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Abstract. The first report
::
In

:::
the

::::
solid

::::::
effect of dynamic nuclear polarization (DNP)in liquids via the solid-effect mechanism

Erb, Motchane and Uebersfeld Compt. rend. 246, 2121 (1958)drew attention to the similarity between the field profile of

the enhancement and the dispersive component of the EPR line. The implications of this similarity
::::::::
concerted

::::
flips

::
of
::::

the

::::::::
electronic

:::
and

:::::::
nuclear

:::::
spins,

:::::
which

:::
are

::::::
needed

:::
for

::::::::::
polarization

:::::::
transfer,

:::
are

:::::::
induced

::
by

:::
the

:::::::::::
microwaves.

::::::::::
Commonly,

:::
the

:::::
effect

::
of

:::
the

::::::::::
microwaves

::
is
::::::::

modeled
:::
by

:
a
::::

rate
:::::::

process
::::::
whose

::::
rate

:::::::
constant

::
is
::::::::::

determined
::::::::::::
perturbatively.

::::::::::
According

::
to

::::::::
quantum5

::::::::
mechanics, however, were not pursued subsequently as practically at the same time Abragam explained the effect in terms of

state mixing by the dipolar interaction. Here we develop a description of the solid effect which is grounded in the dynamics

of the electron-nucleus spin system, rather than the static view of state mixing. Our approach
:::::::
coherent

:::::::::
microwave

:::::::::
excitation

::::
leads

::
to

::::
Rabi

::::::::
nutation,

:::::
which

:::::::::::
corresponds

::
to

:
a
:::::::
rotation

:::::
rather

::::
than

:
a
::::

rate
:::::::
process.

::::
Here

:::
we

::::::::
reconcile

:::
the

::::::::
coherent

:::::
effect

::
of

:::
the

::::::::::
microwaves

::::
with

:::
the

:::::::::
description

:::
by

:::
rate

:::::::::
equations

::
by

::::::::
focusing

::::
only

::
on

:::
the

::::::
steady

:::::
state.

:::
We

:::::
show

:::
that

:::
the

::::::::::::::::
phenomenological10

:::
rate

::::::::
constants

:::::::::
describing

::
the

:::::::::::
synchronous

::::::::
excitation

::
of

:::
the

:::::::::
electronic

:::
and

::::::
nuclear

:::::
spins

:::
can

::
be

:::::::
selected

::::
such

::::
that

::
the

::::::::::
description

::
by

:::
rate

:::::::::
equations

:::::
yields

:::
the

::::
same

::::::
steady

::::
state

::
as

:::
the

:::::
exact

:::::::
quantum

::::::::::
mechanical

:::::::::
treatment.

:::
The

::::::::
resulting

:::::::::::::
non-perturbative

:::::
rates

::::
differ

:::::
from

:::
the

::::::::
classical,

::::::::::
perturbative

::::
ones

::::
and

:::::
apply

::::
also

::
at

:::
the

::::
high

:::::::::
microwave

:::::::
powers

::::
used

::
in

:::::
DNP.

::::
Our

::::::::::::::
non-perturbative

::::::::
treatment

::
of

:::
the

::::
solid

:::::
effect

:
highlights the role of the coherences in the

::::::::::
mechanistic

::::
steps

::
of
:

polarization transfer, and shows

that the offset dependence of the DNP enhancement can be rationalized as the response of two band-pass filters connected in15

series. The first filter is the power-broadened EPR line; the second filter consists of two parts centered on both sides of the

electronic resonance and displaced by one nuclear Larmor frequency from it. Being proportional to the product of the two

filters, the DNP enhancement profile acquires its odd symmetry from
:::::
reveals

:::
the

::::::::::
importance

::
of

:::
the

:::::::::
dispersive

:::::::::
component

:::
of

the
::::
EPR

::::
line.

:::::::::::
Interestingly,

:::
the

::::::::::::
multiplicative

::::::::::
dependence

::
of

:::
the

:::::
DNP

:::::::::::
enhancement

:::
on

:::
the

:
dispersive EPR line , as intuited

by Erbet al. and in agreement with their phenomenological treatment. The developed
:::
was

:::::::
intuited

::
in

:::
the

::::
very

::::
first

:::::
report

:::
of20

::
the

:::::
solid

:::::
effect

::
in

::::::
liquids [

:::
Erb,

:::::::::
Motchane

:::
and

::::::::::
Uebersfeld

::::::
Compt.

::::
rend.

:::
246,

:::::
2121

::::::
(1958)]

:
.
::::
The time-domain description of the

solid effect
::::::::
developed

::::
here is extendable to liquids,

:
where the dipolar interaction changes randomly in time due to molecular

diffusion.

1 Introduction

The issue of Comptes rendus from April 9, 1958, contained the article “Effect of nuclear polarization in liquids and gases25

adsorbed on charcoal” by Erb, Motchane and Uebersfeld (Erb et al., 1958a). It reported enhancements of the proton NMR
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signal of benzene upon microwave (mw) irradiation of the EPR line of charcoal. The enhancements were positive at fields

larger than the EPR resonance position and negative at smaller fields. Because fields symmetrically displaced from the

resonance yielded the same magnification factor, the enhancement profile was odd in the field offset and resembled the

dispersive component of the EPR line. The similarity between the two prompted the authors to augment the Solomon equation30

(Solomon, 1955) with two new terms proportional to sx and sy (Erb et al., 1958a):

i̇z = λ(iz − ieq
z ) +µ(sz − seq

z ) + νsx + ρsy.

Here iz = 〈Iz〉 and sn = 〈Sn〉 (n= x,y,z) are the expectation values of the corresponding spin operators, ieq
z and seq

z are the

nuclear and electronic polarizations at equilibrium, and the dot above iz indicates differentiation with respect to time. Taking

into account that “under saturation conditions sy = 0” the authors arrived at35

i̇z = λ(iz − ieq
z ) +µ(sz − seq

z ) + νsx.

Assuming µ was small in their case, they solved at steady state as

issz = ieq
z − (ν/λ)sss

x ,

which explained the similarity between the field profile of the enhancement and the dispersive EPR line.
:::::::::
Boltzmann

::::::::::
polarization

::
of

::::::::
electronic

:::::
spins

::
in

:
a
::::::::
magnetic

::::
field

::
is

:::::
orders

::
of

:::::::::
magnitude

:::::
larger

::::
than

::::
that

::
of

::::::
nuclear

:::::
spins.

::::::
When

:::
the

::::::::
electronic

:::
and

:::::::
nuclear40

::::
spins

:::::::
interact

::::
with

::::
each

::::::
other,

:
it
::::::::
becomes

:::::::
possible

::
to
:::::::

transfer
:::
the

:::::
much

::::::
larger

::::::::::
polarization

::
of

:::
the

:::::::
former

::
to

:::
the

:::::
latter.

:::::
Such

:::::::
transfer,

::::::
known

::
as

::::::::
dynamic

::::::
nuclear

::::::::::
polarization

:::::::
(DNP),

:::
can

:::
be

::::::::
achieved

::
in

::::::
several

:::::
ways,

::::::
which

:::::
differ

::
in

::::
their

:::::::::::
mechanistic

::::
steps.

:::::
Two

::
of

:::
the

:::::
DNP

:::::::::::
mechanisms,

:::::::
namely

:::
the

::::::::::
Overhauser

:::::
effect

:::
and

::::
the

::::
solid

::::::
effect,

:::
can

:::
be

::::::::
explained

:::
by

::::::::::
considering

::
a

:::::::
minimal

::::::
system

::::::::::
comprising

:::
one

:::::::::
electronic

::::
spin

:::
and

::::
one

::::::
nuclear

:::::
spin.

::
To

:::::::
explain

:::
the

:::::
other

:::
two

:::::
DNP

::::::::::
mechanisms

::::::
known

:::
as

::
the

:::::
cross

:::::
effect

::::
and

::::::
thermal

:::::::
mixing,

::
it

::
is

::::::::
necessary

::
to

::::::::
consider

:::
one

::::::
nuclear

::::
spin

::::::::::
interacting

::::
with,

:::::::::::
respectively,

:::
two

::::
and

:::::
many45

::::::
coupled

:::::::::
electronic

::::
spins

::::::::::::::::::
(Wenckebach, 2016).

:::
The

:::::::
current

:::::
paper

::::::
engages

:::::
only

::::
with

:::
the

:::::
former

::::
two

::::
DNP

:::::::::::
mechanisms.

:

The next installment of Comptes rendus from April 14, 1958, contained Abragam and Proctor’s report “A new method for

dynamic polarization of atomic nuclei in solids” (Abragam and Proctor, 1958), which was printed 132 pages after Erb et al. (1958a).

This seminal contribution provided the theoretical understanding , and subsequently also the name, of the solid-state effect of

dynamic nuclear polarization (DNP). In particular,
::::::::::
Historically,

:::
the

::::::::::
Overhauser

:::::
effect

:::
was

:
the authors argued that the excitation50

of the forbidden transitions (++) 
 (−−) and (+−) 
 (−+), which become weakly allowed because the dipolar coupling

yields mixed states of the form (−−) + q(−+), could be used for DNP. (±
:::
first

:::
to

::
be

:::::::::
conceived

::::::::::::::::::::
(Overhauser, 1953) and

:::::::
observed

:::::::::::::
experimentally,

:::::::
initially

:::
in

::::::
metals

:::
and

:::::::::::
subsequently

::::
also

:::
in

::::::
liquids

::::::::::::::::::::::::::::
(Carver and Slichter, 1953, 1956).

::
A
::::::::

rigorous

::::::::
theoretical

::::::::::::
understanding

::
of

:::
the

:::::
effect

::
in

::::::::
nonmetals

::::
was

:::::::
provided

::::::
shortly

::::
after

:::
the

::::
first

::::::::::
experiments

::::::::::::::::::::::::::::
(Abragam, 1955; Solomon, 1955).

::
At

:::
the

::::
core

::
of

::::
this

::::::::::::
understanding

:
are the states of the two spin types, both taken as 1/2 for simplicity. ) As an experimental55

verification of the theoretical proposal, the Boltzmann polarization of 19F nuclei was used to enhance the NMR signal of 6Li in

a LiF monocrystal, thus demonstrating polarization transfer from nuclei with larger to nuclei with smaller gyromagnetic ratios

(i.e., a nuclear solid effect).
:::::::
Solomon

:::::::::
equations,

:::::
which

::::::::
describe

:::
the

::::::::
relaxation

::::::::
processes

:::
in

:
a
::::::
system

::
of

::::
two

:::::::::
interacting

:::::
spins

::::::::::::::
(Solomon, 1955).

:
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The parameter of mixing of the Zeeman energy levels, obtained from first-order perturbation theory under the assumption60

that the dipole-dipole interaction with the electron is much smaller than the nuclear splitting (Abragam, 1955) is

q =
1

4

Ddip

ωI

−3cosθ sinθ eiφ

r3
.

Here ωI is the nuclear Larmor frequency, Ddip = (µ0/4π)~γSγI is the dipolar constant, and (r,θ,φ) are the spherical polar

coordinates of the relative position vector of the spins. The probability amplitude to excite a zero-quantum (ZQ) or double-quantum

(DQ) transition between the mixed energy levels is then proportional to ω1q, where ω1 is the mw nutation frequency. Combining65

the probability of excitation with the Lorentzian spread of the electronic energy levels, as reflected by the homogeneous width

of the EPR line, one arrives at the rates of the ZQ and DQ transitions (Wind et al., 1985):

v0,2(Ω) = 4(q∗q)v1(Ω±ωI)

(the upper sign belongs to v0 and the lower to v2), where

v1(Ω) =
1

2
ω2

1

R2S

R2
2S + Ω2

70

is the rate of the allowed (single-quantum) EPR transition. In these expressions, Ω = ωS −ω is the offset of the mw frequency ω

from the electronic resonance frequency ωS , and R2S is the electronic T2 relaxation rate. In essence, the rates of the forbidden

transitions are obtained by shifting the rate of the allowed transition by ±ωI along the frequency axis and multiplying by

4|q|2.
:::
For

:::
our

::::::::
purposes,

::
it

::
is

:::::
useful

::
to

:::::::
discern

:::
two

:::::::
aspects

::
of

:::
the

:::::::::
theoretical

:::::::::
formalism.

:::
On

:::
the

::::
one

::::
hand,

:::
the

::::::::
evolution

:::
of

:::
the

::::::::
electronic

:::
and

:::::::
nuclear

:::::::::::
polarizations

::
is

::::::::
described

::
by

::::
two

:::::::
coupled

:::::::::
differential

::::::::
equations

:::::::::::::::::::::
(Solomon, 1955, eq. 14),

:::::::::
analogous

::
to75

::
the

::::
rate

::::::::
equations

::
of

::::::::
chemical

:::::::
kinetics.

:::
On

::
the

:::::
other,

:::
the

:::::::::::::::
phenomenological

::::
rate

::::::::
constants

:::
that

::::::
appear

::
in

::::
these

::::
rate

::::::::
equations

:::
are

::::::::
expressed

::
in

:::::
terms

::
of

::
the

::::::::::::::::::
quantum-mechanical

::::::::::
probabilities

:::
for

::::::::
transition

:::::::
between

:::
two

::::::
distinct

::::::
energy

:::::
states

::::::::::::::::::::
(Solomon, 1955, eq. 15).

::
To

::::
first

:::::
order

::
in

:
a
:::::::::::

perturbative
::::::::::
calculation,

:::
the

::::::::
amplitude

:::
of

::::
such

::::::::
transition

:::::::::::
probabilities

:::
per

::::
unit

::::
time

::
is

::::::::::
proportional

:::
to

:::
the

:::::
matrix

:::::::
element

:::
of

:::
the

:::::::
relevant

:::::::::
interaction

:::::
term

::
in

:::
the

::::
spin

:::::::::::
Hamiltonian

::::::::::::::::::::
(Solomon, 1955, eq. 3).

:::::
While

::::
the

:::::
name

::::::::
Solomon

::::::::
equations

::
is

::::::
mainly

:::::
used

::
to

::::
refer

:::
to

:::
the

::::
first

::
of

:::::
these

:::::::
aspects

:::::::::::::
(Keeler, 2010),

:::
the

::::::::::
perturbative

::::::::::
calculation

::
of

:::
the

:::::::::
transition80

::::::::::
probabilities

:::
per

::::
unit

:::::
time

::
is

:::
an

::::::
integral

::::
part

:::
of

:::
the

:::::::::
theoretical

:::::::::::
description.

::
In

::::
fact,

::::
the

::::
idea

:::
that

::::::::::
interaction

:::::
terms

::
in
::::

the

::::::::::
Hamiltonian

::::
have

::::::::::::
corresponding

:::::::::::
probabilities

:::
per

:::
unit

::::
time

::
to

::::::
induce

:::::::::
transitions

::::
(i.e.,

::::
what

:::
we

::::
have

:::::
called

:::
the

::::::
second

::::::
aspect

::
of

::
the

:::::::
theory),

:::::::
provides

:::
the

::::::
logical

::::::::::
justification

:::
for

::
the

::::::::::
description

::
by

:::
rate

::::::::
equations

:::::::::::::::::::::::::::::::::::::::
(Abragam, 1955; Solomon, 1955; Webb, 1961).

One month and a half after Abragam and Proctor’s report
:::
The

:::::::::
solid-state

:::::
effect

:::
(or

:::::
solid

:::::
effect)

::::
was

:::
the

::::::
second

:::::
DNP

:::::
effect85

:::
that

::::
was

::::::::
observed

:::::::::::::
experimentally

:::
and

:::::::::
explained

:::::::::::
theoretically

:::::::::::::::::::::::::
(Abragam and Proctor, 1958).

::
In

::::
the

::::::::::
Overhauser

:::::
effect,

::::
the

:::::::::::
simultaneous

::::
flips

::
of

:::
the

:::::::::
electronic

:::
and

:::::::
nuclear

:::::
spins,

::::::
which

:::
are

::::::
needed

::
to
::::::

couple
::::

the
::::::::
electronic

::::
and

::::::
nuclear

::::::::::::
polarizations,

::
are

::::::::
achieved

:::
by

:::::::
thermal

:::::::::
relaxation;

::
in

:::
the

:::::
solid

:::::
effect,

:::::
these

:::::::::::
synchronous

::::
spin

::::
flips

:::
are

::::::
driven

:::::::::
coherently

::
by

:::
the

::::::::::
microwave

:::::::::
irradiation.

:::::
Thus, in the May 28, 1958 issue of Comptes rendus, Erb, Motchane and Uebersfeld published another report

with the lengthy title “On a new method of nuclear polarization in fluids adsorbed on charcoal. Extension to solids and90
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in particular to irradiated organic substances” (Erb et al., 1958b). There, the authors state (our translation) The experiments

Erb et al. (1958a)had been carried out with charcoal whose half-linewidth was 5 gauss and the multiplication factor seemed to

reproduce the paramagnetic dispersion curve.

The new experiments indicated that the increase in polarization of the proton in the adsorbed fluid is maximum in all cases,

when the
::::
solid

:::::
effect,

:::
the

:::::::::::::::
phenomenological

::::
rate

::::::::
constants

::
of

:::
the

:::
rate

::::::::
equations

:::
are

:::::::::
calculated

::::
from

:::
the

::::::
matrix

::::::::
elements

::
of

:::
the95

:::::::::
microwave

::::
term

::
in

:::
the

:::::::::::
Hamiltonian.

