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Abstract. Since the dawn of quantum mechanics ways to visualize spins and their interactions attracted attention of researchers

and philosophers of science. Angular momentum probability (AMP) surfaces are known for visualizing density matrices; a

plotted surface represents probability of finding maximum projection of angular momentum along any direction in space.

While AMP surfaces visually reveal symmetries of density matrices which directly translate to measured properties, they focus

solely on one total-angular-momentum manifold, neglecting interaction between different manifolds often encountered in the5

NMR of multispin systems. In this work, we extend applicability of this visualization method and introduce its extension,

angular momentum coherence (AMC) surface approach. Three examples of nuclear spin dynamics in two-spin systems are

presented and visualized using the AMP/AMC surfaces: (I) spin-lock induced crossing (SLIC) sequence with initial state

being the singlet state between two spins; (II) interplay between chemical exchange and spin dynamics during the high-field

signal amplification by reversible exchange (SABRE) experiment; (III) zero- to ultralow-field (ZULF) NMR experiment in10

the presence of magnetic field applied perpendicular to the sensitive axis of the detector. The presented visualization technique

extends applicability of AMP surfaces to coupled multispin systems and will facilitate intuitive understanding of spin dynamics

during complex NMR experiments as exemplified here by the considered cases. The temporal sequences (“the movies”) of such

surfaces show phenomena like interconversion of polarization moments (Auzinsh et al., 2010) and, as particularly relevant in

NMR and demonstrated here, polarization transfer between different spins. Such effects are difficult to grasp by looking at15

(time-dependent) numerical values of density-matrix elements.

1 Introduction

The evolution of spins in nuclear magnetic resonance (NMR) experiments can be highly complex and non-intuitive, thus,

approaches to visualize spin dynamics of nuclear multispin systems is sought for both communication and research purposes.

Most NMR textbooks visualize the motion of a single spin-1/2 (or an ensemble of spins) using the Bloch vector (e.g., Bloch,20

1946; Feynman et al., 1957; Levitt, 2013). In more complex cases such as coupled spin systems, visualization is significantly

less straightforward, and the discussion is often assisted by drawing energy level diagrams. These diagrams do not provide

dynamic information but can be useful for representing populations of various spin states and coherences between them (e.g.,

Sørensen et al., 1984; Messiah, 1999; Levitt, 2013; Barskiy et al., 2019).
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Recently, Garon et al. introduced an approach of so-called “Spin Drops” (DROPS = discrete representation of operators25

for spin systems) for visualizing spin operators in NMR experiments (Garon et al., 2015; Leiner et al., 2017; Leiner and

Glaser, 2018). This visualization approach is based on plotting 3-dimensional colorful shapes (drops) that correspond to linear

combinations of spherical harmonics. Spin drops can represent interactions in Hamiltonians and in propagators, as well as

states of the density matrix; thus, spin drops can be used to describe the dynamics during each stage of NMR experiment

(Garon et al., 2015; Leiner et al., 2017; Leiner and Glaser, 2018). While the approach conveniently reflects the dynamics and30

symmetry of individual spins (which is useful in high-field NMR experiments where spins can be addressed individually),

it is challenging to extract information from the drops representing systems of equivalent (or nearly-equivalent) spins. The

rotational symmetry of the total nuclear spin is not broken, for example, in NMR experiments utilizing parahydrogen (pH2)

and in zero- to ultralow-field (ZULF) NMR experiments. To address these limitations, we introduce a generalized approach

based on the angular momentum probability (AMP) surfaces (Auzinsh, 1997; Rochester and Budker, 2001; Auzinsh et al.,35

2010).

The angular momentum probability surface approach was first introduced by Rochester et al. for visualizing the angular

momentum state of atoms (Rochester and Budker, 2001; Auzinsh et al., 2010). In this approach, the distance of each point

of the visualized surface from the origin of the coordinate system is equal to the probability of finding the maximal possible

projection along the radial direction. However, AMP surfaces do not represent coherences connecting states with different40

total angular momentum (including states of the same total angular momentum quantum number F but belonging to different

manifolds) which play a crucial role in NMR of multispin systems. In this work we demonstrate that coherences can also be

visualized by plotting specific observables along different directions, thus, called hereafter AMC (angular momentum coher-

ence) surfaces. Together with AMP surfaces, the approach presented in this work constitutes convenient means for vizualizing

complex dynamics in multispin systems exemplified here for pairs of nuclear spins 1/2.45

2 Results

Our generalized visualization approach is pictorially shown in Fig.1. We first write down the density matrix (DM) in the total

angular momentum basis and decompose it into blocks according the total angular momentum quantum number F (Fig. 1A).

