
We thank the referees for their thoughtful comments and suggestions. 
Considering these comments, we made the following modifications: 
 
1. The abstract has been updated; 
2. The introduction has been updated; 
3. The results section has been updated; 
4. A section (Section 3.1) discussing the symmetry and equivalence between 
the density operator and the plotted surfaces was added; 
5. Discussions about how the visualization help us in understanding the ZULF 
J-spectra was added to section 3.2; 
6. A section (Section 3.2) comparing our generalized measurement-based 
visualization and DROPS approach was added; 
7. A step-by step instruction was added to appendix F. 
 
Please see below the detailed response to the referees’ questions. 
 

Referee #1 
 
The authors provide a new way of visualizing density matrix components during 
pulse sequences in multispin system using angular momentum probability 
surfaces. The approach appears to be superior to the previously described 
DROPS method. One component of the approach involves coupling angular 
momenta, but it seems that the actual visualization is not very intuitive to follow. 
Either way, it seems the authors provide some useful examples. I am wondering 
whether the authors could identify cases where this approach can produce 
some level of intuition that would exceed the level of intuition one would get 
from examining the spin components directly. 
 
We thank the referee for assessing our approach as superior to the previously 
described methods. One particular case where the presented approach may 
produce an enhanced level of intuition is the presented near-zero-field NMR 
experiment (Figure 5). Additional discussion is added to the revised version of 
the manuscript. Initial magnetization of two coupled spins (with gyromagnetic 
ratios g1 and g2) in high magnetic field is (g1*I1z + g2*I2z). This state can be 
presented as a sum of symmetric and antisymmetric components: 
0.5*(g1+g2)*(I1z+I2z) and 0.5*(g1-g2)*(I1z-I2z). Remarkably, both of these 
components can be detected by a magnetometer in ZULF NMR experiments. 
The first symmetric component corresponds to the orientation of a collective 
magnetic moment (I1z+I2z) and its visualization is related to an AMP surface 
presented by the Fig.6C (however, the surface represents probability and not 
exactly the measured property). This component typically corresponds to static 
magnetization at zero field. The experiment shown in Fig. 5C makes this 
component precessing with Larmor frequency 0.5*(g1+g2)*Bx upon application 
of the magnetic field Bx. The second component of decomposition represents 



a zero-quantum coherence (I1z-I2z) which is directly detectable by the 
magnetometer. Intersection of the plotted surface with any axis is a direct 
representation of a measured signal by a magnetometer along that axis. 
 
Changes made to the manuscript: None. 
 
Referee #2 
 
The paper describes a visualization tool for the representation of density 
operators in multiple-spin systems. The approach is inspired by the DROPS 
software of Glaser and co-workers, and shares with that work most strengths 
and weaknesses. The strength is a graphical representation which might 
possibly lead to a helpful visualization of complex spin dynamics, sidestepping 
the need for complex mathematics, and possibly help inspire new procedures 
or give new insights. The main weakness is that although the tool allows a pretty 
graphical representation of the mathematics, it does not replace the 
mathematics, at least not as far as I can see. So the result seems to be pretty 
graphics (which I am all for) but not with evident real utility, in contrast to the 
Bloch vector picture, from which many NMR effects and experiments have been 
derived. So I am not yet convinced of the utility of this representation. 
 
Authors’ reply: We thank the referee for the critique. We note that the 
generalized measurement-based visualization approach provide us with 
valuable information which is not easy to grasp through direct observation of 
numerical values of the density-matrix elements. First, the action of global 
rotations applied to the density operator is directly reflected by the rotations of 
the plotted surfaces (see Fig. 3). Second, there is a close relationship between 
the density matrix coherence and the symmetries of the plotted surfaces (see 
Fig. 4). Third, our visualization allows one to quantitively understand the 
measured ZULF NMR spectrum by looking at the intersection of the surface 
with an axis representing sensitive direction of a magnetometer. As an 
example, the ZULF J-spectrum of an AX system is now pictorially explained 
through our visualization. Specifically, we explained the small asymmetry of the 
doublet centered at J which is not easy to grasp through the product operator 
formalism. 
 