:::
For

:::
this

::::
term

::
to

::::::
excite

::::::
nuclear

::::
spin

::::
flips,

:::
the

::::::
dipolar

:::::::::
interaction

:::::::
between

:::
the

:
electronic and

nuclear frequencies are chosen such that the nuclear resonance field differs from the electron resonance field δH =±5 gauss

(within 10%)
::::
spins

::::::
should

::::
mix

:::
the

:::::::
Zeeman

::::::
energy

::::::
states,

:::
and

::::
thus

:::::
make

:::
the

::::::::::::
zero-quantum

:::::
(ZQ)

:::
and

::::::::::::::
double-quantum

:::::
(DQ)

::::::::
transitions

:::::::
weakly

::::::
allowed

::::::::::::::::::::::::
(Abragam and Proctor, 1958).

These results support the suggestion of Abragam that the new theory of Abragam and Proctor on the nuclear polarization in100

solids (Abragam and Proctor, 1958) must apply to these new phenomena, and invalidates the interpretation proposed previously

(Erb et al., 1958a).

The value of 5 gauss found in the case of the proton indeed corresponds to the value deduced from the theoretical formula

H0± δH = (ω±ωN)/γe, .

This seems to have sealed the fate of the insightful observation of Erb, Motchane, and Uebersfeld (Erb et al., 1958a) that105

the odd parity of the solid-effect DNP field profile resembles the dispersive component of the EPR line. In the mean time,

Abragam’s explanation of the solid-state effect in terms of level mixing has become deeply embedded in
:::::::
Although

::::
the

:::::::::
Overhauser

:::::
effect

::::
and the thinking of the modern-day DNP researcher, whose quantitative analysis of the experimental data

starts with the mixing parameter q (Wind et al., 1985).

In this paper we demonstrate that eq. is correct. We show that the DNP field profile is odd in the field offset for the110

same reason that
::::
solid

:::::
effect

:::
are

:::::::::
described

:::::
using

:
a
:::::::::

consistent
:::::::::
theoretical

:::::::::
formalism

:::::
(with

:::
its

::::
two

:::::::::::::
complementary

:::::::
aspects

::::::::
explained

::::::
above),

:::::::::::::::::::
quantum-mechanically

::::
there

::
is
::
a

:::::
major

::::::::
difference

::::::::
between

::::::::
relaxation

:::
and

::::::::
coherent

:::::::::
excitation.

:::
By

::::
their

::::
very

:::::
nature,

::::
the

:::
rate

:::::::::
equations

::
of

:::
the

:::::::::::
polarizations

::::::
model

::
all

:::::::::
evolution

::
as

::::::::::
exponential

::::::::::::
decay/increase

:::::::
towards

:::::
some

::::::
steady

:::::
state.

::::::::
However,

::::::::
according

::
to

::::::::
quantum

::::::::::
mechanics, the dispersive component of the EPR line is odd, as intuited by Erb, Motchane

and Uebersfeld (Erb et al., 1958a). In fact, one could justifiably say that sx and sy are indeed responsible for the solid effect,115

exactly as described in . The contribution of sy does become negligible at lower mw powers or higher magnetic fields
:::::
effect

::
of

:::
the

:::::::::
microwave

:::::
field

::
is

::
to

:::::
rotate

::::
the

::::::::::::
magnetization,

:::::::
leading

::
to

:::
the

::::::::::::
phenomenon

::::::
known

::
as

:::::
Rabi

::::::::
nutation.

:::::
Since

:::::::
rotation

:::
and

::::::::::
exponential

::::::::::::
decay/increase

::::
are

::::::::::::
fundamentally

::::::::
different,

::::::::
modeling

:::
the

::::::
effect

::
of

:::
the

::::::::::
microwaves

:::
as

:
a
:::::::::

relaxation
:::::::
process

:::::
should

:::
not

:::
be

:::::::
possible

::
in

:::::::
general.

::::
This

:::::
raises

::::::::
questions

:::::
about

:::
the

::::::::::
fundamental

::::::::::
applicability

:::
of

::
the

::::
first

::::::
aspect

::
of

:::
our

:::::::::
theoretical

::::::::::::
understanding,

::::::
namely

:::
the

:::::::::::
rate-equation

:::::::::
formalism,

::
to

:::
the

:::::::::
description

:::
of

::
the

:::::::::::::::
coherently-driven

::::::::::
polarization

:::::::
transfer

::
in

::
the

:::::
solid120

:::::
effect

::
(as

::::::::
opposed

::
to

:::
the

::::::::::::::
relaxation-driven

:::::::
transfer

::
in

:::
the

::::::::::
Overhauser

:::::::
effect).

:::::::
Because

:::
the

::::
rate

::::::::
equations

:::
are

:::::::
justified

:::
by

:::
the

:::
idea

::::
that

:::::::::
interaction

:::::
terms

::::::
induce

::::::::
transitions

::::
with

::
a
:::::::
constant

:::::::::
probability

:::
per

::::
unit

::::
time,

:::
the

:::::::::
possibility

::
to

::::::
model

:::
the

:::::
effect

::
of

:::
the

::::::::::
microwaves

::::::
through

::
a
::::::::::
perturbative

::::
rate

:::::::
constant

::::
also

:::::::
becomes

::::::::::::
questionable.

:
It
::::::

should
:::
be

::::::
pointed

::::
out

:::
that

:::::
these

::::::::
concerns

:::
are

:::
not

::::
new.

::::::
Indeed,

::
in
:::
the

::::
case

:::
of

:::::
single

::::
spin

:::
1/2, where the solid effect is solely due to the dispersive component, in agreement

with
:::::::
quantum

::::::::
dynamics

::
is

::::::::
described

::::::
exactly

:::
by

:::
the

:::::
Bloch

:::::::::
equations,

:::::::
Abragam

::::::::
explicitly

::::::::
analyzes

::::
how

:::
the

:::
rate

:::::::
equation

::::
with

::
a125

4



::::::::::
perturbative

:::
rate

:::::::
constant

:::
for

:::
the

:::::::::
microwave

:::::
(mw)

::::::::
excitation

::::::
relates

::
to

:::
the

:::::
exact

:::::::
solution,

::::
both

::
at

:::::
short

:::::
times

:::
and

::
at

::::
long

:::::
times

::::::::::::::::::::::
(Abragam, 1961, pp. 27-32).

To arrive at these results we depart from the static picture of
:::::
While

:::::
many

:::::::
modern

:::::::::::
applications

::
of

:::::
DNP

::
in

:::
the

::::
solid

:::::
state

:::
rely

:::
on

::::::
pulsed

:::::::
methods

::::::::::::::::::::::::::::::
(Can et al., 2015; Quan et al., 2022),

::::
here

:::
we

:::::::
consider

:::::
only

::::::::::::::
continuous-wave

::::
(cw)

:::::::::
excitation,

::::::
where

:::
one

::
is

::::::::::
exclusively

::::::::
interested

::
in

:::
the

::::::
steady

::::
state

:::
of

:::
the

::::
spin

:::::::::
dynamics.

:::
As

:
a
::::::
result,

:::
we

::::
will

::
be

::::
only

:::::::::
concerned

:::::
with

::::
how

:::
the130

:::::::::
description

::
of the solid effect, in which the ratio of the dipolar and nuclear Zeeman interaction energies serves as a perturbation

parameter (eq. ) . In this approach the rates of the forbidden transitions acquire a factor of ω−2
I from |q|2, and a factor of ω2

1

from the mw excitation (eq.
::
by

:::
rate

::::::::
equations

::::::
relates

::
to

::
its

::::::
proper

:::::::::::::::::
quantum-mechanical

::::::::::
description

::
at

:::::
steady

:::::
state.

::
To

::::
this

::::
end,

::
in

:::
Sec. ), without any room for non-trivial cross-talk between these two frequencies.Such cross-talk is also not provided by the

Lorentzian dependence on Ω
:
2
:::
we

:::::::
examine

:::
the

::::
two

::::::::::
descriptions

:::
for

:
a
::::::
single

:::
spin

:::
1/2

::::
and,

:::::::::
following

::::::::::::::
Abragam (1961),

:::::::
confirm135

:::
that

:::
the

::::::::::
perturbative

::::
rate

:::::::
constant

::
of

:::
mw

:::::::::
excitation

::::
leads

::
to
:::
the

:::::
same

::::::
steady

::::
state

::
as

:::
the

:::::
Bloch

::::::::
equations.

Instead,
::::::::
Motivated

:::
by

:::
this

:::::::::::
observation,

::
in

::::
Sec.

::
3
:::
we

:::::
adopt

:::
the

:::::
same

::::::::::
perspective

::
to

:::::::
analyze

:::
the

::::::
system

:::::::::
composed

::
of

::::
one

::::::::
electronic

:::
and

::::
one

::::::
nuclear

::::
spin

::::
1/2.

::
In

:::
this

:::::
case,

:
starting with the Liouville-von Neumann equation of the density matrix, we

obtain
:::
first

:::::
derive

::::::
proper

::::::::::::::::::
quantum-mechanical equations of motion for the expectation values of the spin operators that are

relevant to the solid effect. We identify the rates of the forbidden transitions by analyzing the
::::
Then

:::
we

:::::
show

::::
that

:::
one

::::
can140

:::::::::
analytically

:::::
solve

:::
for

:::
the

:
steady state of these dynamical equations. The resulting analytical expressions are exact , and like

the classical expressions (eq. ) contain the squares of the dipolar interaction and of ω1 as multiplicative factors. Their offset

dependence, however, couples ω1 and ωI in a non-trivial way, which reduces to the classical expressions when ω1� ωI but

predicts qualitatively different dependence when ω1 is similar to or larger than ωI . Given the large mw powers currently used

in DNP, ω1 ≈ ωI should hold at X band (Neudert et al., 2016) and to a lesser degree at Q band.145

The main visual understanding that arises from our dynamical analysis can be summarized as follows. In the solid effect, the

transfer of polarization from the electron to
:::
the

::::
exact

::::::::
quantum

:::::::::
dynamics,

:::::
under

:::
the

:::::::::
simplifying

::::::::::
assumption

::::
that

:::
the

::::::::
dynamics

::
of

:::
the

::::::::
electronic

:::::
spins

::
is

:::
not

:::::::
affected

:::
by

:::
the

::::::::
hyperfine

:::::::::
interaction

:::::
with

:::
the

::::::
nuclei.

:::::
Since,

:::
at

:::::
steady

:::::
state,

:::
all

:::::::::
coherences

::::
can

::
be

::::::::
expressed

:::
in

:::::
terms

::
of

:
the nucleus is mediated by several coherences of two different types: (i) purely electronic and (ii)

containing both the electronic and nuclear spin operators. The former act as a Lorentzian band-pass filter centered at the150

electronic Larmor frequency; the latter as two (approximately) Lorentzian band-pass filters centered at ω ≈ ωS ±ωI . These

filters are depicted in fig. 10, which shows only half of the second filter for clarity. The polarization transfer efficiency depends

on the overlap (i.e., product) of the two filters since they are connected in series
:::::::::::
polarizations,

::
it

:::::::
becomes

:::::::
possible

:::
to

::::::
rewrite

::
the

:::::::::
dynamical

:::::::::
equations

::
in

:::::
terms

::
of

:::
the

:::::::::::
polarizations

:::::
only.

:::::::::
Comparing

:::
the

::::::::
resulting

::::::::
equations

::::
with

:::
the

::::
rate

::::::::
equations

:::
of

:::
the

:::::::::::
polarizations,

:::
we

:::::
select

:::
the

::::::::::::::::
phenomenological

::::
rate

::::::::
constants

::::
that

::::::
appear

::
in

:::
the

::::::
latter,

::::
such

::::
that

:::
the

::::
two

::::::::::
descriptions

:::::
have155

:::::::
identical

:::::
steady

:::::
states.

Two band-pass filters centered at ωS (blue) and ωS ±ωI (red). The solid effect efficiency is proportional to the product

of the even (with respect to ωS) component of one of the filters and the odd component of the other filter, since the two

filters are connected in series. Increasing the mw power (ω1) increases the intensities of both filters, thus their product grows

quadratically. Increasing the magnetic field (ωI ) decreases the intensity of the second filter and shifts it to the right, thus160
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quadratically decreasing the overlap with the first filter. The second filter has another symmetrical component centered at

ωS −ωI which is not shown.
:::::
Stated

::::::::::
differently,

:::
we

:::::::
abolish

:::
the

::::
idea

:::
of

:::::::
constant

:::::::::
transition

::::::::::
probabilities

::::
per

::::
unit

::::
time

:::
as

:::::::::
justification

:::
for

::::
the

:::
rate

:::::::::
equations.

:::::::
Instead,

:::
we

:::::
view

:::
the

::::
rate

::::::::
equations

::
as
::

a
:::::::::
convenient

::::::::::
mnemonic

:::
for

::::::::
encoding

:::
the

::::::
steady

::::
state

::
of

:::
the

:::::
exact

::::::::
quantum

:::::::::
dynamics,

::::
thus

:::::::::
providing

:
a
:::::::
shortcut

:::
to

:::
the

:::::::
analysis

:::
of

:::
this

::::::
steady

:::::
state.

:::::::
Having

:::::::::
decoupled

:::
the

:::::::::::::::
phenomenological

::::
rate

::::::::
constants

::::
from

::::
the

::::::::::
perturbative

::::::::::
calculation

::
of

:::
the

:::::::::::
mw-induced

::::::::
transition

::::::::::::
probabilities,

:::
we

:::
are

::::
free165

::
to

:::::
select

:::::
them

::::
such

::::
that

:::
the

:::::::::
mnemonic

::::::
yields

:::
the

::::::
correct

::::::
steady

:::::
state.

:::
We

::::
find

::::
that

:::
the

::::
rate

::::::::
constants

:::
for

:::
the

:::
ZQ

::::
and

::::
DQ

::::::::
transitions

:::::::
selected

::
in

::::
this

:::
way

:::::
differ

:::::
from

:::
the

:::::::::::
corresponding

:::::::::::
perturbative

:::
rate

::::::::
constants

:::
that

:::
are

::::::::
currently

::::
used

::
in

:::
the

::::::::
literature

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Abragam and Goldman, 1978; Wind et al., 1985; Duijvestijn et al., 1986).

The classical expression for the forbidden transition rates (eqs.
::
In

::::
Sec. and ) accounts only for the even part of the second

filter (solid red line in fig. 10). According to our picture, this even component has to be multiplied by the imaginary (odd)170

part of the first filter (dashed blue line) which is nothing but the dispersive EPR line that Erb, Motchane and Uebersfeld

suspected to play a central role in the solid effect. At the canonical offset of the solid effect, ωS +ωI , this corresponds to the

product of the blue and red filled circles in fig. 10.
:
6
:::
we

:::::
show

:::
that

::::
our

:::
new

::::
rate

::::::::
constants

:::::::::
reproduce

:::
the

:::::::
classical

::::::::::
expressions

::::
when

:::
the

:::::
Rabi

:::::::
nutation

::::::::
frequency

:::
ω1::

is
:::::
much

:::::::
smaller

::::
than

:::
the

::::::
nuclear

:::::::
Larmor

::::::::
frequency

:::
ωI ,

:::
as

:::::::
required

:::
by

:::
the

::::::::::
perturbative

::::::::
treatment.

::::
Our

::::
new

::::::::
analytical

::::::::::
expressions

:::
for

::::::
driving

::::
the

::::::::
forbidden

::::::::::
transitions,

:::::::
however,

::::
also

::::
hold

:::::
when

::::::::
ω1 > ωI ,

:::
as

:::::
could175

::::::
happen

::
at

:
S
::::
and

::
X

:::::
bands,

:::::
given

:::
the

::::
high

:::::::::
microwave

:::::::
powers

:::::::
currently

:::::::::
employed

::
in

::::
DNP

:::::::::::
experiments

::::
with

::::::::
resonance

::::::::
structure

::::::::::::::::::::::::::::::::::::::
(Neudert et al., 2016; Denysenkov et al., 2022).

:::::
These

::::
new

::::::::::
expressions

:::
are

:::
the

::::
main

:::::::::
analytical

::::
result

:::
of

:::
the

::::::
current

:::::
paper.

:

Since multiplication is commutative, in this mental picture there is an apparent duality between the two types of filters.

The colored circles in fig. 10are at the maximum of the even part of the red filter, which is multiplied by the odd part of the

blue filter. But for the solid effect one also multiplies the odd part of the red filter with the even part of the blue filter. At the180

maximum of the latter (blue diamond) the odd part of the red filter equals zero (red diamond). As a result, the solid effect is

observed at ωS ±ωI but not at ωS .

The amplitudes of the solid red line and dashed blue line increase linearly with ω1, hence their overlap at ωS +ωI scales with

ω2
1 . The amplitude

:
A

::::::::
complete

::::::::::
description

::
of

:::
the

::::
spin

::::::::
dynamics

::
of
::::

the
::::::::
four-level

::::::
system

::::
that

:::
we

::::::
analyze

::::
here

::::::::
requires

::::
only

::
16

:::::::
different

::::
spin

:::::::::
operators,

::::::::
including

:::
the

:::::::
identity

:::::::
operator.

::::
The

::::::::
dynamics

::
is

::::
thus

:::::::
encoded

:::
by

:
a
:::::::
16× 16

::::::::::
propagation

::::::
matrix

::
in185

:::::::
Liouville

::::::
space,

:::
and

:::
can

::
be

:::::::::
simulated

:::::::::
numerically

:::::
using

:
a
::::::::::::
spin-dynamics

:::::::::
simulation

:::::::
package

::::::::::::::::::::::::::::::::::::
(Bengs and Levitt, 2018; Yang et al., 2022).