In order to plot the AMP surface for the block (Fk,Fk) (where k is used to distinguish different F blocks), the probability

of finding the maximal projection state in the block is assigned to the distance r from the origin (Fig. 2) along the direction n̂50

such that

r(θ,ϕ) = n̂⟨Fk,Fk|ρ̂|Fk,Fk⟩n̂ = Tr(ρ̂ |Fk,Fk⟩n̂ n̂⟨Fk,Fk|) , (1)

where |Fk,Fk⟩n̂ is the state with maximal projection along measurement direction n̂ (see Eq. (C4)).

When it comes to off-diagonal blocks (Fl,Fk), one can consider a zero-quantum coherence (∆m = 0) of a specific form

defined along the measurement direction n̂,55
(

ẐQ
(Fl,Fk)

φ,mF

)

n̂

= eiφ|Fl,mF⟩n̂ n̂⟨Fk,mF|+ e−iφ|Fk,mF⟩n̂ n̂⟨Fl,mF|, (2)
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Figure 1. Visualization algorithm for a density matrix (DM): (A) Write down a DM in the total angular momentum basis and decompose

it into blocks according to F ; (B) Write down matrix elements of the diagonal block (Fk,Fk) in the basis with the quantization axis set

along the direction n̂, the top left element corresponds to the probability of finding the maximal projection along this direction; (C) Write

down matrix elements of the blocks (Fl,Fk) and (Fk,Fl) in the basis with the quantization axis set along the direction n̂, a combination of

elements with ml = mk are used for the visualization.

where operators are defined up to a phase φ and added with their conjugate transpose pairs to be Hermitian, i.e., to correspond

to the proper observable quantities; |Fl,mF⟩n̂ is the state with a projection mF along the measurement direction n̂.

For implementing visualization of the AMC surface, a projection quantum number mF is chosen within the range |mF| ≤
min(Fl,Fk). Given a fixed mF, one may notice that the defined operators (ẐQ

(Fl,Fk)

φ,mF
)n̂ vary only by one number, φ, and form60

a two-dimensional real operator space. Therefore, it is enough to consider only two values of φ to fully represent spin dynamics

of the coherences between blocks (Fk,Fk) and (Fl,Fl); in this work we pick φ equal to 0 and π/2.

For visualizing an AMC surface, we assume measurements according to the defined observables along various directions in

a manner similar to the AMP surface:

r(θ,ϕ) = Tr
[
ρ̂

(
ẐQ

(Fl,Fk)

φ,mF

)

n̂

]
, (3)65

The expectation value for the operator (ẐQ
(Fl,Fk)

φ,mF
)n̂ can be negative, thus, an additional “degree of freedom”, color, is intro-

duced. As a convention, in this work we set the color to be red if the expectation value is positive and blue if the expectation

value is negative. Since we initially chose observable operators to be Hermitian, additional colors are not necessary. However,

if the observable operators are not set to be Hermitian, a color map is necessary to express (0, 2π)-phase dependence of the

computed expectation value which is a complex number.70
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Figure 2. A single surface point along the direction n̂ (equivalently denoted by (θ,ϕ)) and r is the distance from the surface to the origin.

We note that with our generalized visualization approach, one can see the symmetries of the quantum states, for instance, the

q-fold rotational symmetries that arise when only particular polarization moments are present. For example, when all elements

are zero except those for which ml−mk = qN , where N is a integer, then the AMP/AMC surfaces possess a q-fold symmetry,

see Appendix D. (Auzinsh et al., 2010, p. 100)

As an example, consider a pair of spin-1/2 nuclei. There are in total four blocks. For the two diagonal blocks (F=1,F=75

1) and (F=0,F=0), one can draw AMP surfaces by considering the probabilities of finding the states |1,1⟩n̂ and |0,0⟩,
respectively. Four examples of different AMP surfaces (F=1,F=1) are presented in Fig. 3. The first example shown in Fig. 3A

is a polarized state that exemplifies magnetic orientation, i.e., a preferred direction of magnetization in space. The second

example Fig. 3B shows an anti-phase spin order exemplifying alignment (Auzinsh et al., 2010). Such spin order is often an

initial state in parahydrogen-based hyperpolarization experiments (Bowers and Weitekamp, 1987; Natterer and Bargon, 1997).80

The spin orders shown in Fig. 3C and Fig. 3D are often encountered in various experiments involving two-spin systems (see

the discussion below). The usefulness of our visualization approach becomes apparent when one can spot the presence of

different symmetries (or lack of thereof) by simply looking at the calculated surface without analyzing the explicit structure of

the density matrices.