Changes made to the manuscript: The Section 3.1 was added to discuss in 
detail the rotational and symmetry properties of the visualized surfaces. 
Additionally, the ZULF section (3.2) was updated to discuss direct applicability 
of the plotted surface for assessing the measured ZULF NMR signal. 
 
Furthermore I cannot see exactly how it works, and the authors do not help 
since they choose a mathematically dense exposition which is very hard to 
follow, right from the beginning. Despite my best efforts I cannot understand 



equation 1 and the following equations. It may be that the terms used by the 
authors are self-evident to the atomic physics community but I suspect that 
most readers of this journal will, like myself, struggle greatly with it. For this to 
work the authors must make far greater efforts to express themselves in 
language comprehensible to us mere magnetic resonance mortals. What on 
earth is the "block (Fk, Fk)"? Scientists on the same level of mathematical 
physics as myself will need to be led far more slowly through this material, using 
helpful simple examples on the way. 
 
Authors’ reply: We thank the referee for the feedback regarding our work. We 
significantly improved the text by simplifying some mathematical notations and 
by using terminology which is more familiar to the NMR community. In simple 
words, our visualization is now performed by plotting measurements with zero-
quantum Hermitian operators rotated along various directions. 
 
Changes made to the manuscripts: Introduction, Results, and Discussion 
sections were modified in multiple places to incorporate better explanation of 
terminology and to include simple examples using spin-1/2 pairs. The 
Appendix F now includes step-by-step implementation of the visualization 
making it easier to understand. 
 
In addition the authors introduce the term "angular momentum coherence 
(AMC)". I suspect that the term coherence is used here to mean something very 
different from its standard usage in magnetic resonance, as defined by Ernst 
and co-workers (an off-diagonal density operator term, when written in the 
Hamiltonian eigenbasis). I am not sure though since I cannot follow the authors' 
meaning. In general I do not think a redefinition or loose usage of this 
fundamental term is advisable. 
 
Authors’ reply: We thank the referee for the critique. Despite the visualized 
coherences were indeed off-diagonal elements of the density operator written 
in the total angular momentum basis (i.e., Hamiltonian eigenbasis at zero 
magnetic field), we agree that excessive use of the “coherence” terminology 
may not add additional value to the paper. For this reason, we abandon the 
term AMC (angular momentum coherence) surfaces in the updated version of 
the paper and refer to the visualized surfaces directly via the measurement 
operators. 
 
Changes made to the manuscript: Multiple changes made to the text to avoid 
AMC terminology. 
 
In summary I am sympathetic to the aims of this paper but find the presentation 
impossible to follow. In addition, I am far from convinced of its usefulness, but 
recognise that it could be of value if explained well enough and made 



sufficiently accessible. 
 
Authors’ reply: we thank the referee; the text was significantly improved. 
Changes made to the manuscript: multiple changes of the text, see above. 
 
On the issue of accessibility, I agree with another referee that it is no longer 
acceptable, for work of this kind, to say that the code is available on request. 
 
Authors’ reply: We thank the referee for the comment. However, the statement 
“The software code for the graphics shown in this paper is available from the 
authors on reasonable request” was a direct copy (except deletion of the word 
reasonable) from the following article published in Magn. Reson. (see 
https://mr.copernicus.org/articles/2/395/2021/). Nonetheless, we gladly provide 
the code in the revised version of the manuscript. 
 
Changes made to the manuscript: the text was updated to “The software code 
for the graphics shown in this paper is available in Supporting Information.” 
 
A further comment: The article emphasizes the total spin angular momentum 
quantum number (denoted F, I believe). Off-diagonal density operator elements 
spanning states with different values of F appear to be called "angular 
momentum coherences" (AMCs). This nomenclature and analysis might be 
appropriate for atomic physics, where the Hamiltonian has isotropic, or near-
isotropic symmetry. However this situation is rarely encountered in magnetic 
resonance of bulk matter, since we hardly ever deal with isotropic systems. 
Trivially, the application of a strong magnetic field breaks isotropic symmetry 
(leading, amongst other things, to the Zeeman effect, upon which most 
magnetic resonance is based). Even the solution NMR of isotropic liquids does 
not involve an isotropic Hamiltonian. Very often, chemical shift differences and 
other interactions break the symmetry further. In most cases these are not small 
perturbations but conpletely break the isotropy of the spin Hamiltonian. There 
are rare exceptions, such as zero-field NMR. Since high-field NMR almost 
always uses Hamiltonian eigenstates that do not have well-defined values of F, 
I do wonder what utility this diagrammatic approach might have. Furthermore, 
although the concept of AMC's "angular momentum coherences" might 
possibly mean something in atomic physics, I suspect that it has no, or little, 
relevance to the vast majority of magnetic resonance experiments, and 
probably conflicts with the conventional use of the term coherence in magnetic 
resonance - namely a coherent superposition of Hamiltonian eigenstates. 
 