::::
Such

:::::::::
numerical

:::::::::
simulations

:::
are

::::::::
currently

:::::
often

::::::::
employed

::
to

::::::
explore

:::
the

:::::::::
efficiency of the solid red line decreases linearly with

ωI . Since ωI also changes the distance of this filter from the electronic filter, the overlap at ωS +ωI scales inversely with ω2
I .

This is how the factor ω2
1/ω

2
I , which in the classical description resulted from substituting and into , arises in our picture.

The theoretical justification and details of this alternative description of the solid effect are presented in the following190

sections. We start with an overview of the rate equations of the electronic and nuclear polarizations, and connect their steady

state to
:::::
effect

::
for

:::::::
various

::::::::::
experimental

::::::::::
parameters.

::::::::
However,

::::
even

::
in

:::
the

::::::::
relatively

::::::
simple

:::
case

:::
of

:
a
::::::::
four-level

::::::
system,

:::::::::
observing

:
a
::::::
certain

:::::
effect

::
in the DNP enhancement (Sec. ??). The focus here is on the phenomenological rate constants used to describe

the forbidden transitions. After that , in Sec. 4, we derive quantum-mechanical equations of motion for the spin operators of

relevance to the solid effect. In
::::::::::
simulations

::::
does

:::
not

:::::::::::
automatically

:::::::
provide

::::::::::::
understanding

:::::
about

:::
the

::::::::::
mechanism

::
of

:::
this

::::::
effect,195
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::
as

:::::::::::
demonstrated

:::::::
recently

:::
by

::::::::::::::::
Quan et al. (2023),

::::
who

:::::
strive

::
to

:::::::
explain

:::
the

:::::
origin

:::
of

:
a
:::::::::
dispersive

:::::
DNP

:::::::::
component

::::
seen

:::::
both

::
in

::::::::::
experiments

:::::::::::::::::::::::::::
(Shankar Palani et al., 2023) and

::
in

::::
their

:::::::::
numerical

:::::::::::
simulations.

::::::
Clearly,

::::::::::
developing

:::::::
intuition

::::::
about

:::
the

::::
spin

::::::::
dynamics

:::
that

::
is

:::::::
relevant

:::
for

:
a
:::::
given

:::::::::::
phenomenon

::
is

:::::::::
invaluable.

:::
The

:::::::
general

:::::::
quantum

:::::::::
dynamics

::
of

:
a
:::::::::

four-level
::::::
system

::::
can

::
be

::::::::
described

:::::::
through

:::
15

:::::::
coupled

:::::::::
differential

:::::::::
equations

:::
for

:::
the

:::::::::
expectation

::::::
values

::
of

:::
the

::
15

::::
spin

::::::::
operators,

:::::::::
excluding

::
the

:::::::
identity.

::::
The

::::::::
equations

:::
that

:::
we

::::::
derive

::
in Sec. ?? we require that these200

equations of motion and the rate equations of
:::
3.1,

:::::::
together

::::
with

:::
the

:::::
Bloch

::::::::
equations

:::::
from Sec. ?? have identical steady states.

This allows us to express the phenomenological rate constants in terms of the parameters of the problem. In Sec. ?? we examine

the relationship between the classical expression of the forbidden transition rates (eq. ) and our results. Our conclusions are

given
:::
2.2,

::::::::
constitute

:::::
seven

:::::
such

:::::::::
equations.

:::
(In

::::
fact,

:::
we

::::::::
implicitly

:::::::
account

:::
for

::::
three

:::::
more

:::::::::
operators,

::::
thus

:::::::
covering

:::
ten

:::
out

:::
of

::
the

:::
15

:::::::
possible

:::::
ones,

::
as

:::::::::
explained in Sec. 7.3.

::
4.)

::::::
When

:::
the

::::::
number

:::
of

:::::::
coupled

:::::::::
differential

::::::::
equations

::::::::
increases

:::::::
beyond

:::::
three,205

::::::
gaining

::
an

:::::::
intuitive

::::::
insight

::::
into

:::
the

::::::::
dynamics

::::
that

::::
they

:::::::
describe

:::::::
becomes

:::::::
difficult.

:

Differently from the static picture based on level mixing and perturbation theory, the dynamical description developed here is

readily extendable to liquids (Erb et al., 1958a; Leblond et al., 1971; Gizatullin et al., 2022; Kuzhelev et al., 2022) where the

dipolar interaction is time-dependent. Such extension is presented in the companion paper (Paper II). There we show that

the random molecular motions in liquids broaden the second filter in fig
:::::::
Inspired

:::
by

:::
the

::::::::
graphical

::::::::::::
representation

::
of

::::::::
chemical210

:::::::
reactions

::
in
::::::::::::
biochemistry,

::
in

:::
Sec. 10, thus decreasing its amplitude at ωS +ωI . This substantially reduces the product at the

position of the red and blue filled circles, and hence the efficiency of
:
4
:::
we

::::::::
represent

:::::::
visually

::
the

:::::::
coupled

::::::::::
differential

::::::::
equations

::::::::
describing

:::
the

::::::::::
solid-effect

::::
spin

::::::::
dynamics.

::::
The

:::::::
resulting

:::::
“flow

::::::::
diagram”

:::::
sheds

::::
light

::
on

:::
the

:::::::::
dynamical

::::::::::::::
interconnections

:::::::
between

::
the

::::
spin

:::::::::::
polarizations

:::
and

:
the

:::::::::
coherences

:::
that

:::
are

:::::
active

::
in

:::
the solid effect. At the same time, however, the motional broadening

increases the tail of the solid red line at the location where the dispersive EPR component (dashed blue line) has a maximum.215

As a result, the product of the two amplitudes at the positions of the blue and red stars in fig.
::
In

:::
Sec. 10 may become sufficiently

large to be manifested in the DNP field profile. One then sees solid-effect enhancements at “wrong” offsets, in addition to

the enhancements at the “correct” solid-effect offsets (Kuzhelev et al., 2022).Under such conditions, the dispersivecomponent

of
:
5
:::

we
::::::

study
:::
the

::::::::
algebraic

:::::::::::
relationships

:::::::
between

:::
the

::::::::::
coherences

::::
and

:::
the

:::::::::::
polarizations

::::
that

::::::
emerge

::
at
::::::

steady
:::::

state.
::::::
When

:::::::::
considered

::
in

:::
the

:::::::
context

::
of

:::
the

::::::::::
dynamical

::::::::::::::
interconnections,

:::::
these

::::::::
algebraic

:::::::::::
relationships

::::::::
highlight

:::
the

::::::::::
importance

:::
of

:::
the220

:::::
purely

:::::::::
electronic

:::::::::
coherences

::
in the EPR line is manifested in the solid-effect DNP field profile, visually confirming the hunch

of Erb, Motchane and Uebersfeld (Erb et al., 1958a).
::::::
transfer

::
of

:::::::::::
polarization,

::::
with

:::
the

::::::::::
out-of-phase

::::
(i.e.,

:::::::::
dispersive)

::::::::::
component

::::::
playing

:
a
:::::::::

prominent
:::::
role.

:::::::::::
Interestingly,

:::
the

:::::::::
importance

:::
of

:::
the

::::::::
dispersive

::::
EPR

::::
line

:::
for

:::
the

:::::
solid

:::::
effect

:::
was

:::::::
intuited

:::::::
already

::
in

::
the

::::
first

:::::
report

:::
of

::
the

:::::
solid

:::::
effect

::
in

::::::
liquids

:::::::::::::::
(Erb et al., 1958a),

:::
as

::
we

:::::::
discuss

::
in

::::
Sec.

:::
7.2.

::::
Our

::::::::::
conclusions

:::
are

::::::::
presented

::
in

::::
Sec.

:::
7.3.

:
225
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2
:::::::
Allowed

::::
EPR

:::::::::
transition

3 Rate equations

In the rate-equation treatment of DNP (Abragam, 1955; Webb, 1961; Barker, 1962)
::
the

::::::::::
Overhauser

:::
and

::::
solid

::::::
effects

:::::::::::::::::::::::
(Webb, 1961; Barker, 1962),

both thermal relaxation and mw excitation are envisioned as
:::::::
randomly

:
flipping spins between pairs of energy levels with certain

rates, as depicted in figs. ??a and ??b. Excitation of the allowed EPR transition (fig. ??a) does not lead to simultaneous flips of230

the electronic and nuclear spins, and is thus not capable of transferring polarization from the former to the latter. In contrast,

the ZQ and DQ forbidden transitions involve simultaneous electron-nucleus spin flips
::
1a

:::
and

:::
1b.

::::
The

::::::
current

::::::
section

:::::
aims

::
to

:::::::
illustrate

:::
the

::::::::
analytical

:::::::
strategy

::::
that

:::
we

::::
will

::::::
employ

::
to

:::::::
analyze

:::
the

::::
solid

::::::
effect,

::
in

:::
the

::::::::
simplest

:::::::
possible

::::
case

::
of

:
a
::::::

single
::::
spin

:::
1/2 (fig. ??b), and drive the solid-state DNP effect which is analyzed in this paper.

2.1 Derivation of the rate equations235

While the forbidden transitions couple the nuclear and electronic polarizations, their influence on the latter is typically negligible

compared to other mechanisms of electronic relaxation. It is therefore justified to write a rate equation for
:::
1a).

:::
We

:::
first

:::::::
present

::
the

::::
rate

:::::::
equation

::
of
:
the electronic polarization considering only the allowed EPR transition.

Below, we first examine the electronic transition on its own (fig
:::
and

:::::
obtain

:::
its

:::::
steady

:::::
state

::::
(Sec. ??a)and then

:::
2.1).

:::::
Then

:::
we

turn to the electron-nucleus transitions (fig
:::::
Bloch

::::::::
equations

::::
and

:::
also

::::::
obtain

::::
their

::::::
steady

::::
state

::::
(Sec. ??b). The derivation of the240

rate equations is illustrated only for the mw excitation. Relaxation is included at the end by analogy
::::
2.2).

::::::
Finally,

:::
by

::::::::
requiring

:::
that

:::
the

:::
two

:::::::::::
descriptions

::::
have

:::::::
identical

::::::
steady

:::::
states,

:::
we

:::::::
identify

:::
the

:::
rate

:::::::
constant

::::
that

::::::
should

::
be

::::
used

::
to
::::::::
describe

:::
the

:::::
effect

::
of

::
the

::::::::::
microwaves

:::
in

::
the

::::::::::::::::
phenomenological

:::
rate

::::::::
equation.

2.0.1 Allowed electronic transition

2.1
:::

Rate
::::::::
equation

:::
of

:::
the

:::::::::
electronic

::::::::::
polarization245

Let n+ and n− be the populations of the two electronic spin energy levels in fig. ??
:
1a. Assuming the spins are not destroyed

or created, the sum of the two populations is constant in time. Treating the mw excitation as a process that randomly flips the

spins with rate constant v1, we have

ṅ+|mw =−ṅ−|mw =−v1(n+−n−). (1)

(The subscript of the vertical bar indicates that the time derivative accounts only for mw excitation.) Note that v1 ≥ 0, since a250

negative rate constant does not make physical sense.

The electron
::::::::
electronic

:
spin polarization PS = (n+−n−)/(n+ +n−) is negative at thermal equilibrium, i.e., P eq

S < 0.

Differentiating PS with respect to time and using (1), we find ṖS |mw =−2v1PS .

::
for

:::
the

:::::
effect

:::
of

::
the

::::
mw

:::::::::
irradiation.

:
The action of thermal relaxation is analogousbut

:
,
::::
after

::::::::
replacing

::
v1:::

by
::::
w1S :::

and
::::::
taking

:::
into

:::::::::::
consideration

::::
that PS decays towards its thermal equilibriumwith rate 2w1S =R1S = 1/T1S , where T1S is the electronic255
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T1 relaxation time. Combining :
::::::::::::::::::::::::
ṖS |th =−2w1S(PS −P eq

S ).
:::::::::
Combining

:::
the

:::::::::::
contributions

:::
of mw excitation and thermal re-

laxationwe obtain the following rate equation for the electronic polarization:

ṖS =−R1S(PS −P eq
S )− 2v1PS .

:
,
::
we

:::
get

:

ṖS =−2v1PS −R1S(PS −P eq
S ),

:::::::::::::::::::::::::::
(2)260

:::::
where

:::::::::::
R1S = 2w1S .

::::
The

::::::::
electronic

::::::::::
longitudinal

:::::::::
relaxation

::::
time

::
is

::::::::::::
T1S = 1/R1S .

Equation
:
In

:::
the

::::
case

::
of

:::
cw

::::::::::
irradiation,

:::
one

::
is

::::::::
interested

::
in

:::
the

::::::
steady

::::
state

::
of

:::
the

::::::::
electronic

:::::::::::
polarization.

:::::
When

:::
the

::::::::
left-hand

:::
side

::
of

:
(2) is depicted in

:
is
:::
set

:::::
equal

::
to

::::
zero,

:

P ss
S =

R1S

R1S + 2v1
P eq
S = pP eq

S ,
::::::::::::::::::::::::

(3)

:::::
where

:::
the

::::::
second

:::::::
equality

::::::
defines

:::
the

:::::
factor

::
p.

:::
We

:::::
refer

::
to

:
p
:::
as

:::
the

::::::::
electronic

::::::::::
polarization

::::::
factor,

::::
since

::
it

::::::::
quantifies

::::
how

:::::
close265

::
the

::::::::::
steady-state

::::::::::
polarization

::
is
::
to

:::
its

:::::::::
Boltzmann

:::::
value.

:

:::
The

::::
rate

:::::::
equation

:
(2)

::::::
models

:::
the

::::::::::
competition

:::::::
between

::::
mw

::::::::
pumping

:::
and

:::
the

::::::::::::
(longitudinal)

:::::::::
relaxation

::
of

:::
the

:::::::::::
polarization.

:::::
When

:::
the

::::
two

:::::
effects

:::::::
balance

:::::
each

:::::
other,

:::
the

::::::::::
polarization

::
is
:::::
given

:::
by

:::
the

::::::::::
steady-state

:::::::
solution

:
(3)

:
.
:::
For

:::
the

::::
rate

:::::::
equation

:::
to

::
be

:
a
:::::::::
predictive

::::
tool,

::
it

::
is

::::::::
necessary

::
to

::::::
express

:::
the

::::::::::::::::
phenomenological

:::
rate

::::::::
constants

:::
v1 :::

and
::::
w1S::

in
:::::
terms

:::
of

::::
more

:::::::::::
fundamental

::::::::
quantities.

:::
As

::::::::
discussed

::
in

:::
the

:::::::::::
Introduction,

::::
these

:::
are

::::::::
identified

::::
with

:::
the

::::::::::
probabilities

::
of

::::::::
transition

:::
per

:::
unit

::::
time

::::::::
between

::
the

::::
two270

:::::
energy

::::::
levels

::
in fig. ??c. In this graphical representation of

::
1a,

::::::
which

:::
are

::::::::
calculated

:::::
from

:::::::::::::
time-dependent

::::::::::
perturbation

::::::
theory

::
to

:::
first

:::::
order

:::::::::::::::
(Solomon, 1955).

::
In

:::
the

::::
case

::
of

:::
v1,

:::
this

::
is

::::::::
basically

::::::
Fermi’s

::::::
golden

::::
rule

::::::::::::::::::::
(Shankar, 1994, Ch. 18),

::::::
which

:::::::
contains

::
the

:::::::
product

:::
of

:
a
:::::::
squared

::::::
matrix

:::::::
element

::::
and

:
a
:::::::::::::
shape-function

::::
that

:::::::
accounts

:::
for

:::
the

::::
fact

::::
that

:::
the

:::::::
energies

:::
of

:::
the

:::
two

::::::
levels

::
are

::::
not

:::::::
infinitely

:::::
sharp

:::::::::::::::::::::::
(Abragam, 1961, Sec. II D).

:::
For

::
a
:::
mw

::::::::
magnetic

::::
field

::
in
:::
the

::
x
::::::::
direction,

:::
the

:::::::
relevant

::::::
matrix

:::::::
element

::
is

:::::::::::
ω1〈+|Sx|−〉. :::::

When
:::
the

:::::
spread

:::
of

::
the

::::::
energy

:::::
levels

::
is
::::::::
identified

::::
with

:::
the

::::
EPR

::::
line

:::::
shape,

::::::
which

::
we

::::
take

::
to

::
be

::
a
:::::::::
Lorentzian,

::::
one275

:::::
arrives

::
at
:

v1(Ω) =
1

2
ω2

1

R2S

R2
2S + Ω2

,

::::::::::::::::::::

(4)

:::::
where

::::::::::
Ω = ωS −ω::

is
:
the differential equation, we use an oval node to represent a dynamical variable (PS in this case) whose

time derivative is calculated by summing the contributions of all arrows that point into the node. The contribution of an arrow

is obtained by multiplying the weight of the arrow by the variable from which the arrow originates. Differently from similar280

graphical representations in chemical kinetics, here an arrow does not deplete the node at its origin but only contributes to the

node at its pointed end. By shading a node in gray we indicate that the corresponding variable remains constant in time. Each

arrow in fig. ??c corresponds to one of the summands on the right-hand side of . The two gray arrows account for thermal

relaxation and the red arrow for mw excitation.
::::
offset

::
of

:::
the

::::
mw

::::::::
frequency

::
ω
:::::
from

:::
the

::::::::
electronic

::::::::
resonance

:::::::::
frequency

:::
ωS ,

::::
and

:::
R2S::

is
:::
the

:::::::::
electronic

::
T2:::::::::

relaxation
::::
rate.285
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Energy levels of (a) single electronic spin (S = 1/2) and (b) one electronic spin and one nuclear spin (I = 1/2). Diagrammatic

representation of

(+)

(−)

v1 w1SmS

+1
2

−1
2

(+−)
(++)

(−−)
(−+)

mI
+1

2
−1

2

w1

w1

w0

w2

v0

v2

(a) (b)

Figure 1.
:::::
Energy

::::
levels

::
of

:
(
:
a
:
)
:
a
:::::
single

:::::::
electronic

::::
spin

::::::
S = 1/2

:::
and

:
(
:
b
:
)
:::
one

:::::::
electronic

::::
spin

:::
and

:::
one

::::::
nuclear

:::
spin

:::::::
I = 1/2.