The two remaining off-diagonal blocks are mapped into AMC surfaces, and the only quantum number mF=0 is permis-85

sible due to the requirement |mF| ≤min(1,0). Taking into consideration the discussed constraint on φ, one can show that
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A) B)

C) D)

Figure 3. Visualizations using AMP surface of the block (F=1,F=1) for the following density operators: (A) ρ̂= 1
4
1+ 1

4
(Î1z+Î2z),

representing a state orientated along ẑ, (B) ρ̂= 1
4
1+Î1zÎ2z, representing a state aligned along ẑ, (C) ρ̂= 1

4
1+1

2
(Î1xÎ1y+Î2yÎ1x), representing

a state with a more complex alignment, (D) ρ̂= 1
4
1+ 1

4
(Î1z−Î2z), representing a state that appears isotropic from the point of view of the

total angular momentum with F = 1 (the state is intrinsically anisotropic and the AMP surface cannot visualize it; AMC surface should be

used instead).

(ẐQ
(1,0)

0,0 )ẑ = (Î1z− Î2z) (i.e., magnetization difference) when φ = 0, and (ẐQ
(1,0)
π
2 ,0 )ẑ = (Î1yÎ2x− Î1xÎ2y) (the so-called zero-

quantum coherence out of phase (Pravdivtsev et al., 2017)) when φ = π/2. For visualization of AMC surfaces, we then plot

the expectation values ⟨(ẐQ
(1,0)

0,0 )n̂⟩ and ⟨(ẐQ
(1,0)
π
2 ,0 )n̂⟩ according to the equation (3).

We note here the AMP/AMC surface approach is not limited to coupled spin-1/2 nuclear spin systems. For example, in a90

system of coupled spin-1/2 and spin-1 nuclei, two AMP surfaces for the diagonal blocks, (F= 3
2 ,F= 3

2 ) and (F= 1
2 ,F= 1

2 ),

and two AMC surfaces for the two off-diagonal blocks, (F= 3
2 ,F= 1

2 ) and (F= 1
2 ,F= 3

2 ), would be necessary to visualize

spin dynamics. AMP/AMC surfaces could in principle be used for describing dynamics of interacting electron spins during

experiments such as DNP (Dynamic Nuclear Polarization), CIDNP (chemically-induced dynamic nuclear polarization) and

general electron paramagnetic resonance (EPR) experiments. However, since the examples in our paper are focused solely on95

NMR, in the following we limit our discussion to nuclear spin systems only.
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3 Discussion

3.1 Spin-Lock Induced Crossing

Figure 4 shows a typical spin-lock induced crossing (SLIC) experiment where a continuous radio frequency (RF) field is applied

to a pair of chemically-inequivalent nuclear spins at high field, initially prepared in the singlet spin state. The target spins100

undergo singlet-triplet conversion if the spins are strongly coupled to each other and the amplitude of the RF field matches

the J-coupling value between them (DeVience et al., 2013). The parameters used for the simulation and visualization are

shown in Fig. 4A where the molecule is specified by J-coupling strength between the two spins and ∆, the difference between

their Larmor frequencies, expressed in hertz (Levitt, 2013). Under the above conditions, the singlet and triplet populations

interconvert with a period T =
√

2
∆ .105

We simulate the SLIC experiment by considering only the coherent processes (no relaxation is included). One could process

the simulation results by plotting the population of several chosen operators as a function of time, and the derived population

plot is shown in Fig. 4B. Note that all these operators are defined in the frame rotating in sync with the RF-field. Figure 4B

illustrates that the singlet spin order is converted – upon application of a SLIC pulse – into the magnetization opposite to the

direction of the RF-field amplitude in the rotating frame. Note here the conversion of the singlet spin order into magnetization110

parallel to the direction of the RF-field is symmetry-allowed but energy-forbidden, which introduces small but fast oscillations

into the AMP/AMC surfaces.