Authors’ reply: We thank the referee for the critique. We removed terminology 
of the AMC surfaces and now clearly point out that the method is of utility when 
total angular momentum basis is a convenient basis for describing NMR 
experiments. All three examples from the paper fall into that category. 



 
Changes made to the manuscript: the abstract and the Results section were 
updated to emphasize that the presented approach “finds particular utility when 
the total angular momentum basis is used for describing the Hamiltonian”. 
 
I think the article will not be appropriate for the magnetic resonance community 
unless these sharp differences between the atomic spectroscopy and bulk 
magnetic resonance contexts are highlighted more clearly. 
 
Authors’ reply: We disagree with the referee, but we significantly improved the 
paper to make it more accessible for the magnetic resonance community.  
 
Changes made to the manuscript: the text was modified in multiple places. 
 
Referee #3 
 
The stated aim of the manuscript is to extend the concept of angular momentum 
probability (“AMP”) surfaces (which have been shown to be useful in the 
understanding of atomic physics experiments) by so-called angular momentum 
coherence (“AMC”) surfaces. The authors show that this makes it possible to 
create three-dimensional graphical representations of the density operator of 
coupled spins, which is illustrated for three concrete NMR pulse sequences. 
The authors also show that the suggested visualization is complete in the sense 
that the density operator can be reconstructed from a full set of “AMP” and 
“AMC” surfaces. The mathematical basis of the visualization approach appears 
to be solid (but I agree with the comments of other reviewers that the 
presentation of the derivations and proofs should probably be adapted to the 
readers of Magnetic Resonance). 
 
Authors’ reply: We thank the referee for assessing mathematical basis of our 
work as solid.  
 
Changes made to the manuscript: None. 
 
In my view, the most important weak point of the current manuscript is a 
thorough discussion of how the presented approach is related to similar 
visualization techniques that have been introduced before for the visualization 
of coupled spin/angular momentum dynamics. In particular, the readers (as well 
as the referees and the editor) will be interested to see what are truly novel 
aspects in terms of the visualization approach or novel applications and to give 
a proper account of closely related previous work. (Before I discuss these 
aspects in more detail below, I would like to point out that even if the 
visualization should be closely related (or even be essentially identical) to 
previously published approaches, I would still be in favor to publish a revised 



manuscript in which these points are considered, because as far as I see, the 
proposed visualization variant has not been applied to concrete NMR settings 
yet and it should be interesting and useful for the readers to see whether or not 
it could have advantages compared to other visualizations approaches.) 
 
Point #1: 
 
Before addressing the main point (the potential novelty of the  “AMC” surface 
representation), I would like to briefly discuss the established  “AMP” surface 
representation for uncoupled spins or atoms or molecules with arbitrary angular 
momentum (called F in the nomenclature used in the manuscript or J in other 
settings). I think the proper context in which this work should be placed is the 
general field of phase space representations, at least by referring to the books 
by W. P. Schleich, Quantum Optics in Phase Space(Wiley, New York, 2001),  
C. K. Zachos, D. B. Fairlie, and T. L. Curtright, Quantum Mechanics in Phase 
Space: An Overview with Selected Papers(World Scientific, Singapore, 2005).  
F. E. Schroeck, Jr., Quantum Mechanics on Phase Space(Springer, New York, 
2013).  T. L. Curtright, D. B. Fairlie, and C. K. Zachos, A Con- cise Treatise on 
Quantum Mechanics in Phase Space(World Scientific, Singapore, 2014 and the 
recent review by  R. P. Rundle and M. J. Everitt in Adv. Quantum Technol. 
2100016 (2021). For a general discussion and comparison of different families 
of phase-space representations, I refer in particular to the recent paper (B. 
Koczor, R. Zeier, S. J. Glaser, Continuous Phase-Space Representations for 
Finite-Dimensional Quantum States and their Tomography", Phys. Rev. A 101, 
022318, 2020) and references therein. 
 