:::::::::
Microwaves

:::::
excite

:::::
single-,

:::::
zero-

:::
and

::::::::::::
double-quantum

::::::::
transitions

::::::
(wiggly

:::
red

:::::
arrows)

::::
with

:::
rate

:::::::
constants

:::
v1,

:::
v0,

:::
and

::
v2,

::::::::::
respectively.

::::::
Thermal

::::::::
relaxation

:::::
(thick

:::
grey

::::::
arrows)

:::::
arises

::::
from

::::::
coupling

::
to

::::::
external

::::::
degrees

::
of

:::::::
freedom.

:

We refer to arrows that leave a node and enter the same node as self-arrows. To prevent positive feedback, and thus ensure

dynamical stability, the total contribution of all self-arrows of a node should not be positive. For the electronic polarizationthis

means R1S + 2v1 ≥ 0. (We always write the weight of a self-arrow with an explicit negative sign, which is placed inside the

loop formed by the arrow.)
::::::::
Formally,

:::
this

::::::::::
perturbative

:::::
result

::
is

::::
valid

::::
only

:::
for

::::
short

:::::
times

:::::::::::::::::::::::::::::::::
(Cohen-Tannoudji et al., 2019, Ch. XIII).

::
Its

:::::::
validity

::
at

::::
long

:::::
times,

::::::::
including

:::
the

::::::
steady

::::
state,

::::
thus

:::::
needs

::
to

:::
be

::::::::
explicitly

:::::::::
established

::::::::::::::::::::::::
(Abragam, 1961, pp. 30-32).

::
In

:::
the290

:::
next

::::::::::
subsection,

:::
we

::::
show

::::
that (4)

::
is

::::::::
consistent

::::
with

:::
the

::::::
steady

::::
state

::
of

:::
the

:::::
Bloch

:::::::::
equations.

2.2
::::

Bloch
:::::::::
equations

:::
The

:::::
effect

:::
of

:::
the

::::::::::
microwaves

::
on

:::
the

:::::::::
two-level

::::::
system

::
in

:::
fig.

:::
1a

::
is

::::::::
described

:::::::
exactly,

:::
and

:::
for

:::
all

:::::
times,

:::
by the rate equations

of (c) the electronic
:::::::
classical

:::::
Bloch

:::::::::
equations.

::::
The

:::::::
coherent

::::
part

:::
of

::::
these

:::::::::
equations

:::
can

:::
be

::::::
derived

:::::
from

:::
the

::::::::::::
Liouville-von

::::::::
Neumann

:::::::
equation

::
of

:::
the

::::::
density

:::::::
matrix.

::::::::::
Specifically,

:::
the

::::::::
evolution

::
of

:::
the

:::::::::
expectation

:::::
value

:::::::
q = 〈Q〉

::
of

:
a
:::::::
general

::::
spin

:::::::
operator295

::
Q,

:::::
under

:::
the

:::::
action

:::
of

:
a
::::
spin

::::::::::
Hamiltonian

:::
H

::
(in

:::::
units

::
of

::::::
angular

::::::::::
frequency),

::
is

q̇|coh = i〈[H,Q]〉.
::::::::::::::

(5)

:::
We

:::::::
describe

:::
the

:::::::::
interaction

::
of

:::
the

:::::::::
electronic

:::::
spins

::::
with

:::
the

::::::::
magnetic

::::
field

:::::
using

:::
the

::::::::
following

:::::::::::
Hamiltonian

::
in

:::
the

:::::::
rotating

:::::
frame:

:

H = ΩSz +ω1Sx.
:::::::::::::::

(6)300

::::
Here

:::
the

::::
first

::::
term

:::::::
accounts

:::
for

:::
the

:::::::
Zeeman

:::::::::
interaction

::::
with

:::
the

::::::::
constant

:::::::
magnetic

:::::
field

:::
B0 :::::

(along
:::
the

::
z

::::
axis)

::::
and

:::
the

::::::
second

::
for

:::
the

:::::::::
interaction

::::
with

:::
the

::::
mw

::::
field

:::
B1 :::::

(along
:::
x).

:
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:::::
Using (6)

:
in
:
(5)

:
,
:
it
::
is

:::::::::::::
straightforward

:
to
::::::
obtain

:::
the

:::::::
coherent

::::::::
dynamics

::
of

:::::::::
sz = 〈Sz〉,::::::::

sy = 〈Sy〉:and (d) nuclear polarizations
:::::::::
sx = 〈Sx〉.

::::
After

:::::::::
appending

:::::::::
transverse

:::
and

::::::::::
longitudinal

:::::::::
relaxation

::
by

:::::
hand,

:::
one

::::::
arrives

::
at
:::
the

:::::::
familiar

:::::
Bloch

::::::::
equations

:

ṡx =−Ωsy −R2Ssx

ṡy = Ωsx−ω1sz −R2Ssy

ṡz = ω1sy −R1S(sz − seq
z ).

:::::::::::::::::::::::

(7)305

::::
Since

::::
the

::::::::::
polarization

:::
PS:::::::::::

corresponds
::
to

:::
the

::::::::::
expectation

::::::
value

::
of

:::
the

::::
spin

::::::::
operator

:::
Sz ,

::::
the

:::
rate

::::::::
equation

:
(2)

::::
must

:::
be

::::::
directly

::::::::::
comparable

::
to
::::

the
::::
third

::::::::
equation

::
in

:
(7).

:::::::::
However,

:::
we

:::
see

::::
that

:::
the

:::::
effect

:::
of

:::
the

::::::::::
microwaves

::
is

::::::::
modeled

:::::::::
differently

::
in

:::
the

:::
two

:::::::::
equations.

:::
In

:::
the

:::
last

::::::
Bloch

::::::::
equation,

:::
the

::::::::::
microwaves

::::::
couple

:::
sz ::

to
:::
the

:::::::::
transverse

:::::::::
component

:::
sy .

:::::
Such

::::::::
coupling

:
is
:::::::::::::

understandably
:::::::

missing
:::

in
:::
the

::::
rate

::::::::
equation,

::::::
which

::::::::
describes

::::
the

::::::::
dynamics

:::
of

:::
PS :::::::

without
::::::::
reference

:::
to

:::
the

:::::::::
transverse

::::::::::
components.

:::::::
Clearly,

:::
the

:::
two

::::::::::
descriptions

::::::
cannot

::
be

:::::::::
equivalent

::
in

:::::::
general.

:::::::::::
Nevertheless,

::
in

::::
spite

:::
of

::
the

::::::::::::
fundamentally

::::::::
different310

::::
ways

:::
the

::::
two

:::::::::::
descriptions

:::::
model

::::
the

::::::::::
microwaves,

:::::
there

::
is
::

a
::::::
regime

::::::
where

:::
the

::::::
Bloch

::::::::
equations

::::
and

:::
the

::::
rate

:::::::
equation

::::
are

:::::::::
equivalent,

:::
not

::::
only

::::::::::::
approximately

:::
but

:::::::
exactly.

::::
This

:
is
:::
the

::::::
regime

:::
of

:::::
steady

:::::
state.

::
At

::::::
steady

::::
state,

:::
the

:::::::::
transverse

::::::::
variables

::::
sx,y :::

can
::
be

:::::::::
eliminated

:::::
using

:::
the

::::
first

::::
two

:::::
Bloch

:::::::::
equations.

:::::
From

:::
the

:::
first

::::::::
equation

::
we

::::
find

sss
x =− Ω

R2S
sss
y ,

:::::::::::::

(8)315

:::::
where

:::
the

:::::::::
superscript

:::
‘ss’

:::::::
denotes

::::::
steady

::::
state.

:::::::::::
Substituting

:::
this

:::::
result

:::
into

:::
the

::::::
second

::::::
Bloch

::::::::
equation,

::
we

:::
get

:

sss
y =− ω1

R2S + Ω 1
R2S

Ω
sss
z .

:::::::::::::::::::::

(9)

:::
We

::::
have

::::
thus

::::::::
expressed

::::
both

:::::::::
transverse

::::::::::
components

::
in

:::::
terms

::
of

:::
the

::::::::::
longitudinal

:::::::::
component

:::
as

:::::::
follows:

sss
x,y =±(ω1fx,y)sss

z
::::::::::::::::

(10)

:::
(the

:::::
upper

::::
sign

::::::::::
corresponds

::
to

::
x

:::
and

:::
the

:::::
lower

::
to

:::
y),

:::::
where

:::
we

::::
have

:::::::
defined

:::
the

:::::::
auxiliary

::::::::
functions

:
320

fy =
1

R2S + Ω 1
R2S

Ω
, fx =

Ω

R2S
fy.

::::::::::::::::::::::::::::::::

(11)

::::::
Finally,

::::::::::
substituting

:::
sss
y ::::

into
:::
the

::::
third

::::::
Bloch

:::::::
equation

::
in

:
(7)

:
,
:::
we

:::::
arrive

::
at

:::
the

::::::::
following

::::::::::
differential

:::::::
equation

:::
for

:::
sz::

at
::::::
steady

::::
state:

:

ṡss
z =−ω2

1fy s
ss
z −R1S(sss

z − seq
z ).

:::::::::::::::::::::::::::
(12)

::::::::
Although

:::
the

::::
time

::::::::
derivative

:::
on

:::
the

:::::::
left-hand

::::
side

::
of

:
(12)

:::::
equals

::::
zero,

:::
the

::::::::
equation

:::
was

:::::::
written

::
in

:::
this

:::::
form

::
to

:::::::
facilitate

:::
its325

:::::::::
comparison

::::
with

:::
the

::::
rate

:::::::
equation (2). (e) Rate equation of the electronic polarization at steady state and (f) its solution

:::::::
Clearly,

11



:
if
:::
the

::::
rate

:::::::
constant

::
v1::

in
:
(2)

:
is

:::::::
selected

::::
such

::::
that

2v1 = ω2
1fy = ω2

1

1

R2S + Ω 1
R2S

Ω
,

:::::::::::::::::::::::::::

(13)

:::
then

:::
the

::::::
steady

::::
state

:::
of

:::
PS :::

will
:::

be
:::::::
identical

:::
to

:::
the

:::::
steady

:::::
state

::
of

:::
sz .

::::::::::
Incidentally,

:::
the

:::
v1::

in
:
(13),

::::::
which

:::::::
ensures

:::
that

:::
the

::::
two

::::::::::
descriptions

::::
have

:::
the

::::
same

::::::
steady

:::::
state,

::
is

:::::::
identical

::
to

:::
the

::::
rate

:::::::
constant

:::::::
obtained

:::::
from

::::::::
first-order

::::::::::
perturbation

::::::
theory

::::
(eq. (4)

:
).330

::::
This

:::
will

:::
not

:::
be

:::
the

:::
case

:::
for

:::
the

::::
rate

::::::::
constants

::
of

:::
the

::::::::
forbidden

:::::::::
transitions,

:::
as

::
we

:::::
show

::
in

::::
Sec.

::
3.

:

::::
Once

:::
the

::::
two

:::::::::::
descriptions

:::
are

:::::::::::
demonstrated

:::
to

::::
have

::::::::
identical

::::::
steady

:::::
states,

::::
the

:::::::
analysis

::
of

::::
the

:::::
Bloch

:::::::::
equations

:::
can

:::
be

:::::::::
terminated

::
at

:::
this

:::::
point

:::::
since

:
it
::::

will
:::::::
exactly

:::::
follow

::::
the

::::::::::
steady-state

:::::::
analysis

::
of

:::
the

::::
rate

::::::::
equation.

::
In

:::
the

::::
next

:::::::
section,

::::::
where

::
we

:::::::::
determine

:::
the

:::
ZQ

::::
and

:::
DQ

::::::::
transition

:::::
rates

::::
from

:::
the

::::::
steady

::::
state

:::
of

:::
the

::::
spin

::::::::
dynamics,

:::
we

::::
will

::::::::
similarly

::::
need

::
to

::::::::
consider

::::
only

:::
the

::::::::
evolution

::
of

::::::::
iz = 〈Iz〉:::::

under
:::
the

::::::
action

::
of

:::
the

:::::::::::
microwaves.

:::
The

:::::::
balance

:::::::
between

:::
the

::::
mw

:::::::::
irradiation

:::
and

:::
the

:::::::
nuclear335

::
T1:::::::::

relaxation
::::
will

::
be

:::::::
handled

:::
on

:::
the

::::
level

:::
of

:::
the

:::
rate

::::::::
equation

::
of

::::
the

::::::
nuclear

::::::::::
polarization. (g) Rate equation of the nuclear

polarization at steady state. (a

:::
For

::::::::::::
completeness,

:::
here

:::
we

:::::::
proceed

::::
one

:::
step

::::::
further

::::
and

::::
solve

:
(12)

::
for

:::
sss
z :::::::

recalling
::::
that

:::
the

::::
time

::::::::
derivative

::::::
equals

::::
zero.

::::
The

::::
result

::
is
:

sss
z = (R1Sfz)s

eq
z ,

::::::::::::::
(14)340

:::::
where

:::
we

::::
have

::::::
defined

:

fz =
1

R1S +ω2
1fy

.

:::::::::::::::

(15)

:::
The

::::::::
functions

:::
fx, b) Microwaves excite single-, zero-

::
fy:and double-quantum transitions (wiggly red arrows) with rate

constants v1, v0,
::
fz :::::::::

introduced
::
in (11) and v2. Thermal relaxation (thick grey arrows) arises from coupling to external degrees

of freedom, e.g., motion. (c-g) An arrow flowing into a node contributes either to (15)
::::
have

:::::
units

::
of

:::::
time,

:::
and

::::
the

::::::
factors345

:::::::
enclosed

::
in

::::::::::
parenthesis

::
in (10)

:::
and

:
(14)

:::
are

::::::::::::
dimensionless.

:::::
(This

::::::::::
information

::
is

::::::::
collected

::
in

:::::
Table

::
1.)

:::::
Since

:
(14)

:
is

:::::::::
equivalent

::
to (3)

:
,
:
it
::::::::
provides

::
an

:::::::::
expression

:::
for

:::
the

::::::::::
polarization

:::::
factor

:::::::::
p= 1− s,

:::::
where

:
s
::
is

:
the time derivative

::::::
familiar

::::::::
saturation

::::::
factor

::
of

::
the

:::::::::
(allowed)

::::::::
electronic

::::::::
transition.

:

2.2.1 Forbidden transitions

Now we turn to the four-level system in350

3
:::::::::
Forbidden

::::::::::
transitions

:::
The

:::::::::
excitation

::
of

:::
the

::::::::
allowed

::::
EPR

::::::::
transition

::::::::::
considered

::::::
above,

::::
does

::::
not

::::
lead

::
to

:::::::::::
simultaneous

:::::
flips

::
of

:::
the

:::::::::
electronic

::::
and

::::::
nuclear

:::::
spins,

::::
and

::
is

::::
thus

:::
not

:::::::
capable

::
of

::::::::::
transferring

::::::::::
polarization

:::::
from

:::
the

::::::
former

::
to

:::
the

:::::
latter.

:::
In

:::::::
contrast,

:::
the

::::
ZQ

:::
and

::::
DQ

::::::::
transitions

:::::::
involve

:::::::::::
simultaneous

:::::::::::::
electron-nucleus

::::
spin

::::
flips

:
(fig. ??b.

:::
1b),

::::
and

::::
drive

:::
the

:::::::::
solid-state

:::::
DNP

:::::
effect.

:::::
While

:::::
these,

:::
so

12



Table 1.
:::::::
Functions

:::::::::::
characterizing

:::
the

:::::::::
steady-state

::::::::
properties of the variable (oval node) or directly to

::::::
classical

:::::
Bloch

::::::::
equations

:::
and

:
the

variable (rectangular node). A gray node indicates that the variable is constant in time. (e,g) The sum
::::::::
Bloch-like

:::::::
equations

:
of the arrows

flowing into a gray oval node equals zero.
:::::::
variables

::::::::::
gn = 〈SnI+〉:(f,g

::::::::
n= x,y,z)Dashed arrows are deduced relationships between the

variables at steady state.

::::::
classical

:::::
Bloch

:::
eqs.

: ::::::::
Bloch-like

:::
eqs.

:::
unit

::
of

::::
time

:::::::
fx,fy,fz :::::::

Fx,Fy,Fz:

::::::::::
dimensionless

: ::::::::::::::
ω1fx,ω1fy,R1Sfz: :::::::::::::

ω1Fx,ω1Fy, δFz

:::::
called,

:::::::::
forbidden

::::::::
transitions

::::::
couple

:::
the

:::::::
nuclear

:::
and

::::::::
electronic

::::::::::::
polarizations,

::::
their

::::::::
influence

::
on

:::
the

:::::
latter

::
is

:::::::
typically

:::::::::
negligible355

::::::::
compared

::
to

:::::
other

:::::::::::
mechanisms

::
of

:::::::::
electronic

:::::::::
relaxation.