3.2 Signal Amplification By Reversible Exchange

As a second example, we visualize dynamics of the nuclear spin states of dissolved hydrogen during signal amplification by

reversible exchange (SABRE) experiments (Adams et al., 2009) at high magnetic field (Barskiy et al., 2014). The interplay115

between chemical exchange and coherent spin dynamics is known to induce singlet-triplet mixing (Kiryutin et al., 2017; Knecht

et al., 2019; Markelov et al., 2021). For the two protons in free hydrogen (i.e., molecular hydrogen gas dissolved in solution), the

singlet triplet-mixing is symmetry-forbidden. However, as soon as the hydrogen molecule binds transiently to a SABRE catalyst

and the two protons occupy non-equivalent positions such that chemical symmetry is broken, the difference in their Larmor

frequencies, ∆ = (δ1− δ2)γB0, gives rise to singlet-triplet mixing. Such mixing is selective and only |S⟩ → |T0⟩ transitions120

occur, while the other transitions |S⟩ → |T±⟩ are forbidden at high field. In the following, we also consider relaxation via

locally correlated noise fields to account for the equilibration of triplet sublevels (Ivanov et al., 2008).

We apply a model recently introduced to simulate spin dynamics in SARBE experiments. All the parameters used for the

simulation are given in Fig. 5A where the chemical rate constants ka and kd describe the rates of association and dissociation

of H2, respectively, and the longitudinal relaxation time of the two protons is given by T f
1 when they are free in solution and T b

1125

when they are bound to the SABRE catalyst, respectively. The simulated state populations are shown in Fig. 5B. First, after start

of the exchange process, chemical asymmetry induces the |S⟩ → |T0⟩ transition and reduces the population difference between

the two states. As the |T0⟩ state is populated, relaxation between triplet sublevels becomes more noticeable and the states |T±⟩

6
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Figure 4. Visualization of spin dynamics in proton pairs during high-field SLIC experiments over a period T =
√

2/∆. (A) Scheme of

the SLIC experiment: an RF-field of the amplitude B1 equal to J-coupling between the spins is applied along rotating-frame x-axis at the

average proton resonance frequency. (B) Evolution of various spin orders during the SLIC experiment. (C-F) Visualization of the evolution

under SLIC experiment using (C) AMP surface of the maximum projection state |11⟩n̂, (D) AMP surface of the singlet population, (E) AMC

surface ⟨(ẐQ
(1,0)

0,0 )n̂⟩, (F) AMC surface ⟨(ẐQ
(1,0)
π
2 ,0 )n̂⟩. Note different scaling in (C)-(F).

also start to be populated. Since the local noise fields are not perfectly correlated, the populations are finally equalized as shown

in Fig. 5B.130

The evolving distribution of population over various states is seen in Fig. 5C-D. In Fig. 5C, the AMP surface for the triplet

block first grows into an oblate spheroid which indicates that initially only the state |T0⟩ state gets overpopulated. Later,

the AMP surface evolves into a sphere indicating that all three triplet states are equally populated as a result of relaxation.

Figure 5D shows the changing singlet population. Lastly, Fig. 5E, which measures the out-of-phase coherence ⟨(ẐQ
(1,0)
π
2 ,0 )n̂⟩,

7
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Figure 5. Visualizations of spin dynamics in proton pairs of free molecular hydrogen in a SABRE experiment. (A) Scheme of the SABRE

experiment: molecular hydrogen initiated in the singlet state undergoes reversible chemical coordination which transiently breaks chemical

equivalence between the two spins; NMR, exchange, and relaxation parameters are shown in the insert. (B) Evolution of the spin state

populations during the SABRE experiment. (C-F) Visualization of the evolution under SABRE experiment using (C) AMP surface of the

state with maximal projection |11⟩n̂, (D) AMP surface of the singlet population, and (E) AMC surface ⟨(ẐQ
(1,0)
π
2 ,0 )n̂⟩. Note different scaling

in (C) and (D).

reveals extra information not covered by Fig. 5B, i.e., the singlet-triplet coherence, Î1yÎ2x−Î1xÎ2y, is transiently formed during135

the experiment. Since the J-coupling between the two protons is ignored, there is no in-phase coherence (i.e., magnetization

differences between the two protons along any direction) and the related surface plot is therefore not included here.