In (Koczor et al., 2020), the focus is the family of so-called s-parametrized 
phase-space functions of which the widely-used Glauber P function (with s=1), 
the Wigner W function (with s=0) and the Husimi Q function (with s=-1) are 
special cases. The paper gives an overview how the plethora of different finite- 
and infinite-dimensional phase space representations are related and can be 
mapped to each other. In particular, see Fig. 2 of (Koczor et al., 2020) for a 
graphical overview, section III on phase-space representations for spins and 
Ref. 76 (Stratonovich, 1956), Ref. 58 (Argawal, 1981), Ref. 77 (Varilly et al., 
1989), and Ref. 57 (Brif et al, 1999). 
 
As far as I can see (but please correct me if I am wrong), the definition of the 
“AMP” representation appears to be identical with the finite-dimensional version 
of the Husimi Q function, which to my knowledge was first defined (under 
different names) in the early 1980s (Argawal, 1981). Surprisingly, the close 
connection (if not identity) of the “AMP” surfaces and the Husimi Q function for 
finite-dimensional quantum systems seems to have gone unnoticed – or at least 
has apparently not been pointed out in the previous literature (and I need to 
apologize that before reviewing the current manuscript, I was not aware of the 



“AMP” representation and therefore we had not explicitly mentioned it in 
(Koczor et al., 2020). 
 
So far, I have not received through the library the book (M. Auzinsh, D. Budker, 
S. Rochester, 2010) cited in the manuscript by Xu et al. and could not check if 
more details are given there on the relation between “AMP” surfaces and other 
phase-space representations. However, I found Simon Rochester’s thesis from 
2010 online, in which he points out that Chapters 2-5 of his thesis are largely 
identical to sections in the book, of which he is an author. In chapter 2 of his 
thesis (section 2.3.3), it is pointed out that the expansion of “AMP” functions in 
terms of spherical harmonics in Eq. 2.39 is “quite similar” to the Wigner function 
for angular momentum states given in Eq. 2.40 (from Dowling et al., 1994). I 
assume that this is also pointed out in the book (M. Auzinsh, D. Budker, S. 
Rochester, 2010). In this section of the thesis is also correctly stated that the 
essential difference between the expansion of the Wigner function and the 
“AMP” function is “that the contributions of polarization moments of various 
ranks are weighted differently”, resulting in the fact that “AMP” functions are 
non-negative. However, this is exactly the property of the Husimi Q function, 
which has the same weighting factors as the “AMP” function and the same 
physical interpretation, see also (Koczor et al., 2020), where the s-dependent 
weighting factors are explicitly given for the family of s-parametrized phase-
space functions (see Eq. 5 and Fig. 3). 
 
To summarize point #1, I think it would be very beneficial to point out in the 
paper that the “AMP” functions are in fact identical with the Husimi Q function 
and to add corresponding original references and Ref. (Koczor et al., 2020), in 
order to avoid potential confusion that can arise if different names are used for 
the same concept in closely related scientific communities and to clearly define 
the relation between Husimi Q/”AMP” functions and other members of the 
family of s-parametrized phase-space functions. It would also be interesting to 
state in the manuscript whether or not my impression is true that the definition 
of (Argawal, 1981) predates the (identical) definition of what is called the “AMP” 
function. 
 
Authors’ reply: We thank the referee for the constructive comment. The 
manuscript was improved by citing all mentioned literature. In addition, the 
equivalence between the AMPS and the Husimi Q-function was indeed 
established and the proof is now presented in the Appendix G. 
 
Changes made to the manuscript: Introduction section was modified to include 
citation of the highly relevant literature. Appendix G was added to show the 
proof of the equivalence between Husimi Q-function and AMP surface function. 
 