::
It
::
is
::::::::

therefore
:::::::
justified

:::
to

:::::
write

:
a
::::

rate
::::::::
equation

:::
for

:::
the

:::::::::
electronic

::::::::::
polarization

::::::::::
considering

::::
only

:::
the

:::::::
allowed

:::::
EPR

::::::::
transition,

:::
as

:::
we

:::
did

::
in

::::
Sec.

:::
2.

::::
The

:::::
effect

::
of

:::
the

:::::::::::
mw-induced

:::
ZQ

::::
and

::::
DQ

::::::::
transitions

:::
on

:::
the

::::::
nuclear

::::::::::
polarization

::
is

::::::::
described

::
in

:::
the

::::::
current

:::::::
section.

:

3.1
:::
Rate

::::::::
equation

:::
of

:::
the

:::::::
nuclear

:::::::::::
polarization

Let n++, n+−, n−+ and n−− be the populations of the levels .
::
of

:::
the

::::::::
four-level

::::::
system

:::
in

:::
fig.

:::
1b.

:
While their sum, n=360

n++ +n+−+n−+ +n−−, remains constant in time, the individual populations change due to
::
the

:
ZQ and DQ transitions with

rate constants v0 and v2 as follows:

ṅ−+|mw =−ṅ+−|mw =−v0(n−+−n+−)

ṅ++|mw =−ṅ−−|mw =−v2(n++−n−−). (16)

It is implicitly assumed that v0 ≥ 0 and v2 ≥ 0, as negative rate constants would not make physical sense.

The polarizations of the nuclear and electronic spins are365

PI = [(n++−n+−) + (n−+−n−−)]/n

PS = [(n++−n−+) + (n+−−n−−)]/n. (17)

While, as before, P eq
S < 0, the sign of PI at thermal equilibrium will depend on the gyromagnetic ratio of the nuclear spin. We

will assume protons, hence γI > 0 and P eq
I > 0.

Differentiating
::::::::::::
Differentiating

:::
the

::::::::
definition

::
of

:
PI :

in
:
(17) with respect to time

:
, and using (16), we obtain

ṖI |mw =−(v2 + v0)PI − (v2− v0)PS ,370

ṖI |mw =−v0(PI −PS)− v2(PI +PS)

=−(v2 + v0)PI − (v2− v0)PS

=−v+PI − v−PS ,
::::::::::::::::::::::::::::::::

(18)

13



which shows that mw excitation of the forbidden transitions couples the evolution of the nuclear polarization to the polarization

of the electrons. This coupling is responsible for the solid-state DNP effect.

::::
solid

:::::
effect.

:
Because one always encounters either the difference or the sum of the ZQ and DQ rate constants, we introduce375

::
v0:::

and
:::
v2,

::
in

:::
the

::::
third

:::::::
equality

:::
of (18)

::
we

:::::::::
introduced

:

v± = v2± v0. (19)

In fact, as we show later, the individual rates v0 and v2 may become negative, and thus meaningless from the rate-equation

point of view.

The two terms on the right-hand side of are represented by the two red arrows in fig. ??d. (The gray arrows correspond to380

thermal relaxation which is considered below.) For dynamical stability, R1I + v+ ≥ 0.

Of main interest for
::::::::
Although

::
in

:
the current paper are

::
we

:::
are

::::
only

:::::::::
interested

::
in

:
the rates that describe the effect of the

microwaves (i.e., the red arrows in fig. ??). Nevertheless
::
1), we also discuss thermal relaxation as it is essential for reaching

steady state.

Thermal relaxation of the nuclear spins due to their coupling to the electronic spins acts analogously to (18) after replacing385

the rates v0,2 byw0,2 and the polarizations by their deviations from thermal equilibrium. Further including nuclear T1 relaxation

due to mechanisms other than the coupling to the electrons, we arrive at

ṖI |th =−R0
1I(PI −P

eq
I )− 2w1(PI −P eq

I )

−w+(PI −P eq
I )−w−(PS −P eq

S ), (20)

where R0
1I is the nuclear T1 relaxation rate in the absence of the polarizing agent , and

w± = w2±w0390

:::
and,

:
analogously to (19).

:
,

w± = w2±w0.
::::::::::::

(21)

The cross-relaxation rate w− is seen to couple the dynamics of PI to PS . This coupling is responsible for the Overhauser DNP

::::
leads

::
to

:::
the

::::::::::
Overhauser effect.

From (20), the total nuclear T1 relaxation rate (i.e., in the presence of the free radical) is identified asR1I =R0
1I+2w1+w+.395

Combining the contributions of mw excitation (eq. (18)) and relaxation (eq. (20)), we arrive at the following rate equation for

the nuclear polarization:

ṖI =−R1I(PI −P eq
I )−w−(PS −P eq

S )

− v+PI − v−PS . (22)

This is the full differential equation depicted in fig. ??d.
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3.2 Steady state of the rate equations400

Although
::
As

:
the rate equations

:::
are

::::
only

::::
used

::
in
::::

our
:::::::
analysis

::
to

:::::::
describe

::::
the

:::::
steady

:::::
state,

:::
we

:::::
solve

:
(22)

:
at

::::::
steady

::::
state

:
and

describe the evolution of the electronic and nuclear polarizations in time, one is almost exclusively interested in their steady

state (Webb, 1961). In fact, the only use of the rate equations appears to be in their steady state.

At steady state the time derivatives vanish and the dynamical variables settle at constant values, which we denote with the

superscript ‘ss’. In our diagrams, the node of a constant variable is shaded gray. Thus a gray oval node implies that the sum of405

all inflowing arrows equals zero. With this understanding, fig. ??e represents the rate equation of PS at steady state.

Since the dynamics of the electronic polarization is decoupled from the polarization of the nuclei, the steady state of can be

analyzed on its own. The condition that all inflowing arrows sum to zero yields

P ss
S =

R1S

R1S + 2v1
P eq
S = pP eq

S ,

where the second equality defines the factor p. (Observe how the weights of the two self-arrows in fig. ??e end up in the410

denominator.) This steady-state solution is depicted in fig. ??f.

We use a rectangular node when the inflowing arrows contribute directly to the value of the variable inside the node. (In

contrast, when a variable is inside an oval node the arrows contribute to its time derivative.) The distinction between solid

arrows and dashed arrows is that the former are reserved for fundamental, causal relationships between the variables which

dictate their dynamics at all times, while the dashed arrows indicate deduced mathematical relationships at steady state , which415

need not reflect direct causal links.

We will view the dashed arrow in fig. ??f as a transfer function that multiplies the variable at its input to produce the

variable at its output. In this case the transfer function is p= 1− s, where s is the familiar saturation factor of the (allowed)

electronic transition. Since p quantifies how close the steady-state polarization is to its Boltzmann value (eq.
::::::
express

::
the

:::::::
nuclear

::::::::::
polarization

:::::
under

::
cw

:::::::::
irradiation

::
in

:::::
terms

::
of

:::
the

::::::::::
equilibrium

::::::::::::
polarizations:420

P ss
I =

R1I

R1I + v+
P eq
I +

sw−
R1I + v+

P eq
S −

pv−
R1I + v+

P eq
S .

::::::::::::::::::::::::::::::::::::::::::::

(23)

:::
(We

::::
used

:
(3) ), we call it the electronic polarization factor, and use it interchangeably with 1− s

::
for

:::
the

::::::::::
steady-state

:::::::::
electronic

::::::::::
polarization.

:
)

Before turning to the steady state of the nuclear polarization , we observe that PS and PI reach steady state on time scales of

the order of T1S and T1I , respectively. Since T1S is typically much shorter than T1I , there must be intermediate times where425

PS has already reached steady state but PI has not. Thus, it should be possible to replace PS by P ss
S in the rate equation of the

nuclear polarization (eq. ). Further using , we have

ṖI =−R1I(PI −P eq
I ) + sw−P

eq
S − v+PI − pv−P eq

S .

This rate equation at steady state is depicted in fig. ??g.
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There are two links from P eq
S to the derivative of P ss

I . One of them scales with s and relies on the efficient saturation of the430

allowed EPR transition; the other scales with p= 1− s. These two pathways correspond to the Overhauser and the solid-state

DNP effects, respectively.

Solving the steady state of for the nuclear polarization, we get

P ss
I = pX

[
P eq
I +

sw−
R1I

P eq
S −

pv−
R1I

P eq
S

]
,

where we have defined the factor435

pX =
R1I

R1I + v+
.

Because of its similarity to p in , we refer to pX as the nuclear cross-polarization factor. Clearly, for large steady-state nuclear

polarization, pX should be as large as possible.

DNP is generally quantified through the enhancement of the nuclear polarization,

ε= P ss
I /P

eq
I − 1, (24)440

which is defined such that it equals zero at thermal equilibrium. Taking into account that P eq
S /P eq

I =−|γS |/γI ,
:::::
where

::
γS::::

and

::
γI:::

are
:::
the

:::::::::::
gyromagnetic

::::::
rations

::
of

:::
the

:::::::::
electronic

:::
and

:::::::
nuclear

:::::
spins, from (23) we obtain

ε= εX + εOE + εSE,

where we have introduced the following

ε= εSE + εOE + (pX − 1)
:::::::::::::::::::::

(25)445

::::
with

εSE =
pv−

R1I + v+

|γS |
γI

, εOE =− sw−
R1I + v+

|γS |
γI

pX =
R1I

R1I + v+
.

:::::::::::::::::::::::::::::::::::::::::

(26)

:::
The

::::
first

:::
two

:
additive contributions to the DNP enhancement :

εSE = pX
pv−
R1I

|γS |
γI

, εOE =−pX
sw−
R1I

|γS |
γI

εX = pX − 1.

The first two correspond to
::::::::
correspond

:::
to,

::::::::::
respectively,

:
the solid and Overhauser effects. The last one is due to neither of them.450

When pX 6= 1 (i.e., v+ 6= 0) this term can shift the final enhancement by about one unit at most, and
:::::
Since

::
it

::::
does

:::
not

:::::
scale

::::
with

:::
the

::::
ratio

::
of

:::
the

:::::::::::
gyromagnetic

::::::
ratios,

::
it should be negligible in most

::
all

:
cases of practical interest.

::::
Note

::::
that

:::
pX ::

is
::::::
similar

::
to

:::
the

:::::::::
electronic

::::::::::
polarization

:::::
factor

::
p

::
in (3)

:
,
:::
but

::::
with

::::
R1S:::

and
::::
2v1 :::::::

replaced
:::
by

:::
R1I::::

and
:::::::
v0 + v2.
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4 Spin dynamics

The above rate-equation analysis identified how different factors contribute to the DNP enhancement. However, for a quantitative455

understanding of the solid effect
:::
For

::
the

::::::::::
expressions

::
in (26)

::
to

::::
have

:
a
::::::::
predictive

::::::
value, it is necessary to know how the excitation

rate constants v1 and
::::::
express

:::
the

::::
rates

:
v± depend on the various experimental parameters. Such expressions are obtained in

Sec. ?? after we analyze the relevant spin dynamics in the present section.

Quantum mechanically the polarizations PS and PI correspond to the expectations of the
::
in

:::::
terms

::
of

:::::
more

:::::::::::
fundamental

::::::::
quantities.

:::::
This

::
is

::::
done

:::::
using

:::::::::
first-order

::::::::::
perturbation

:::::::
theory,

:::::
under

:::
the

::::::::::
assumption

:::
that

::::
the

::::::
dipolar

:::::::::
interaction

::::::::
between

:::
the460

electronic and nuclear spin operators Sz and Iz . The coherent evolution of the expectation value q = 〈Q〉 of a general spin

operator Q, under the action of a spin Hamiltonian H (in units of angular frequency) is given by (Abragam, 1961)

q̇|coh = i〈[H,Q]〉.

In this section we use to obtain equations of motion for the expectation values of the operators relevant to the solid effect. As

in the previous section, we first analyze the electronic spins, and tackle the coupled electronic and nuclear spins after that.465

3.1 Bloch equations

The interaction of the electronic spins with the magnetic field is described by the Hamiltonian

H = ΩSz +ω1Sx,

where the first term accounts for the Zeeman interaction with the constantmagnetic field B0, and
::::
spins

::
is
:::::
much

:::::::
smaller

::::
than

::
the

:::::::
nuclear

:::::::
splitting

:::::::::::::::
(Abragam, 1955).

:::::::
Because

:::
the

::::::
dipolar

:::::::::
interaction

:::::
mixes

:::
the

:::::::
Zeeman

::::::
energy

:::::
levels

::::::::
depicted

::
in

:::
fig.

:::
1b, the470

second term for the interaction with the mw field B1. The offset frequency Ω = ωS −ω appears because the Hamiltonian is in

the rotating frame.

Using with the Hamiltonian , one can determine the coherent dynamics of sz = 〈Sz〉:::
ZQ

::::
and

:::
DQ

:::::::::
transitions

::::::
become

:::::::
weakly

:::::::
allowed.

::
To

::::
first

:::::
order,

::::
the

:::::
mixed

:::::
states

:::
are

:::
of

:::
the

::::
form

:::::::::::::
(−−) + q(−+)

:::::::::::::::::::::::::::::::::::::::
(Abragam, 1955; Abragam and Proctor, 1958),

::::
with

::::::
mixing

::::::::
parameter

:
475

q =
1

4

Ddip

ωI

−3cosθ sinθ eiφ

r3
.

:::::::::::::::::::::::

(27)

::::
Here,

:::::::::::::::::::
Ddip = (µ0/4π)~γSγI::

is
:::
the

::::::
dipolar

:::::::
constant, sy = 〈Sy〉 and sx = 〈Sx〉. After appending electronic T1 and T2 relaxation

by hand, one obtains the familiar Bloch equations

ṡx =−Ωsy −R2Ssx

ṡy = Ωsx−ω1sz −R2Ssy

ṡz = ω1sy −R1Ssz +R1Ss
eq
z .
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These are depicted in fig
::
γS:::

and
:::
γI :::

are
:::
the

:::::::::::
gyromagnetic

:::::
ratios

::
of

:::
the

:::::
spins,

::::
and

:::::::
(r,θ,φ)

::
are

:::
the

::::::::
spherical

:::::
polar

::::::::::
coordinates

::
of480

::::
their

::::::
relative

:::::::
position

::::::
vector.

:::
The

:::::::::
probability

:::::::::
amplitude

::
of

:::
the

::::::::::
microwaves

::
to
::::::

excite
:
a
::::::::
transition

::::::::
between

:::
the

:::::
mixed

::::::
energy

:::::
levels

::
is
::::
then

:::::::::::
proportional

::
to

::::
ω1q.

:::::::::
Combining

:::
the

:::::::::
probability

:::
of

::::::::
excitation

::::
with

:::
the

:::::::::
Lorentzian

::::::
spread

::
of

:::
the

::::::::
electronic

::::::
energy

::::::
levels,

:::
one

::::::
arrives

::
at

:::
the

::::
rate

:::::::
constants

:::::::::::::::::
(Wind et al., 1985)

v0,2(Ω) = 4(q∗q)v1(Ω±ωI),
::::::::::::::::::::::::

(28)485

:::::
where

::
v1:::

is
:::
the

:::
rate

:::
of

:::
the

:::::::
allowed

::::::::::::::
(single-quantum)

:::::
EPR

::::::::
transition

:::
(eq. 2a. (4)

:
).
:::
In

:::::::
essence,

:::
the

:::::
rates

::
of

:::
the

::::
ZQ

:::
and

::::
DQ

::::::::
transitions

::::
are

:::::::
obtained

:::
by

:::::::
shifting

:::
the

::::
rate

:::
of

:::
the

:::::::
allowed

::::::::
transition

::::::
along

:::
the

:::::::::
frequency

::::
axis

::
by

::::::
±ωI ,

:::
and

::::::::
reducing

:::
its

::::::::
magnitude

:::::::
through

::::::::::::
multiplication

::
by

:::::
4|q|2.

:

The two orange arrows in the figure correspond to the right-hand side of the first equation in and the three blue arrows to

the second equation. The self-arrows of the oval nodes are due to T1 and T2 relaxation. The offset frequency leads to rotation490

in the x-y plane with angular velocity Ω. This corresponds to the loop formed by the orange and blue arrows with weights −Ω

and +Ω. Similarly, the loop formed by the blue and red arrows with weights −ω1 and +ω1 indicates rotation in the y-z plane

with angular velocity ω1 due to the mw excitation .

Alternatively, one can form the dynamical variable s+ = sx + isy and work with the complex-valued Bloch equations

ṡ+ =−(R2S − iΩ)s+− iω1sz

ṡz =−R1S(sz − seq
z )−Re{iω1s+}495

which are depicted in fig.
::
We

:::::::
observe

::::
that

::
in

:::
this

::::::::
approach

:::
the

::::
rates

:::
of

:::
the

::::::::
forbidden

:::::::::
transitions

::::::
acquire

::
a
:::::
factor

::
of

::::
ω−2
I :::::

from

:::
|q|2,

::::
and

::
a

:::::
factor

::
of

:::
ω2

1:::::
from

:::
the

::::
mw

::::::::
excitation

::::
(eq. 2b. Notably, the rotation in the x-y plane with angular velocity Ω has

now become the imaginary part of the self-arrow of s+ whose real part is (4)
:
),
:::::::
without

:::
any

:::::
room

:::
for

:::::::::
non-trivial

:::::::::
cross-talk

:::::::
between

::::
these

::::
two

::::::::::
frequencies.

:::::
Such

::::::::
cross-talk

::
is
::::
also

:::
not

::::::::
provided

:::
by

:::
the

:::::::::
Lorentzian

::::::::::
dependence

:::
on

::
Ω.

