.4414, 2.4474
qB 2.0587 1.8266, 2.2909 0.5769 -0.2485, 1.4023

G-band 5 K 40 K

Parameter Fit value 95% confidence values Fit value 95% confidence values

k 0.0632 0.0619, 0.0645 0.0566 0.0566, 0.0585
V0 1.0057 1.0030, 1.0085 1.0020 1.0000, 1.0041
t0 3.8749 3.8531, 3.8967 3.9496 3.9309, 3.9682
qB 3.5640 3.4294, 3.6985 0.7387 0.1355, 1.3419

Table S2: The biradical data were fit according to Eqs. (14)-(16), where the fit parameters are the
inversion efficiency pB, the decay rate constant k, overall signal amplitude V0, the zero-
time shift t0, additional phenomenological fit factor for the intramolecular signal qF and
intermolecular signal qB, the peak position r0 and the standard deviation w.

G-band 5 K 50 K

Parameter Fit value 95% confidence values Fit value 95% confidence values

pB 0.0328 0.0294, 0.0362 0.0329 0.0308, 0.0349
k 0.0189 0.0181, 0.0196 0.0192 0.0187, 0.0196
V0 0.9987 0.9957, 1.0016 1.0016 0.9998, 1.0034
t0 0.4604 0.4406, 0.480 0.1648 0.1524, 0.1772
qF 1.0341 0.6547, 1.4135 0.0000 -1.9133, 1.9133
qB 4.1766 3.8969, 4.4563 0.5342 -0.4072, 1.4756
r0 3.7166 3.6603, 3.7728 3.8656 3.7892, 3.9420
w 0.0897 0.0515, 0.1280 0.2198 0.1620, 0.2775

S5 Experimental validation

This section contains the results of the various experiments conducted towards the aim of verifying
the observed signal and resolving any discrepancies with the theoretical predictions. Among these
experiments are pump–probe pulse excitation band overlap (Fig. S3), gain imbalance between the in-
phase and out-of-phase detectors (Fig. S4), signals recorded on and off the echo to observe resonator
background and phase instability (Fig. S5), and saturation recovery data (Fig. S7).

If there is a significant amount of pulse overlap, the pump pulse could partially excite A spins
(and vice versa). This could lead to additional contributions to the DEER signal from secondary
dipolar pathways (Fábregas-Ibáñez et al., 2022). The spectrum and pulse excitation profiles for the
experimental conditions in the monoradical experiments (6.42 T, observer freuqency 180.000 GHz,
pump frequency 180.050 GHz, pulse widths 58 ns) are shown in Fig. S3. Total excitation by the probe

9



PumpProbe
N

o
rm

. 
in

te
n

s
ity

 (
a

rb
. 

u
.)

1

0.8

0.6

0.4

0.2

0

Frequency (GHz)

179.8 180.0 180.2 180.4 180.6179.6

Figure S3: Frequency-swept spectrum (blue), converted from experimental field sweep, and excitation
profiles for the pump (orange) and probe (green) pulses. The field sweep data was obtained
for 1.0 mM solution of TEMPOL in 45:55 D2O:d8-glycerol at 50 K. Simulation parameters
match those used in the monoradical experiments (observer frequency 180.000 GHz, pump
frequency 180.050 GHz, pulse widths 36/58 ns, τ 500 ns, and repetition time 10 ms).
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Figure S4: Experimental DEER traces for a 1.0 mM solution of TEMPOL in 45:55 D2O:d8-glycerol,
measured at 180 GHz and 6.42 T at 5 K, run with no shift in detector phase (blue) and
90◦ shift (green). Experimental conditions are identical to those shown in the main text
for the monoradical data at 6.42 T and 5 K.

pulse is approx. 3.7% and the pump pulse is approx. 4.3%. The overlap between pulse excitation
profiles is approx. 2.7%. This is too small to create significant amplitudes in secondary dipolar
pathways. Experiments with varying pump–probe offsets between 40 MHz and 120 MHz showed
the same behavior (data not shown).
One possibility to get an overly intense out-of-phase component is that the second channel (out-of-

phase with the echo) has a higher gain than the first channel. To test for gain imbalance, multiple
traces of the monoradical data were recorded (Fig. S4). The first was run in the same manner as
the experiments shown in the main text (blue), the second with the detector phase rotated by 90
degrees (green). Although not completely identical, there is no substantial difference in the relative
amplitudes of the out-of-phase signals.
To verify that the observed out-of-phase signal is entirely due to the refocusing spins and not due

to instrumental offsets, two traces of the monoradical sample were recorded, the first being run in
the same manner as the experiments shown in the main text, the second recorded with the detector
window offset in time from the echo (Fig. S5. The data show that there is no slope in the out-of-phase
signal when recording off-echo, confirming that there is no instrumental offset or phase drift as a
function of pump pulse position. The data also reveal that the actual out-of-phase signal is much
noisier than the instrumental baseline obtained off-echo. This likely arises from some small phase
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Figure S5: Experimental DEER traces for a 1.0 mM solution of TEMPOL in 45:55 D2O:d8-glycerol,
measured at 180 GHz and 6.42 T at 5 K, run on echo (blue) and off echo (green). Experi-
mental conditions are identical to those shown in the main text for the monoradical data
at 6.42 T and 5 K.
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Figure S6: Experimental DEER traces for a 1.0 mM solution of TEMPOL in 45:55 D2O:d8-glycerol,
measured at 180 GHz and 6.42 T at 5 K, run in the forward direction (blue) and the reverse
direction (green). Experimental conditions are identical to those shown in the main text
for the monoradical data at 6.42 T and 5 K. The data were fit with Eq. (14) and are shown
with their 95% confidence interval in parentheses.

jitter in the instrument.
The detector phase drifts slowly over the (wall clock) course of the experiments. This could be a

possible contributor to the observed mismatch between experiment and theory. However, it can be
excluded because backwards and forward sweeps of t give approximately the same result (Fig. S6),
indicated by the identical fit factors (within 95% confidence). Regardless, the experiments were run
with the shortest feasible acquisition times while still obtaining sufficient signal-to-noise to eliminate
as much drift as possible.
To ensure that spin saturation was not occurring during experiments, a saturation recovery experi-

ment was conducted to select the repetition time (Fig. S7). From the data shown, a 500 ms repetition
time was used for all 5 K data shown.
The G-band setup typically utilizes a slower freezing method where the sample freezes after be-

ing placed inside the cold resonator. To ensure that the freezing procedure was not producing any
unwanted effects on the experimental signal, i.e. aggregation upon freezing, two field sweeps (normal-
ized) were obtained at 50 K for 250 µM biradical in d8 toluene with different freezing procedures. The
resulting spectra are shown in Fig. S8. The black trace shows the data for a sample that was frozen
inside the resonator and the red trace shows data for a sample plunge frozen in liquid nitrogen outside
the resonator. There is no significant difference.
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Figure S7: Saturation recovery experiment of a 1.0 mM solution of TEMPOL in 45:55 D2O:d8-glycerol
sample, measured at 180 GHz and 6.42 T at 5 K.
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Figure S8: Field sweeps for a 0.25 mM solution of the biradical in deuterated toluene, measured at
180 GHz and 6.42 T at 50 K, for a sample frozen inside the resonator (black) and plunge
frozen in liquid nitrogen (red).
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