3.3 Zero- to Ultralow-Field Nuclear Magnetic Resonance

Lastly, we show how one could use the presented visualization approach to better understand spin dynamics in zero- to ultralow-

field (ZULF) NMR experiments (Ledbetter et al., 2011). As an example, we take 13C-labeled formic acid with 1H and 13C spins140

initially polarized along the z axis (direction of a magnetometer’s sensitive axis). Before acquisition, 13C spins are selectively

inverted (Sjolander et al., 2016; Jiang et al., 2018) to increase the signal, and during the acquisition a weak bias magnetic field,

8
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Figure 6. Visualizations of spin dynamics in an AX system (1H-13C nuclear pair) during zero- to ultralow-field nuclear magnetic resonance

(ZULF) experiment. (A) Scheme of an exemplary ZULF NMR experiment in which perpendicular field of 2.64 mG is applied during the

detection. (B) Simulation of the corresponding ZULF NMR spectrum. (C)-(F) AMP and AMC surfaces representing spin evolution in the

ZULF experiment. (C) The state with maximal projection |11⟩n̂ over a time scale of T1 = 2/(ν1H + ν13C). (D) In-phase zero quantum

coherence ⟨(ẐQ
(1,0)

0,0 )n̂⟩ shown over a time scale of T1; (E) In-phase zero quantum coherence ⟨(ẐQ
(1,0)

0,0 )n̂⟩ shown over a time scale of

T2 = 1/J . (F) Zero quantum coherence out-of-phase ⟨(ẐQ
(1,0)
π
2 ,0 )n̂⟩ shown over a time scale of T2.

Bx, perpendicular to the magnetometer’s sensitive axis is applied (Fig. 6A). In such an experiment, nuclear spins evolve due

to the heteronuclear J-coupling and the bias field, the ZULF NMR spectrum is collected by the measuring the magnetization

along the z direction. A simulated NMR spectrum following the described procedure is shown in Fig. 6B. Note that only the145
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positive frequency region is plotted given only one measurement device. First, low-frequency peak is positioned at the average

Larmor frequency between the proton and the carbon. In addition, a doublet with splitting equal to the sum of the Larmor

frequencies of proton and carbon is centered at the J-coupling frequency.

Figure 6C shows the AMP surface by measuring the maximal projection state, the surface is rotating about the x-axis with a

period of T1 = 2/(ν1H +ν13C), where ν1H and ν13C are proton and carbon Larmor frequencies, respectively. One can instantly150

realize that this motion corresponds to the leftmost single peak in Fig 6B. Dynamics of the AMC surfaces shown in Fig 6D-F

is more intricate. Their motion is a superimposed oscillation of shapes with a period of T2 = 1/J and a slow precession about

the x-axis with the above-mentioned period of T1. From the visualization, one may conclude that in-phase and out-of-phase

zero quantum coherences give rise to the doublet shown in Fig 6B.

4 Conclusions155

In this paper, we extend an approach for visualizing dynamics of quantum spin systems based on angular momentum proba-

bility (AMP) surfaces to visualizing coherences via angular momentum coherence (AMC) surfaces. AMP/AMC surfaces con-

veniently represent symmetries of density matrices and allow spotting their presence (orientation, alignment, etc.) or absence

even when direct analysis of density matrices is not obvious. Three different experiments are used to demonstrate applicability

of the novel visualization approach: (I) spin dynamics in the ensembles of pairs of spin-1/2 nuclei during the spin-lock induced160

crossing (SLIC) experiment; (II) physicochemical conversion of parahydrogen during signal amplification by reversible ex-

change (SABRE) experiment at high magnetic field; and (III) evolution of heteronuclear 1H-13C spin pair during the zero- to

ultralow-field (ZULF) NMR experiment. The presented AMP/AMC surface approach allows visualizing complex dynamics in

multispin systems and may find applications for describing hyperpolarization experiments utilizing parahydrogen (PHIP and

SABRE), experiments such as DNP (Dynamic Nuclear Polarization), CIDNP (chemically-induced dynamic nuclear polariza-165

tion) and general NMR and EPR experiments.

Code availability. The software code for the graphics shown in this paper is available from the authors upon request.

Data availability. No data sets were used in this article.

Video supplement. Video representations of the figures are available in Supporting Information.
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Appendix A: Spherical Tensor Operator Basis170

A1 Definition of the spherical tensor basis operators

For each block (Fl,Fk), we define a basis of tensor operators by

T̂(Fl,Fk)
λµ =

√
2λ + 1
2Fl + 1

∑

ml,mk

⟨Fkmkλµ|Flml⟩|Fl,ml⟩⟨Fk,mk|, (A1)

with |Fl−Fk| ≤ λ≤ Fl+Fk and−λ≤ µ≤ λ, and mk, ml, and µ being the projection quantum numbers of the Clebsch-Gordan

coefficient ⟨Fkmkλµ|Flml⟩.175

A2 Proprieties of the spherical tensor basis operators

The defined operator basis satisfy the following proprieties:

A2.1. Orthogonality: Tr
(

T̂(Fl,Fk)
λµ

(
T̂(Fl′ ,Fk′ )

λ′µ′

)†)
= δFlFl′ δFkFk′ δλλ′δµµ′ .