:::::
Like (28),

:::
the

::::
rate

:::::::
constants

::::
that

:::
we

::::
will

::::::
obtain

::
in

:::
the

::::
next

:::::::::
subsection

::::
will

::::
also

::::::
contain

:::
ω2

1::::
and

::::
D2

dip:::
as

:::::::::::
multiplicative

:::::::
factors.

::::::::
However,

:::::
their500

:::::
offset

:::::::::
dependence

::::
will

::::::
couple

:::
ω1 :::

and
:::
ωI ::

in
:
a
:::::::::
non-trivial

::::
way,

:::::
which

:::::::
reduces

::
to

:
the T2 relaxation rate.

In the complex-valued Bloch equations we have arbitrarily retained s+ and dropped s−. Reducing the number of variables in

this waysimplifies the diagrammatic representation in fig.
:::::::
classical

:::::::::
expression

:::::
when

:::::::
ω1� ωI:::

but
:::::::
predicts

::::::::::
qualitatively

::::::::
different

:::::::::
dependence

:::::
when

:::
ω1::

is
::::::
similar

::
to

::
or

:::::
larger

::::
than

:::
ωI:::::

(Sec. 2b compared to fig. 2a. (The simplification will be more substantial

when we move to the analysis of the coupled electron-nucleus system.) Note however that the contribution of s− is recovered505

when the real part of is+ is used to calculate the time derivative of sz in the second line of .
::::
6.1).

(a) Real-valued and (b) complex-valued classical Bloch equations and (c) corresponding dynamics according to the rate

equation of the electronic polarization. (d) Spin dynamics of relevance to the solid effect and (e) corresponding dynamics

implied by the rate equation of the nuclear polarization.

In fig. 2c we recall the dynamics of sz implied by the rate equation of the electronic polarization (fig. ??c). The visual510

comparison of this dynamicswith the Bloch equations above it makes clear that the rate v1 of the allowed EPR transition
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is supposed to account in some effective way for the coupling between sz and sy (due to ω1), and for the dynamics of the

transverse components (due to Ω and R2S). The rate constant v1 is thus expected to be a function of ω1, Ω and R2S .

3.1
::::::::::

Generalized
:::::
Bloch

:::::::::
equations

:::
for

:::
the

:::::
solid

:::::
effect

::
In

:::
this

:::::::
section,

::
we

::::::
obtain

::::::::
alternative

::::::::::
expressions

:::
for

:::
the

::::::::::::::::
forbidden-transition

::::
rates

:::
v±::::

from
:::
the

::::::
steady

::::
state

::
of

:::
the

::::
exact

::::::::
quantum515

::::::::
dynamics.

:::
We

::::
start

:::
by

:::::::
deriving

::::::::
equations

::
of
:::::::

motion
:::
for

:::
the

:::::::::
expectation

::::::
values

::
of

:::
the

::::::::
operators

:::::::
relevant

::
to

:::
the

:::::
solid

:::::
effect.

:::
To

:::
use (5)

:
,
:::
we

::::
need

::
to

::::
first

::::::
specify

:::
the

::::::::::
Hamiltonian

:::::::
guiding

:::
the

:::::::::
dynamics.

3.2 Generalization to two coupled Bloch equations

To carry out a similar analysis for the nuclear polarization, we consider the
::
We

::::
will

::::::::
consider

:::
the

:::::::
minimal

::::::::::
solid-effect spin

Hamiltonian (Wenckebach, 2016)520

H = ΩSz +ω1Sx−ωIIz +
1

2
(A∗1SzI+ +A1SzI−), (29)

which is in the rotating frame for the electronic spin and in the laboratory frame for the nuclear spin. The first two terms are

the same as in the Hamiltonian (6). The third term describes the nuclear Zeeman interaction. The sign of ωI is negative since

we assumed a nuclear spin with positive gyromagnetic ratio.

The last two terms in the Hamiltonian (29) account for the dipolar interaction between the electronic and nuclear spins.525

We have truncated this interaction by dropping all non-secular terms containing Sx and Sy . Similar to the assumption behind

the derivation of the mixing factor (eq. (27)), we take the dipolar interaction to be small compared to the nuclear Zeeman

splitting and drop the secular term proportional to SzIz . The remaining, pseudosecular terms scale with the dipolar coupling

(Wenckebach, 2016)

A1 =Ddip
−3cosθ sinθ

r3
eiφ (30)530

where Ddip/2π ≈ 79.066kHznm3 for protons. The subscript of A1 indicates that its angular dependence is identical to the

second-degree spherical harmonic of order m= 1.

We start our derivation of equations of motion with iz = 〈Iz〉, as it corresponds to the nuclear polarization. There is no

contribution from the first three terms in the Hamiltonian (29) as Iz commutes with all of them (eq. (5)). From the commutator

with the dipolar terms we obtain535

i̇z|coh = i
1

2
(A1g

∗
z −A∗1gz) =−Re{iA∗1gz}, (31)

where

gn = 〈SnI+〉 (n= x,y,z). (32)

Proceeding in the same way, we first find

ġz|coh =−iωIgz +ω1gy − i(A1/4)iz (33)540
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and then

ġy|coh = Ωgx− iωIgy −ω1gz + (A1/4)sx

ġx|coh =−iωIgx−Ωgy − (A1/4)sy. (34)

The chain of dynamical equations can be terminated at this stage, as sx,y obey the classical Bloch equations discussed above.

(The dynamics of the electronic spin was taken to be independent of its dipolar coupling with the nuclei.)

In addition to the coherent evolution considered so far, gz = 〈SzI+〉 and gx,y = 〈Sx,yI+〉 are expected to decay with rates545

R1S +R2I and R2S +R2I , respectively. Neglecting R2I compared to R1S and R2S , we arrive at the following system of

coupled differential equations:
ġx

ġy

ġz

=−B


gx

gy

gz

− i
1

4
A1


−isy

isx

iz

 ,
with

B =


R2S + iωI Ω 0

−Ω R2S + iωI ω1

0 −ω1 R1S + iωI

 .550

This matrix is essentially the familiar Bloch matrix of the real-valued Bloch equations but with iωI added to its main diagonal.

ġx =−(R2S + iωI)gx−Ωgy − (A1/4)sy

ġy = Ωgx− (R2S + iωI)gy −ω1gz + (A1/4)sx

ġz =−(R1S + iωI)gz +ω1gy − i(A1/4)iz.
::::::::::::::::::::::::::::::::::::::

(35)

::::::::
Equations

:
(31)

:::
and (35),

::::::::::::
supplemented

:::
by

:::
the

::::::
Bloch

::::::::
equations

:
(7),

:::::::::
constitute

:::
the

::::::::::::
generalization

:::
of

:::
the

:::::
Bloch

:::::::::
equations

::
to

:::
the

::::::::
four-level

::::::
system

:::
in

:::
fig.

:::
1b

::
as

:::::::
relevant

:::
to

:::
the

::::
solid

::::::
effect.

:
If desired, one can also supplement (31) with nuclear T1

relaxation. However, because our aim is to identify the forbidden-transition rates v±, this is not necessary. In any case, we555

already analyzed the balance between thermal relaxation and mw excitation at steady state
:::
was

:::::::
already

::::::::
analyzed using the

rate-equation formalism (Sec. 6
:::
3.1).

Equations
::::::::::
Analogously

::
to

:::
our

::::::::
treatment

::
of

:::
the

::::::
Bloch

::::::::
equations

:::::
(Sec.

::::
2.2),

:::
we

:::
will

::::
now

:::
use

:::
the

:::::::::
condition

::
of

:::::
steady

:::::
state

::
to

:::::::
eliminate

:::
all

::::::::
variables

:::::
except

:::
the

:::::::::::
polarizations

::
iz::::

and
::
sz .

:::::
From

:::
the

::::::
steady

::::
state

::
of

:::
the

::::
first

:::::::
equation

::
in

:
(35)

:::
we

:::
get

gss
x =− Ω

R2S + iωI
gss
y −

A1/4

R2S + iωI
sss
y .

:::::::::::::::::::::::::::::::

(36)560

::::::::::
Substituting

:::
into

:::
the

::::::
second

::::::::
equation

::
of (35)

::
we

::::
find

:

gss
y =−ω1Fy g

ss
z + (A1/4)(Fy s

ss
x −Fx sss

y ),
:::::::::::::::::::::::::::::::::::

(37)
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:::::
where

:::
we

:::::::::
introduced

:::
the

:::::::::::::
complex-valued

::::::::
functions

Fy =
1

R2S + iωI + Ω 1
R2S+iωI

Ω

Fx =
Ω

R2S + iωI
Fy,

:::::::::::::::::::::::::

(38)

:::::
which

:::::::::
generalize

:::
the

:::::::
functions

:
(11)

:
of

:::
the

::::::::
classical

:::::
Bloch

::::::::
equations

:::
by

::::::::::::
supplementing

::::
their

::::::::
relaxation

:::::
rates

::::
with

::
an

:::::::::
imaginary565

::::
part.

::::
Like

::::
their

:::
real

::::::::
analogs,

::::
Fx,y ::::

have
::::
units

::
of

::::
time

::::::
(Table

:::
1).

::::::::::
Substituting

:::
gss
y :::

into
:::
the

:::
last

::::::::
equation

::
of (35)

:::
and

:::::::
solving

::
for

:::
gz ::

at
::::::
steady,

:::
we

:::
find

:

gss
z =−i(A1/4)Fzi

ss
z + (A1/4)Fz(ω1Fy s

ss
x −ω1Fx s

ss
y ),

:::::::::::::::::::::::::::::::::::::::::::::

(39)

:::::
where

:::
the

:::::::
function

Fz =
1

R1S + iωI +ω2
1Fy

::::::::::::::::::::

(40)570

:::::::::
generalizes

:
(15)

::
of

:::
the

:::::::
classical

::::::
Bloch

::::::::
equations.

:::::::
Finally,

:::
we

::::::::
substitute

:::
gss
z :::

into
:::
the

::::::::
equation

::
of

::
iz::::

(eq. (31)
::
).

::::::::
Factoring

:::
out

:::
the

::::::
dipolar

:::::::
coupling

::
as

:

δ2 = (A∗1A1)/4,
:::::::::::::

(41)

:
at
::::::
steady

::::
state

:
(31)

:::::::
becomes

i̇ssz |coh =−δ2Re{Fz}issz − δ2Re{iFz(ω1Fy)}sss
x − δ2Re{iFz(−ω1Fx)}sss

y .
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(42)575

:::
We

::::
have

::::
thus

:::::::
managed

::
to
::::::::
eliminate

:::
the

:::::
three

::::::::::::::
electron-nucleus

:::::::::
coherences

:::
gn.

::
To

::::::
further

::::::::
eliminate

:::
the

:::::::::
electronic

:::::::::
coherences

:::::
from (42),

:::
we

:::::
recall

::::
that

::
at

::::::
steady

::::
state

:::
the

:::::::::
transverse

::::::::::
components

::::
sx,y :::

are

::::::::::
algebraically

::::::
related

::
to

:::
sz :::

(eq.
:
(10)

:
).
::::::
Hence,

:

i̇ssz |coh =−δ2Re{Fz}issz − δ2ω2
1Re{iFz(Fy fx +Fx fy)}sss

z .
::::::::::::::::::::::::::::::::::::::::::::::::

(43)

::
As

:::
the

:::::::::
right-hand

::::
side

::
of (43)

:::::::
contains

::::
only

::
iz and , supplemented by the Bloch equations , constitute the generalization of the580

Bloch equations to the four-level system in fig.
::
sz ,

::
it
:::
can

:::
be

::::::
directly

:::::::::
compared

::::
with

:::
the

:::
rate

::::::::
equation (18)

:
,
:::::
which

::::::::
accounts

:::
for

::
the

:::::::::::
contribution

::
of

:::
the

:::::::::
microwaves

::
to
:::
the

::::
time

::::::::
derivative

:::
of

:::
PI .

:::
The

::::::::::
comparison

::::::
allows

::
us

::
to

::::::
identify

:::
the

::::
two

:::::::::::::::
phenomenological

:::
rate

::::::::
constants

::
of

:::
the

::::::::
forbidden

:::::::::
transitions

::
as

:

v+ = δ2Re{Fz}, v− = δ2ω2
1Re{iFz(Fy fx +Fx fy)}.

::::::::::::::::::::::::::::::::::::::::::::
(44)

:::::
When

::::
used

::::
with

:::::
these

:::
two

::::
rate

::::::::
constants,

:::
the

:::
rate

::::::::
equation

::
of

:::
PI ::

is
:::::::::
guaranteed

::
to

::::
have

:::
the

::::::
correct

::::::
steady

::::
state.

:
585

:::
The

:::::
above

::::::::::::::
non-perturbative

:::::::::
derivation

::
of

:::
the

::::
rate

::::::::
constants

:::
v±::

is
:::
the

:::::
main

::::::::
analytical

::::::::::
contribution

:::
of

:::
the

::::::
current

:::::
paper.

:::
In

:::
Sec. ??b as relevant to the solid effect. This system of equations is depicted in

:
6,
:::

we
::::

will
:::::::
explore

:::
the

::::::::::
predictions

::
of

:::::
these

::::::::::
expressions,

::
as

::::
well

:::
as

::::
their

::::::::::
relationship

::::
with

:::
the

::::::::
classical

::::::::::
perturbative

::::
rates

::::
(eq.

:
(28)

:
).
::::::
Before

:::::
that,

::
in

:::
the

::::
next

:::::::
section,

:::
we

:::::
revisit

:::
the

::::::::
equations

::
of

::::::
motion

:
(31)

:
, (35),

:::
and

:::
the

::::::
Bloch

::::::::
equations (7),

::::::
which

::::::::
constitute

:
a
::::::
system

:::
of

:::::
seven

::::::
coupled

::::::::::
differential

::::::::
equations.

::::
The

:::::
steady

:::::
state

::
of

:::
this

::::::
system

::
of

::::::::
equations

::
is
:::::::::
examined

::
in

::::
Sec.

::
5.590
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4
:::::::
Making

:::::
sense

::
of

:::
the

::::
spin

:::::::::
dynamics

:::
The

::::::
Bloch

::::::::
equations

::::
(eq. (7))

:::
are

:::::::
coupled

::::::::::
differential

::::::::
equations

:::::::::
describing

:::
the

::::
time

::::::::
evolution

:::
of

::::
three

:::::::::
dynamical

:::::::::
variables.

:::::
When

:::
the

:::::::
number

::
of

:::::::
coupled

:::::::::
equations

::
is

:::::
small,

::
it
::
is

:::::::
possible

:::
to

::::
form

::
a
::::::
mental

::::::
picture

:::
of

:::
the

:::::::::
dynamical

::::::::::::::
interconnections

:::::::
between

:::
the

:::::::
variables

:::
by

:::::::::
examining

:::
the

::::::
written

:::::::::
equations.

::
In

:::
the

::::
case

:::
of

::::
more

::::
than

:::::
three

::::::::
variables,

::::::::
however,

:::::::
gaining

::::::
insight

:::
into

:::
the

::::::::
dynamics

:::
by

::::::
simply

::::::
looking

::
at

:::
the

::::::
written

::::::::
equations

::::::::
becomes

::::::
harder.595

:::
The

:::::
need

::
to

:::::
make

:::::
sense

::
of

::::::
several

:::::::
coupled

::::::::::
differential

::::::::
equations

::::
also

:::::
arises

::
in
::::

the
::::::
context

::
of

::::::::
chemical

:::::::
reaction

::::::::
kinetics,

:::::
where

:::
the

::::::::::::
concentrations

:::
of

:::
the

::::::::
reactants

::::::
change

::
in

:::::
time.

:::::
When

::::
the

::::::
number

:::
of

::::::::
chemical

::::::
species

::
is

::::::
small,

:
it
::

is
::::::::

sufficient
:::

to

::::
write

:::::
down

:::
the

::::::
kinetic

::::::::
equations

:::
for

:::
the

::::::::::::
concentrations.

::::::::
However,

:::::
when

:::
one

:::::
deals

::::
with

:::
the

:::::::
reactions

:::
of

::::
even

:
a
::::::::
relatively

::::::
simple

::::::::
metabolic

::::::::
pathway,

:::
like

:::::::::
glycolysis

::
or

:::
the

::::
citric

::::
acid

:::::
cycle,

:::
the

::::
rate

::::::::
equations

:::
are

::::::
almost

:::::
never

::::::
written

:::::
down

::::::::
explicitly.

:::::::
Instead,

:::
they

:::
are

::::::::::
represented

::
in

::
a
:::::
visual

::::
way

::
by

::::::::
drawing

:::::
arrows

::::::::
between

:::
the

:::::
names

:::
of

:::
the

:::::::
chemical

:::::::
species

:::
that

:::
are

::::::::::::
interconverted

:::
by600

::
the

:::::::::
reactions.

::::::::
Following

:::
the

:::::
same

::::::
logic,

:::
we

::::::::
represent

:::
the

:::::::::
dynamical

::::::::
variables

::::
sx,

::
sy::::

and
:::
sz ::

of
:::
the

::::::::
classical

::::::
Bloch

::::::::
equations

:
(7)

::
as

:::::
nodes,

::::
and

:::
the

::::::
various

:::::::::::
interactions

:::
that

::::::
couple

:::::
their

::::::::
dynamics

::
as

::::::
arrows

::
(fig. 2d, where blue, orange and green arrows

::
a).