 



Point #2: 
 
This point concerns the question about the degree of novelty of the “AMC” 
surface representation. In the introduction, of the manuscript, the authors 
mention the “DROPS” representation introduced by (Garon et al., 2015), but 
state that “while the approach conveniently reflects the dynamics and symmetry 
of individual spins …, it is challenging to extract information from the drops 
representing systems of equivalent (or nearly equivalent) spins” and that the 
approach based on “AMP” and “AMC” surfaces is introduced “to address these 
limitations”. This section raises several issues: 
 
Point 2.1: To avoid any confusion of nomenclature, let me first address a minor 
point: 
 
In the introduction of the manuscript, it is implied that “spin drops” is equivalent 
to the “DROPS” representation, which is not the case and the two concepts 
should be clearly distinguished: 
 
“DROPS” is a general approach to visualize operators of general spin systems 
(coupled or not) that was introduced in the paper (Garon et al., 2015). In 
addition, the implementation of the “DROPS” representation and visualization 
(based both on the “LISA basis and the multipole basis”) in a Mathematica 
package is publicly available by downloading the file “DROPS_1.0.zip” at 
https://www.ch.nat.tum.de/en/ocnmr/media-reports/downloads. 
 
“SpinDrops” is the name of an interactive software package that is freely 
available for the community (see www.spindrops.org), which (in addition to 
other approaches) also provides the option to visualize the density operator (as 
well as Hamiltonians, propagators etc.) using a “DROPS” representation. 
 
Authors’ reply: We thank the referee for the comment. The manuscript was 
updated in multiple places to use the correct terminology (DROPS 
representation). 
 
Changes made to the manuscript: Multiple changes in the Introduction section. 
 
Point 2.2: 
 
The “DROPS” representation is a general mapping between operators and a 
set of spherical functions (so-called droplets). As pointed out in (Garon et al., 
2015), it is a Wigner-type (generalized) phase-space representations, which is 
applicable for arbitrary spin systems. In (Garon et al., 2015), the detailed 
mapping (which is based on symmetry-adapted spherical tensors) was 
explicitly presented for systems consisting of up to three coupled spins ½. More 



recently, explicit symmetry-adapted spherical tensors were constructed based 
on which systems consisting of up to six spins ½ as well as for coupled spins > 
½, based on which arbitrary operators in such systems can be represented and 
visualized (see Leiner, Zeier, Glaser, "Symmetry-Adapted Decomposition of 
Tensor Operators and the Visualization of Coupled Spin Systems", J. Phys. A: 
Math. Theor. 53, 495301, 2020). 
 
Both in (Garon et al., 2015) and in (Leiner et al, 2020), we focused on the 
“DROPS” representation based on the so-called “LISA” basis of spherical 
tensor operators (with defined linearity, subsystem, and auxiliary criteria, such 
as permutation symmetry), which is specifically constructed to visualize the 
individual spin contributions, which are relevant in most high-field NMR 
experiments. (In fact, due to the symmetry-adapted “LISA” basis, also 
magnetically equivalent spins can be efficiently represented). 
 
However, in addition to the “LISA” basis, in section VII and VIII, appendix F, 
Tables II, VI and VII, Figures 6 and 12 of (Garon et al., 2015), we also explicitly 
and extensively discussed “DROPS” representations based on so-called 
multipole spherical tensor basis operators, generalizing a visualization 
introduced by Merkel et al. in 2008 (Ref. 18 in Garon et al., 2015). I did not have 
a chance to make an in-depth comparison yet, but I appears that this “DROPS” 
representation based on the multipole basis is essentially identical (or at least 
very closely related) to the “AMC” functions. Note that in particular the form of 
the “multipole operators” corresponding to transitions between blocks with 
different total angular momentum quantum numbers defined in Eq. (F1) in 
appendix F of (Garon et al., 2015) appears to be identical to the corresponding 
definition of the spherical tensor operators in Eq. (A1) in appendix A of the 
manuscript by Xu, Budker and Barskiy on which the definition of the “AMC” 
surface functions is based. In fact, both the “multipole operators defined by 
(Garon et al., 2015) and the spherical tensor operators in Eq. (A1) of the 
manuscript by Xu et al. differ from the tensor operators in the “LISA” basis in 
not having a defined particle number (i.e., “linearity”) and inducing a different 
grouping into droplets. One (apparently trivial) difference seems to be that the 
droplets corresponding to transitions from “F_l” to “F_k” and from “F_k” to “F_l” 
are separately displayed in droplets in of (Garon et al., 2018) and (Merkel et al., 
2008), whereas they are merged in the manuscript by Xu et al, whereas 
droplets corresponding to zero-quantum phase phi=0 and phi=pi/2 are 
displayed separately. Another small difference is that (at least the droplets 
corresponding to the diagonal blocks in Fig. 1 are non-negative (corresponding 
to a Husimi Q function representing angular momentum pointing probabilities), 
whereas in the “DROPS” representation based on multipole operators, the 
droplets corresponding to the diagonal blocks can have negative values 
(corresponding to a Wigner function, representing the expectation values of so-
called axial tensor operators). However, as discussed above in point #1 (and 