A2.2. Completeness: The operator basis is complete (in a sense that it can be used to represent any operator).

A2.3. Sphericalness: Given the rotation operator R̂(α,β,γ), a tensor operator transforms under rotation as180

R̂(α,β,γ)T̂(Fl,Fk)
λ,µ R̂†(α,β,γ) =

∑

µ′

T̂(Fl,Fk)
λ,µ′ Dλ

µ′µ(α,β,γ) (A2)

with Wigner D-functions Dλ
µµ′(α,β,γ) = ⟨λµ|R̂(α,β,γ)|λµ′⟩.

A2.4. Hermitian adjoint:
(
T̂(Fl,Fk)

λµ

)†
= (−1)(Fl−Fk+µ)T̂(Fk,Fl)

λ,−µ .

A2.1 Proof of A2.1

It is obvious that operators defined over different blocks are orthogonal. Next we check the orthogonality between operators185

within the same block (Fl,Fk). For simplicity, the superscripts are omitted.

Tr(T̂λµT̂†λ′µ′) =

√
(2λ + 1)(2λ′+ 1)

2Fl + 1

∑

ml,mk

⟨Fkmkλµ|Flml⟩⟨Fkmkλ
′µ′|Flml⟩, (A3)

giving

⟨Fkmkλµ|Flml⟩= (−1)Fk−mk

√
2Fl + 1
2λ + 1

⟨FlmlFk(−mk)|λµ⟩. (A4)

The sum can be estimated as190

∑

mk,ml

⟨Fkmkλµ|Flml⟩⟨Fkmkλ
′µ′|Flml⟩=

2Fl + 1
2λ + 1

∑

mk,ml

⟨λµ|FlmlFkmk⟩⟨FlmlFkmk|λ′µ′⟩=
2Fl + 1
2λ + 1

δλλ′δµµ′ . (A5)
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A2.2 Proof of A2.2

Since the operators are orthogonal to each other, they must be linearly independent. The total number of operators over the

block (Fl,Fk) (assuming Fl > Fk without lose of generality) is

Fl+Fk∑

λ=Fl−Fk

2λ + 1 = (2Fl + 1)(2Fk + 1). (A6)195

Since the number of independent basis operators equals to the number of degrees of freedom over the block (see A1), the

defined operator basis is complete.

A2.3 Proof of A2.3

It is equivalent to prove the following conditions (the superscript (Fl,Fk) is omitted):

[F̂z, T̂λµ] = µT̂λµ,

[F̂±, T̂λµ] =
√

λ(λ + 1)−µ(µ± 1)T̂λ,µ±1, (A7)200

Proof of the first equation is obvious. For the second part, we have

[F̂±, T̂λµ] =
∑

ml,mk

⟨Fkmkλµ|Flml⟩
(
F̂±|Fl,ml⟩⟨Fk,mk| − |Fl,ml⟩⟨Fk,mk|F̂±

)

= (
√

Fl(Fl + 1)−ml(ml∓ 1)⟨Fkmkλµ|Fl(ml∓ 1)⟩

−
√

Fk(Fk + 1)−mk(mk± 1)⟨Fk(mk± 1)λµ|Flml⟩)|Fl,ml⟩⟨Fk,mk|. (A8)

We can apply Eq.(A4) and the recursion relationships between Clebsch–Gordan coefficients to find that

C±(Fl,ml∓ 1)⟨FlmlFk(−mk∓ 1)|λµ⟩+ C±(Fk,−mk∓ 1)⟨Fl(ml∓ 1)Fk(−mk)|λµ⟩= C±(λ,µ)⟨FlmlFk(−mk)|λµ± 1⟩.