:::
The

::::
time

::::::::
derivative

:::
of

::::
each

:::::::
variable

:
is
:::::::::
calculated

::
by

::::::::
summing

:::
the

:::::::::::
contributions

::
of

:::
all

::::::
arrows

:::
that

:::::
point

:::
into

::
its

::::
node,

::::::
where

:::
the

::::::::::
contribution

::
of

::
an

:::::
arrow

::
is

:::::::
obtained

:::
by

:::::::::
multiplying

:::
the

::::::
weight

::
of

:::
the

:::::
arrow

:::
by

::
the

:::::::
variable

:::::
from

:::::
which

:
it
:::::::::
originates.

::::::::::
Differently605

::::
from

:::
the

::::::::::::
representation

::
of

::::::::
chemical

::::::::
reactions,

::::
here

::
an

:::::
arrow

:::::
does

:::
not

::::::
deplete

:::
the

::::
node

::
at
:::
its

:::::
origin

:::
but

::::
only

::::::::::
contributes

::
to

:::
the

::::
node

::
at

::
its

::::::
pointed

::::
end.

::
In

::::::::
addition,

::
as

:::
our

::::::
arrows

::
do

:::
not

::::
have

:::
the

:::::::
physical

:::::::::::
interpretation

::
of

:::::::
reaction

::::
rate

::::::::
constants,

::::
their

:::::::
weights

:::
may

::::
also

:::
be

:::::::
negative.

:

:::
The

::::
two

:::::
orange

::::::
arrows

::
in

:::
fig.

:::
2a,

::::::
which flow into the nodes gx, gy and gz , respectively. Black arrows

::::
node

::
of
:::
sx,

::::::::::
correspond

::
to

:::
the

:::
two

:::::
terms

:::
on

:::
the

:::::::::
right-hand

:::
side

:::
of

:::
the

:::
first

::::::
Bloch

:::::::
equation

::
in

:
(7)

:
.
:::
The

::::::
arrow

::::
with

::::::
weight

:::
−Ω

:::::::::
originates

::::
from

:::
sy ,

::::
and610

:::
thus

::::::::::
contributes

:::::
−Ωsy::

to
:::
the

::::
time

::::::::
derivative

::
of

:::
sx.

:::
The

:::::
other

::::::
orange

:::::
arrow

::::::::
originates

:::::
from

::
sx:::

and
::::::::
accounts

::
for

:::
the

:::::
decay

::
of

::::
this

::::::
variable

::::
with

:::
the

::::
rate

:::::::
constant

::::
R2S:::

of
:::
the

::::::::
transverse

:::::::::
relaxation.

:::
We

:::::
refer

::
to

::::
such

::::::
arrows

:::
that

:::::
leave

::
a

::::
node

::::
and

::::
enter

:::
the

:::::
same

::::
node

::
as

::::::::::
self-arrows.

:::
To

:::::::
prevent

:::::::
positive

::::::::
feedback,

::::
and

::::
thus

:::::
ensure

:::::::::
dynamical

::::::::
stability,

:::
the

::::
total

:::::::::::
contribution

::
of

::::::::::
self-arrows

::
(in

::::
case

::::::
several

:::::
such

::::::
arrows

::::
point

::::
into

:
a
:::::
node)

::::::
should

:::
be

:::::::
positive.

:::
We

::::
will

::::::::
generally

:::::
write

:::
the

::::::
weight

::
of

:
a
:::::::::
self-arrow

::::
with

:::
an

::::::
explicit

:::::::
negative

::::
sign,

::::::
which

:::
we

::::
place

::::::
inside

:::
the

::::
loop

::::::
formed

::
by

:::
the

::::::
arrow.615

::::::::
Similarly,

:::
the

::::
three

::::
blue

::::::
arrows

::
in

:::
fig.

:::
2a,

::::::
which

::::
flow

:::
into

:::
the

:::::
node

::
of

:::
sy , correspond to the classical Bloch equations.

::::
three

::::
terms

:::
on

:::
the

:::::::::
right-hand

::::
side

::
of

:::
the

::::::
second

:::::
Bloch

::::::::
equation

::
in (7).

::::
The

::::::::
remaining

:::::
three

::::::
arrows,

::::::
which

::::
flow

:::
into

:::
sz ,

::::::::::
correspond

::
to

:::
the

:::::::::
right-hand

:::
side

:::
of

:::
the

:::
last

:::::
Bloch

::::::::
equation.

::::::
Rather

::::
then

:::::
using

:::
the

:::::
same

:::::
color

:::
for

::::
these

:::::
three

:::::::
arrows,

::
we

:::::
have

::::::::
indicated

::
the

:::::::::::
contribution

::
of

:::
mw

:::::::::
irradiation

::::
with

:::
red

::::
and

:::
the

::::::::::
contribution

::
of

:::::::::
relaxation

::::
with

::::
gray,

::
in
::::
line

::::
with

:::
the

:::::
colors

:::::
used

::
in

:::
fig.

:::
1a.

::
In

:::
any

:::::
case,

:::
the

:::::
colors

::
of

:::
the

::::::
arrows

:::
do

:::
not

::::
play

:
a
::::
role

::
in

:::
the

:::::::::::::
correspondence

::::::::
between

:::
the

:::::::::
differential

:::::::
equation

::::
and

::
its

::::::
visual620

::::::::::::
representation.

:::::::
Because

:::
the

::::::::::
equilibrium

:::::
value

:::
seq
z ::

is
:
a
:::::::
constant

:::::::::
parameter

::
in

:::
the

:::::
Bloch

:::::::::
equations,

:::::
there

:::
are

::
no

::::::
arrows

:::::::
flowing

:::
into

:::
its

::::
node.

::
A
:::::
node

::
is

::::::
shaded

::::
gray

::::
when

:::
the

::::::::::::
corresponding

:::::::
variable

:::::::
remains

:::::::
constant

::
in

:::::
time.

For comparison, in
:::::
While

:::
fig.

::
2a

:::::::
contains

:::::::
exactly

::
the

:::::
same

::::::::::
information

::
as

:::
the

:::::
Bloch

::::::::
equations (7),

::
all

:::::::::
dynamical

::::::::::::::
interconnections

:::::::
between

:::
the

:::::::
variables

:::
are

::::
now

:::::::
visually

:::::::::
accessible.

::::
For

:::::::
example,

:::
the

::::
loop

:::::::
formed

::
by

:::
the

::::
two

::::::
arrows

::::
with

::::::
weights

:::::
−ω1 :::

and
:::
ω1
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Figure 2.
:
(
:
a)
::::::::::

Real-valued
:::
and

:
(
:
b)

::::::::::::
complex-valued

:::::::
classical

:::::
Bloch

:::::::
equations

:::
and

:
(
:
c
:
)
::::::::::
corresponding

::::::::
dynamics

:::::::
according

::
to
:::
the

:::
rate

:::::::
equation

:
of
:::

the
::::::::
electronic

:::::::::
polarization.

:
(
:
d
:
)
:::
Spin

::::::::
dynamics

::
of

:::::::
relevance

::
to

::
the

::::
solid

:::::
effect

:::
and

:
(
:
e)

:::::::::::
corresponding

:::::::
dynamics

::::::
implied

::
by

:::
the

:::
rate

:::::::
equation

:
of
:::

the
::::::
nuclear

:::::::::
polarization.

:

:::::::
between

:::
the

::::::::
variables

::
sy::::

and
:::
sz ,

::::::::::
corresponds

::
to

:::::::
rotation

::
in

:::
the

:::
y-z

:::::
plane

:::::
with

::::::
angular

:::::::
velocity

:::::
equal

::
to
::::
ω1.

::
In

:::::
other

::::::
words,625

:::
this

::::
loop

::
is

:
a
:::::
visual

::::::::::::
manifestation

::
of

:::
the

::::
Rabi

:::::::
nutation

::::::
driven

::
by

:::
the

:::::::::::
microwaves.

:::::
There

::
is

:
a
::::::
similar

::::
loop

:::::::
between

:::
the

::::::::
variables

::
sx:::

and
:::
sy ,

::::::
which

::::::::::
corresponds

::
to

:::::::
rotation

::::
with

:::::::
angular

:::::::
velocity

::
Ω

::
in

:::
the

::::
x-y

:::::
plane.

::::
This

::
is

:::
the

:::::::
Larmor

:::::::::
precession,

::
as

:::::
seen

::
in

::
the

:::::::
rotating

::::::
frame.

:::::
Since

::
all

:::::
other

::::::
arrows

:::::::::
correspond

::
to

:::::::::
relaxation,

:::
the

:::::::
diagram

::
in

:
fig. 2e we recall the description of the same

spin dynamics according to the rate-equation formalism (red arrows in
:
a
:::::::
confirms

:::
in

:
a
:::::
visual

::::
way

::::
that

:::
the

:::::::
coherent

::::
part

::
of

:::
the

:::::
Bloch

::::::::
equations

:::::::
consists

::
of

:::
two

::::::::
rotations.

:
630

::
At

::::
this

::::
point

:::
we

:::::::
mention

::::
that

::::::
instead

:::
of

:::::::
working

::::
with

:::
the

::::::::::
real-valued

:::::
Bloch

::::::::
equations

:
(7)

:
,
:::
one

:::::
could

:::::
form

:::
the

:::::::::
dynamical

::::::
variable

::::::::::::
s+ = sx + isy::::

and
::::
work

::::
with

:::
the

::::::::::::::
complex-valued

:::::
Bloch

::::::::
equations

ṡ+ =−(R2S − iΩ)s+− iω1sz

ṡz =−R1S(sz − seq
z )−Re{iω1s+}.

::::::::::::::::::::::::::::::

(45)

:::::
These

:::
two

::::::::::
differential

::::::::
equations

:::
are

:::::::
depicted

::
in

:::
fig.

:::
2b.

:::::::
Notably,

:::
the

:::::::
rotation

::
in

:::
the

:::
x-y

:::::
plane

::::
with

:::::::
angular

:::::::
velocity

::
Ω

::::
(i.e.,

:::
the

::::::
Larmor

::::::::::
precession)

:::
has

::::
now

::::::
become

:::
the

:::::::::
imaginary

::::
part

::
of

:::
the

::::::::
self-arrow

::
of
:::
s+::::::

whose
:::
real

::::
part

::
is

:::
the

::
T2:::::::::

relaxation
::::
rate.635

::
In (45)

::
we

:::::::::
arbitrarily

:::::::
retained

::
s+::::

and
:::::::
dropped

:::
s−,

::::
thus

:::::::
reducing

:::
the

:::::::
number

::
of

::::::::
variables

::
in

::
the

::::::::::::
diagrammatic

::::::::::::
representation

::::
from

::::
three

::
to

::::
two.

::::
(The

:::::::::
analogous

::::::::
reduction

::::
will

::
be

::::
more

:::::::::
substantial

::
in
:::
the

::::
case

::
of

:::
the

:::::::
coupled

::::::::::::::
electron-nucleus

:::::::
system.)

:::::
Note,

:::::::
however,

::::
that

:::
the

::::::::::
contribution

::
of

:::
s− ::

is
::::::::
recovered

:::::
when

:::
the

:::
real

::::
part

::
of

:::
is+::

is
::::::::
evaluated

::
to

::::::::
calculate

:::
the

::::
time

::::::::
derivative

::
of

:::
sz ::

in

::
the

::::::
second

::::
line

::
of

:
(45).

:

::
In fig. ??d). Evidently, the two rates v± are expected to summarize in some faithful way the complexity of the proper,640

quantum-mechanical dynamics in
::
2c

:::
we

::::
have

::::::::::
represented

:::
the

:::::::::
dynamics

::
of

:::
sz :::::

which
::
is
:::::::

implied
:::
by

:::
the

::::
rate

:::::::
equation

:::
of

:::
the

::::::::
electronic

::::::::::
polarization

:::
(eq.

:
(2)

:
).
::::
The

:::::
visual

::::::::::
comparison

::
of

:::
this

:::::::::
dynamics

::::
with

::
the

::::::
Bloch

::::::::
equations

:::::
above

:
it
::::::
makes

::::
clear

::::
that

:::
the

:::
rate

::
v1:::

of
::
the

:::::::
allowed

::::
EPR

::::::::
transition

::
is
::::::::
supposed

::
to

:::::::
account

::
in

:::::
some

:::::::
effective

::::
way

:::
for

:::
the

:::::::
coupling

:::::::
between

:::
sz :::

and
:::
sy ::::

(due
::
to
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:::
ω1),

::::
and

:::
for

:::
the

::::::::
dynamics

::
of

:::
the

:::::::::
transverse

::::::::::
components

::::
(due

::
to

::
Ω

:::
and

::::::
R2S).

::::::
Indeed,

:::
the

::::
rate

:::::::
constant

::
v1::

in
:
(13)

:
is

::
a

:::::::
function

::
of

:::
ω1,

::
Ω

:::
and

:::::
R2S .645

::
In fig. 2d .

::
we

:::::
show

:::
the

::::::
system

::
of

:::::
seven

:::::::
coupled

:::::::::
differential

::::::::
equations

::::
that

::::
play

:
a
::::
role

::
in

:::
the

::::
solid

:::::
effect

::::
(eqs.

:
(31)

:
, (35)

:::
and

::
the

::::::
Bloch

:::::::::
equations).

:::
For

::::::
clarity,

:::
the

:::::
nodes

::
of

:::
gn::::::::::

(n= x,y,z)
:::
are

::::::
labeled

::
as

:::::
sni+::

in
:::
the

:::::
figure.

::::::
Black

:::::
arrows

::::::::::
correspond

::
to

:::
the

:::::::
classical

:::::
Bloch

:::::::::
equations.

:::::
Blue,

::::::
orange

:::
and

:::::
green

:::::::
arrows,

:::::
which

:::::
flow

:::
into

:::
the

::::::
nodes

:::
gx,

::
gy::::

and
:::
gz ,

::::::::::
respectively,

::::::::::
correspond

::
to

:::
the

::::::::
right-hand

:::::
sides

::
of

:::
the

:::::
three

::::::::
equations

::
in

:
(35).

::::
The

:::
red

:::::
arrow

:::::::
flowing

::::
into

:::
the

::::
node

::
of

:::
iz ::::::::::

corresponds
::
to

:::
the

:::::::::
right-hand

:::
side

::
of

:
(31)

:
.
::::
Note

::::
that

:::
the

::::::
weight

::
of

:::
the

:::
red

:::::
arrow

:::::::
involves

::::::
taking

:
a
:::
real

:::::
part,

:::
just

:::
like

::
in
:::

the
::::::::::::::
complex-valued

:::::
Bloch

:::::::::
equations.650

:::::
Thus,

:::::::
although

:::
we

::::
only

:::::
show

:::
the

:::::::::
dynamics

::
of

:::
the

:::::::::
coherences

::::::
SnI+,

::
at

::::
this

:::::
point

:::
the

:::::
effect

::
of

:::
the

::::::::::
coherences

:::::
SnI−::

is
::::
also

:::::::
included.

:::
In

::::
other

::::::
words,

::
if

:::
we

:::
did

:::
not

::::
take

:::
the

:::
real

::::
part,

:::
we

::::::
would

::::
need

::
to

::::::::
represent

:::
ten

:::::::
coupled

:::::::::
differential

:::::::::
equations,

:::::
rather

:::
than

::::::
seven.

The graphical representation of the spin dynamics in fig. 2d provides visual access to many aspects of the solid effect.

Regarding the overall organization, we notice that the classical
:::
lays

::::
bare

:::
the

::::::
overall

::::::::
topology

::
of
::::

the
:::::::::
dynamical

::::::::::
connections655

:::::::
between

:::
the

:::::
seven

::::::::
variables.

:::
For

::::::::
example,

::::
note

:::
that

:::
the

:
Bloch-equations pattern connecting the top three nodes (black arrows)

is recapitulated between the nodes
::
of

:::
the

:::::::::
coherences

:
gn (n= x,y,z) below them. As a result, there are two sets of Bloch

equations which are connected back to back, with the y variable of one of them feeding into the x variable of the other, and vice

versa. The connection between these two set is established by the dipolar coupling (A1).
::::::
Indeed,

:::::::
between

:::
the

::::::::::::::
electron-nucleus

:::::::::
coherences

:::
one

::::::::::
recognizes

:::
the

::::
loops

::::
that

::::::::::
correspond

::
to

::::
Rabi

:::::::
nutation

::::
and

::::::
Larmor

::::::::::
precession. Due to the involvement of the660

nuclear spin operator I+, the
::
this

:
second set of Bloch equations is “shifted” by the nuclear Larmor frequency, as evidenced by

the imaginary part of the self-arrows of gn.
:::
The

::::
link

:::::::
between

:::
the

::::::::
electronic

::::::
Bloch

::::::::
equations

:::
and

:::::
these

::::
new

:::::
Bloch

:::::::::
equations

:::
that

:::::::
describe

:::
the

:::::::::
dynamics

::
of

:::
the

::::
S-I

::::::::::
coherences

::
is

:::::::::
established

:::
by

:::
the

::::::
dipolar

::::::::
coupling

:::::
(A1),

::::::
which

:::::::
connects

:::
the

::::
two

::::
sets

::
of

:::::
Bloch

::::::::
equations

:::::
such

:::
that

::::
the

:
y
:::::::
variable

:::
of

:::
one

::
of

:::::
them

:::::
feeds

::::
into

:::
the

::
x

:::::::
variable

::
of

:::
the

:::::
other,

::::
and

::::
vice

:::::
versa.

::::
The

:::::
same

::::::
dipolar

:::::::::
interaction

:::
also

::::::::
connects

::
gz::

to
:::
the

:::::::
nuclear

::::::::::
polarization

::::::
through

:::
the

:::
red

:::::
arrow

::
in

:::
fig.