as indicated in the thesis of Simon Rochester and also discussed in (Koczor et 
al., 2020)), it is straight-forward to transform between a Husimi Q and a Wigner 
W representation by simply changing the rank-dependent weighting factors of 
the polarization moments. 
 
To summarize point 2: It would be very helpful for the readers to clearly state 
how closely the combined “AMP” and “AMC” surface representation is related 
to the “DROPS” representation based on multipole operators and to point out 
potential differences and whether or not the differences are significant.  
 
Authors’ reply: We thank the referee for the thoughtful comment. The 
manuscript was updated in multiple places. First, the terminology of AMC 
(angular momentum coherence) surfaces has been abandoned and now the 
visualization is based on using general zero-quantum Hermitian operators for 
plotting the surfaces. This makes the surfaces represent measurable properties 
as now discussed in the section 3.2.  
 
Decomposition of the density matrix into blocks corresponding to the total 
angular momentum quantum numbers F is the same as in (Garon et al., 2015, 
when using multipole tensor operator basis), however, the visualization 
procedure is different. DROPS approach is a Wigner-type representation 
(visualization is complete but the composed surfaces do not directly represent 
measurable properties of the density matrix), while our approach is 
measurement-based representation (visualization is complete and the radius of 
the surface directly represents a measurable property of the density matrix).  
 
Changes made to the manuscript: Multiple changes in many places throughout 
the paper. 
 
In particular, the following statements need to be corrected: 
 
Line 30 “… it is challenging to extract information from the drops representing 
systems of equivalent (or nearly equivalent) spins.” This is clearly not the case, 
in particular if the DROPS representation based on multipole operators is 
applied. 
 
Authors’ reply: we thank the referee for the comment. We rewrote the sentence. 
 
Changes made to the manuscript: The updated sentence reads “While the 
DROPS approach could be generalized to isotropic systems by using multiple 
tensor operator basis, it is challenging to extract the information corresponding 
to measurable properties from the DROPS with complicated colors.” 
 
Line 34: “… To address these limitations, we introduce …”. As pointed out 



above, the DROPS representation based on multipole operators does not have 
the stated limitations 
 
Authors’ reply: we thank the referee for the comment. We rewrote the sentence. 
We want to note that DROPS representation may be discriminatory with respect 
to color-blindness of some groups of the population. 
 
Changes made to the manuscript: The updated sentence reads “While the 
DROPS approach could be generalized to isotropic systems by using multiple 
tensor operator basis, it is challenging to extract the information corresponding 
to measurable properties from the DROPS with complicated colors.” 
 
For the presented NMR examples, comparison of the “AMP/AMC” with the 
standard DROPS representation based on the “LISA” basis and/or with the 
DROPS representation based on multipole operators is not mandatory, but 
could be quite useful (at least for one of the presented NMR examples), to make 
it possible for the readers to judge (potential) advantages or disadvantages of 
the different visualization approaches. 
 
Authors’ reply: we thank the referee for the valuable comment. We performed 
additional simulations and now present a direct comparison between our 
visualization approach and the DROPS approach (see Section 3.5) when 
applied to the ZULF NMR experiment. 
 
Changes made to the manuscript: a new section (3.5) was added per referee’s 
suggestion. 