(A9)

With C±(F,m) =
√

F (F + 1)−m(m± 1), Eq.(A8) can be simplified to yield the second part of Eq.(A7).205

A2.4 Proof of A2.4

Lastly, we check the Hermitian adjoint property of the basis operators:

(
T̂(Fl,Fk)

λµ

)†
=

√
2λ + 1
2Fl + 1

∑

ml,mk

⟨Fkmkλµ|Flml⟩|Fk,mk⟩⟨Fl,ml|

T̂(Fk,Fl)
λ,−µ =

√
2λ + 1
2Fk + 1

∑

ml,mk

⟨Flmlλ(−µ)|Fkmk⟩|Fk,mk⟩⟨Fl,ml|, (A10)

Given Eq.(A4) and the symmetry of Clebsch-Gordan coefficients

⟨FlmlFk(−mk)|λµ⟩= ⟨FkmkFl(−ml)|λ(−µ)⟩, (A11)210
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we have

(
T̂(Fl,Fk)

λµ

)†
= (−1)(Fl−Fk+µ)T̂(Fk,Fl)

λ,−µ . (A12)

Appendix B: Expansion of the density operator over spherical tensor operator basis

The density operator could be expanded over the spherical tensor operator basis:

ρ̂ =
∑

Fl,Fk

Fl+Fk∑

λ=|Fl−Fk|

λ∑

µ=−λ

ρ
(Fl,Fk)
λµ T̂(Fl,Fk)

λµ . (B1)215

Applying the orthogonality condition of the basis operators (A2), we have the so-called polarization moments (Auzinsh et al.,

2010):

ρ
(Fl,Fk)
λµ = Tr

[
ρ̂
(
T̂(Fl,Fk)

λµ

)†]
. (B2)

Appendix C: Completeness of the visualization

The visualization is complete in a sense that there is a one-to-one correspondence between AMP/AMC surfaces and the related220

density operators. First, as discussed in the main text, the AMP/AMC surface can be uniquely determined from the given

density operator. Here we show that the visualized density operator can be reconstructed from the AMP/AMC surface. From

Eq. 1 and Eq. 3, the AMP/AMC surfaces can be expressed using the function f
(Fl,Fk)
mF (θ,ϕ) = Tr(ρ̂ |Fk,mF⟩n̂ n̂⟨Fl,mF|) as

r(Fk,Fk)(θ,ϕ) = f
(Fk,Fk)
Fk

(θ,ϕ),

r(Fl,Fk)(θ,ϕ) = eiφf (Fl,Fk)
mF

(θ,ϕ) + e−iφf (Fk,Fl)
mF

(θ,ϕ). (C1)

There are two useful proprieties of the defined function f
(Fk,Fk)
Fk

:225

C.1. Expansion over spherical harmonics

f (Fl,Fk)
mF

= (−1)Fk−mF⟨FlmFFk(−mF)|λ0⟩
∑

λ,µ

√
4π

2λ + 1
ρ
(Fl,Fk)
λµ Yλµ(θ,ϕ) (C2)

where ρ
(Fl,Fk)
λµ are the polarization moments (Auzinsh et al., 2010) and Yλµ(θ,ϕ) are spherical harmonics.

C.2. Complex conjugation

f (Fk,Fl)
mF

(θ,ϕ) =
(
f (Fl,Fk)

mF
(θ,ϕ)

)∗
(C3)230

These proprieties (see the proof below) allow extracting the polarization moments of the density operator from the surfaces by

decomposing them over spherical harmonics.
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C1 Proof of C.1

The state with a projection mF along the measurement direction n̂ can be obtained by applying the rotation operator to the

state |FkmF⟩ (defined with the projection mF along the ẑ-direction):235

|FkmF⟩n̂ = R̂(ϕ,θ,0)|FkmF⟩, (C4)

where the operator R̂(α,β,γ) = e−iαF̂ze−iβF̂ye−iγF̂z is the quantum mechanical rotation operator written using the z− y− z

convention with the Euler angles α, β, and γ, respectively. Substituting the expansion of the density operator Eq. (B1) into the

definition of the function f
(Fl,Fk)
mF (θ,ϕ) gives

f (Fl,Fk)
mF

(θ,ϕ) =
∑

λ,µ

ρ
(Fl,Fk)
λµ n̂⟨Fl,mF|T̂(Fl,Fk)

λµ |Fk,mF⟩n̂

=
∑

λ,µ

ρ
(Fl,Fk)
λµ

∑

µ′

⟨Fl,mF|T̂(Fl,Fk)
λµ′ |Fk,mF⟩Dλ

µ′µ(0,−θ,−ϕ), (C5)240

where we have employed the sphericalness of the basis operators (A2). The term ⟨Fl,mF|T̂(Fl,Fk)
λµ′ |Fk,mF⟩ can be easily

estimated from the definition A1. Notice that µ′ can only take a zero value. In this particular case, Wigner-D functions are

related to spherical harmonics via

Dλ
µ0(0,−θ,−ϕ) =

(
Dλ

µ0(ϕ,θ,0)
)∗

=

√
4π

2λ + 1
Yλµ(θ,ϕ). (C6)

Substituting Eq. (C6) into Eq. (C5) proves the property C.1.245

C2 Proof of C.2

Starting from Eq. (C2), by exchanging Fk and Fl one can find that

f (Fk,Fl)
mF

= (−1)F l−mF⟨FkmFFl(−mF)|λ0⟩
∑

λ,µ

√
4π

2λ + 1
ρ
(Fk,Fl)
λµ Yλµ(θ,ϕ). (C7)

To find out the relationship between ρ
(Fk,Fl)
λµ and ρ

(Fl,Fk)
λ,µ , we employ Eq. (A12):

ρ
(Fk,Fl)
λµ = Tr

(
ρ̂
(
T̂(Fk,Fl)

λµ

)†)
= (−1)(Fk−Fl+µ) Tr

(
ρ̂ T̂(Fl,Fk)

λ,−µ

)

= (−1)(Fk−Fl+µ)

(
Tr

(
ρ̂
(
T̂(Fl,Fk)

λ,−µ

)†))∗
= (−1)(Fk−Fl+µ)

(
ρ
(Fl,Fk)
λ,−µ

)∗
(C8)250

By inserting

(Yλµ(θ,ϕ))∗ = (−1)µ Yλ,−µ(θ,ϕ) (C9)

and

⟨FkmFFl(−mF)|λ0⟩= ⟨FlmFFk(−mF)|λ0⟩, (C10)

into Eq. (C7) and substituting the summation label µ by −µ, Eq. (C3) can be proven.255
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Appendix D: Rotational symmetry

Certain rotational symmetries of the density operator can be directly reflected from the visualized AMP/AMC surfaces.

D.1. Global rotation Any global rotation can be directly reflected by the rotation of the AMP/AMC surface.

D.2. Higher-order symmetries All the visualized AMP/AMC surfaces have a q-fold symmetry along the ẑ axis, then all the

elements of ρ̂
(Fl,Fk)
ml,mk are to be zero except those for which ml−mk = qN where N is an integer.260

D1 Proof of D.1

Assume a global rotation is applied to the density operator, the resulting new density operator can be formulated as

ρ̂′ = R̂(α,β,γ) ρ̂ R̂†(α,β,γ). (D1)

Following from the sphericalness of the basis operators, the polarization moments of the rotated density operator are
(
ρ
(Fl,Fk)
λµ

)′
= Dλ

µµ′(α,β,γ)ρ
(Fl,Fk)
λµ′ . (D2)265

According to Eq. (C2), the function (f (Fl,Fk)
mF )

′
which is defined with the new polarization moments can be written as

(
f (Fl,Fk)

mF

)′
= (−1)Fk−mF⟨FlmFFk(−mF)|λ0⟩

∑

λ,µ

√
4π

2λ + 1

(
ρ
(Fl,Fk)
λµ

)′
Yλµ(θ,ϕ). (D3)

On the other hand, the function (f (Fl,Fk)
mF )

′′
which is rotated from the original function (f (Fl,Fk)

mF ) through the rotating operator

is defined as
(
f (Fl,Fk)

mF

)′′
= R̂(α,β,γ)f (Fl,Fk)

mF
. (D4)270

Following from the rotational symmetry of spherical harmonics,

R̂(α,β,γ)Yλµ(θ,ϕ) = Yλµ

(
R̂−1(α,β,γ)(θ,ϕ)

)
=

∑

µ′

Yλµ′(θ,ϕ) Dλ
µ′µ(α,β,γ), (D5)

it easy to see that
(
f

(Fl,Fk)
mF

)′′
=

(
f

(Fl,Fk)
mF

)′
. Following from Eq. (C1), the AMP/AMC surfaces obtained through the rotated

density operator are exactly the same as those rotated from the original AMP/AMC surfaces.

D2 Proof of D.2275

If a q-fold symmetry is presented for all the AMP/AMC surfaces, the density operator would also have a q-fold symmetry since

they rotate in sync, i.e.,

ρ̂(Fl,Fk)
ml,mk

e−i(ml−mk) 2π
k = ρ̂(Fl,Fk)

ml,mk
. (D6)

This requires all the elements of ρ̂
(Fl,Fk)
ml,mk to be zero except those for which ml−mk = kN where N is an integer.
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