:::
2d.

:
Although the coherences SnI−665

are not explicitly modeled, their contribution is recovered when we feed the real value of iA∗1gz :
a
::::
real

:::::
value into the time

derivative of iz:,::
as

::::::::
discussed

::::::
above. At this stage,

:::::::::
Bloch-like

::::::::
equations

::::::
shifted

:::
by +ωI and

:::::::
(shown)

:::
and

:::
by −ωI contribute

symmetrically
::::
(not

::::::
shown)

:::::::::
contribute

::::::::::::
symmetrically

::
to

:::
the

::::::
nuclear

::::::::::
polarization.

Turning attention to the pathways bridging
:::
All

:::::::::
interactions

:::
in

:::
the

::::::::::
Hamiltonian

:
(29)

::::
lead

::
to

::::::::
rotations,

:::::
which

:::
are

::::::::::
manifested

::
as

:::::
loops

:::::::
between

::::
two

:::::::
variables

:::::::
formed

::
by

::::::
arrows

:::::
with

:::::::
opposite

:::::::
weights.

:::::::::
Although

::::
such

:::::
loops

:::
are

::::
also

::::::
formed

::::::::
between

:::
the670

:::::::
variables

::
sy::::

and
:::
gx,

:::
and

:::::::
between

::
sx::::

and
::
gy ,

:::
we

::::
have

:::
not

::::::
shown

:::
the

:::::
arrows

::::
that

:::::::
originate

::
at

:::
gx :::

and
::
gy:::

and
::::
flow

::::
into,

:::::::::::
respectively,

::
sy:::

and
:::
sx.

::::::
These

::::::
arrows,

:::::
which

::::::
would

::::::::
complete

:::
the

::::
loops

:::
of

:::
the

::::::
dipolar

:::::::::
interaction,

:::
are

:::::::
dropped

:::::::
because

::::
their

:::::::::::
contribution

::
to

::
the

:::::::::
electronic

::::::::
dynamics

::
is

::::::::
neglected.

:

:::
For

::::::::::
comparison,

::
in

:::
fig.

:::
2e

::
we

:::::
recall

:::
the

::::::::::
description

::
of

:::
the

::::
same

::::
spin

::::::::
dynamics

:::::::::
according

::
to

::
the

:::::::::::
rate-equation

:::::::::
formalism

::::
(eq.

(18)
:
).
:::::::

Clearly,
::::

the
:::
two

:::::
rates

:::
v± ::::::

should
:::::::::
summarize

::
in

:::::
some

:::::::
faithful

::::
way

:::
the

::::::::::
complexity

::
of

:::
the

::::::
proper,

::::::::::::::::::
quantum-mechanical675

::::::::
dynamics

::
in

:::
fig.

:::
2d.

::
In

:::::::::
particular,

:::
the

:::
rate

:::
v−::::::

should
:::::::
account

:::
for

:::
the

::::::::
pathways

::::
from

:
sz to iz ,

:::
and

::
the

::::
rate

:::
v+ :::

for
:::
the

::::::::
pathways

::::
from

::
iz::::

into
:::
the

:::::::::
coherences

::
gn::::

and
::::
back

::
to

:::
iz .
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Figure 3.
:::::::
Pathways

:
(
:
a
:
)
::::
from

::
sz ::

to
::
iz :::::::::

contributing
::
to

::
the

::::
rate

::
v−:::

and
:
(
:
b
:
)
::::
from

::
iz ::

to
:
iz::::::::::

contributing
::
to

::
the

:::
rate

:::
v+.

:

::
By

:::::::::
examining

:::
the

::::::::
pathways

::::
from

:::
sz ::

to
::
iz we gain visual understanding of the mechanism of the dynamical coupling between

the electronic and nuclear polarizations in the solid effect. Following
:::
The

::::
two

:::::::
possible

:::::
paths

::
for

::::::::
reaching

::
iz ::::

from
:::
sz ::::::::

following

the “flow” of the arrows
::
are

::::::
shown

::
in

:::
fig.

::
3a.

:::::
Both

:::::
paths

::::::
consists

::
of

::::
four

:::::
steps, iz is reached from sz in four steps (not counting680

the mixing of the transverse components by ±Ω). First, the mw excitation (ω1) generates the transverse components sx,y::::
sy,x

from sz . This step is described by the classical Bloch equations. Then, from sx,y the dipolar coupling (A1) generates the

coherences sx,yi+ :::
gx,y::::

from
::::
sy,x. These are then converted to szi+ ::

gz by the mw excitation, and finally the dipolar interaction

transforms szi+ ::
gz to iz . Because

:::::::
Observe

:::
that

:
the weights ω1 and A1 appear twice along the pathfrom sz to iz , the net

efficiency of the solid effect scales with the squares of both ω1 and A1::::
each

::::
path,

::::
thus

::::
both

:::::
paths

::::
scale

:::
as

:::::::
ω2

1 |A1|2.
:::::
Since

:::::
these685

::::
paths

:::::::::
contribute

::
to

:::
the

:::
rate

:::::::
constant

::::
v−,

:
it
::::::
should

::::
also

::::
scale

::::
with

:::
the

:::
mw

::::::
power

:::
and

:::
the

::::::
square

::
of

:::
the

::::::
dipolar

:::::::::
interaction,

::::::
which

:
is
::
in
:::::::::
agreement

::::
with

:::
the

::::::::::
perturbative

:::::
rates

::
in (28).

Additionally, we observe that all paths from sz to iz traverse the
:
In

:::::::
addition

:::
to

:::
the

:::::::
weights

:::::::::
considered

::::::
above,

::::
both

:::::
paths

::
in

:::
fig.

::
3a

::::
also

:::::::
traverse

:
arrows with weights ±Ω. Thus, on resonance (

::
i.e.,

:
Ω = 0),

:
the possibility of polarization transfer is

severed. This observation does not appear to be particularly useful as driving the forbidden transitions requires
::
are

::::::
driven

::
at690

Ω≈±ωI anyway. However, as
::::
since

:
going along an arrow with weight ±Ω amounts to multiplication by Ω, we realize that

crossing from the left side of the dynamical network to the right side involves change of parity in Ω. In other words, because

sz is an even function of the frequency offset, its effect on iz must be odd in Ω. This is the reason for the anti-symmetric field

profile of the solid effect (in contrast to the symmetric profile of the Overhauser effect). The diagram makes clear that the solid

effect is odd in Ω for the same reason that sx is odd, as intuited by Erb, Motchane and Uebersfeld (Erb et al., 1958a).
:
.
::::
This695

::::
point

::
is

::::::
further

::::::::
examined

::
in

::::
Sec.

::
5.

:

The above observations were related to the paths from sz to iz , which contribute to the rate v− (
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::
In fig. 2e). Examining the paths

::
3b

:::
we

::::
have

::::::::::
highlighted

:::
the

::::::
arrows

:
that contribute to the self-loop

::
of

::
iz:with weight v+,

we see that .
:::::
Again

:
there are two possibilities: one consisting

:::::::
different

:::::::
possible

:::::
paths:

:::
one

:::::::
consists

:
of two steps and the other

of four(fig. 2d). .
:
The shorter path from iz to gz ::::

(blue
::::::
arrow), and back to iz :::

(red
::::::
arrow), relies only on the dipolar coupling700

:::::::::
interaction between the electronic and nuclear spins

:
, and must be active even in the absence of mw excitation. The longer path

additionally goes from gz to gx,y (the latter are mixed by Ω) and back, and contributes only under mw irradiation. Considering

the separate treatment of
:::
that

:
thermal relaxation and mw excitation

::
are

::::::
treated

:::::::::
separately, we realize that the short loop in fact

contributes to the nuclear T1 relaxation (more precisely to the rate w1 in fig. ??
:
1b), hence its contribution should be removed

when calculating the rate v+.705

These general observations are developed in more detail below.

5 Excitation rate constants

It is clear that the polarization dynamics in fig.
:::
On

:::
the

:::::
basis

::
of

::::
this

::::::::::
observation,

:::
we

::::
now

:::::::
modify

:::
the

::::::::
analytical

::::::::::
expression

::
for

:::
v+::::

that
:::
we

::::
gave

:::
in (44).

:::::
Since

:::
the

:::::::
nuclear

:::
T1 ::

is
:::::::
typically

:::::::::
measured

::::
with

:::
the

::::::::::
microwaves

::::::::
switched

::::
off,

:::
we

:::::::
identify

:::
the

:::::::::::::
ω1-independent

:::
part

::
of
:::
Fz::::

(eq. 2c could approximate the Bloch equations in fig. 2a only under some special conditions. For710

example, if the T2S and T1S relaxation times are well separated, it is possible to eliminate the fast variables sx,y from the Bloch

equations and thus obtain a closed dynamical equation for the slow variable sz , which will be valid at times longer than the

fast time scale T2S (Van Kampen, 1985).Similarly, the reduced dynamics in fig. 2e could be a good approximation of the true

dynamics in fig. 2d under some conditions. (40)
:
),
:::::::
namely

Fz(ω1 = 0) = (R1S + iωI)−1,
::::::::::::::::::::::::

(46)715

::
as

::::::::::
contributing

::
to

:::::::::
relaxation.

::::
The

::::::::
corrected

::::
form

::
of

:::
the

::::
first

:::::::
equality

::
in (44)

:
is
::::
thus

:

v+ = δ2Re{Fz − (R1S + iωI)−1}.
:::::::::::::::::::::::::::

(47)

::::::
Having

:
a
::::::
visual

:::::::::::
representation

:::
of

:::
the

::::
spin

::::::::
dynamics

:::
was

::::
thus

::::::
helpful

::
to
:::::::

identify
:::
an

:::::
aspect

::::
that

:::::
would

:::
be

:::::
harder

::
to
:::::::
identify

:::
on

::
the

:::::
level

::
of

:::
the

::::::
written

:::::::::
equations.

If, however, the reduced equations are not required to provide a faithful description of the dynamics, there is a regime in720

which they are exact without any additional requirements. This is the regime of steady state. In fact, since the use of the rate

equationsfrom Sec. ?? lies in the steady state that they describe, and not in the dynamics that they unwittingly imply, nothing

is sacrificed by confining them to steady state.

In this section we analyze the steady state of the quantum-mechanical equations of motion (Sec. 4) and compare it with the

steady state of the rate equations (Sec725

5
:::::::::
Analyzing

:::
the

::::::
steady

::::
state
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:::
The

::::::::::::
diagrammatic

::::::::::::
representations

:::
of

:::
the

:::::::
previous

::::::
section

:::::::
showed

::::
that

:::
the

:::::::::::::::::
quantum-mechanical

::::::::
dynamics

:::::::
consists

:::
of

::::::
several

:::::::::::
simultaneous

:::::::
rotations

::::
that

:::
mix

:::
the

::::::::::
expectation

:::::
values

::
of

:::
the

:::::::
various

::::
spin

::::::::
operators.

::
In

::::
spite

:::
of

::
the

:::::::::::
complicated

::::
time

::::::::
evolution

:::
that

::::
such

::::::::::::
interconnected

::::::::
rotations

:::
may

::::::::
generally

::::
lead

::
to,

::::::::
relatively

::::::
simple

::::::::
algebraic

::::::::::
relationships

:::::::
between

:::
the

::::::::
variables

:::::::
emerged

:
at
::::::
steady

::::
state

:::::
(Secs. 6). The comparison will allow us to identify the phenomenological rate constants v1, v± in terms of the730

parameters of the spin dynamics.

5.1 Steady state of the Bloch equations

At steady state, the sum of all arrows flowing into an oval node equals zero. Shading the oval nodes
:::
2.2

:::
and

::::
3.1).

:

:::
The

::::::::::
steady-state

:::::::::::
relationships

::
of

:::
the

:::::
Bloch

:::::::::
equations,

::::::
which

::::
were

:::::
given

::
in

:
(10)

:::
and

:
(14)

:
,
:::
are

:::::::
depicted

:::::::::::::::
diagrammatically in

fig. 2ain gray, we arrive at fig. ??a which represents the classical Bloch equationsat steady state. The condition that the two735

orange arrows flowing into sss
x sum to zero yields

sss
x =− Ω

R2S
sss
y .

(Observe how the weight of the self arrow of sss
x ends up in the denominator. ) This steady-state relationship is depicted by

:::
4a.

:::::::
Because

::
we

::::
deal

::::
with

::::::::
algebraic

:::
(as

:::::::
opposed

::
to

::::::::::
differential)

::::::::
equations,

:::
the

::::::::
inflowing

::::::
arrows

::::
now

:::::::::
contribute

::::::
directly

::
to

:
the black

dashed arrow in fig. ??b.
::::
value

::
of

:::
the

:::::::
variable

:::::
inside

:::
the

:::::
node,

::::
and

:::
not

::
to

::
its

::::
time

:::::::::
derivative.

:::
To

:::::
make

:::
this

:::::::::
distinction

:::::::
visually740

::::
clear,

:::
we

::::
use

:
a
::::::::::
rectangular

::::
node

:::::
when

:::
the

:::::::
variable

:::::
itself

::
is

::::::::
obtained

::
by

::::::
adding

:::
the

::::::::::::
contributions

::
of

:::
all

::::::::
inflowing

::::::
arrows.

:::
In

:::::::
addition,

:::
we

:::
use

:::::::
dashed

::::::
arrows

::
to

:::::
signal

::::
that

:::
the

:::::::::::
mathematical

:::::::::::
relationships

::::
hold

:::::
only

::
at

:::::
steady

:::::
state.

:::
In

:::::::
contrast,

:::
the

:::::
solid

:::::
arrows

:::
of

:::
the

:::::::
previous

::::::
section

::::::::::
represented

:::::::::::
fundamental,

::::::
causal

:::::::::::
relationships

:::::::
between

:::
the

::::::::
variables

::::::::
governing

::::
their

:::::::::
dynamics

:
at
:::
all

:::::
times.

:

Using one can eliminate sss
x from the differential equation of sy (second equation in ). The remaining two equations, which745

contain only the variables sss
y and sss

z , are represented in fig. ??b. The elimination of sss
x resulted in the self-arrow of sss

y drawn

with a dashed blue line.

Proceeding further, we now express sss
y in terms of sss

z using the second Bloch equation in :

sss
y =− ω1

R2S + Ω 1
R2S

Ω
sss
z .

(Again the self-arrows of the eliminated node end up in the denominator.) This relation is represented by the black dashed750

arrow in

:
It
::
is

:::::::::
convenient

::
to

:::::
think

::
of

:::
the

::::::::::
steady-state

:::::
Bloch

::::::::
equations

::
as

:
a
::::::
system

::::
that

::::
takes

:::
the

::::::::::
Boltzmann

::::::::::
polarization

:::
seq
z ::

as
::
an

:::::
input

:::
and

::::::::
produces

:::
the

::::::
outputs

::::
sss
x,y ,

:::
as

::::::::
suggested

::::::::::
graphically

::
in fig. ??c. Using we now eliminate sss

y from the equation of sss
z (last

equation in ). The term that contained sss
y corresponds to the self-arrow of sss

z which is shown with red dashed arrow in fig.

??c.755

Visual comparison of the remaining equation of sss
z (

::
4a.

:::::
Each

::::::
dashed

:::::
arrow

::::
can

::::
thus

::
be

::::::
viewed

:::
as

:
a
:::::::
transfer

:::::::
function

::::
that

::::::::
multiplies

:::
the

:::::::
variable

::
at
:::

its
:::::
input

::
to

:::::::
produce

:::
the

:::::::
variable

:::
at

::
its

::::::
output.

::::
The

:::::::
weights

:::
of

:::
the

::::::
arrows

::
in

:
fig. ??c)with fig. 2c
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(a) (b) (c) (d)

seqz

sssz

sssy sssx

R1Sfz = p

−ω1fy ω1fx

sssz

sssy sssx

issz

−ω1fy ω1fx

−δ2T ′y −δ2T ′x

−δ2Ti

sssz

issz

−δ2Tz = −v−

−δ2Ti

δ2 = 1
4 (A

∗
1A1)

sssz

sssx

issz

ω1fx

−δ2Tx

−δ2Ti

Figure 4.
::::::::
Algebraic

::::::
relations

:::::::
between

:::
the

::::::::
dynamical

:::::::
variables

:
at
::::::

steady
::::
state. (a) Real-valued

::::::
Transfer

:::::::
functions

::
of
:::

the
:
Bloch equationsat

steady state. (b) Elimination of sssx . (,
:
c) Further elimination of sssy . (

:
, d) Solution for sssz .

::::::
Transfer

::::::::
functions

::::::::
describing

:::
the

:::::::::
steady-state

::::::::
relationship

:::::::
between

:::
the

:::
time

::::::::
derivative

::
of

::
iz:(e:::::

output) Steady-state solution
:::
and

:::::::
different

::::::
choices of the Bloch equations with the dashed

arrows viewed as transfer functions
:::::::

electronic
::::
input.

directly yields

v1 =
1

2
ω2

1

R2S

R2
2S + Ω2

for the rate constant of the allowed EPR transition. This result agrees with . Our derivation makes clear that this functional760

dependence of v1 on ω1, R2S and Ω is, in fact, exact at steady state.
::
4a

:::
are

:::::::::::
dimensionless

::::::
(Table

:::
1).

If the purpose is to determine the rate constant v1, the analysis can be terminated at this point without ever encountering the

T1 relaxation of the electronic spins. Below, when we determine
:::::::
Equation (43),

:::::
from

:::::
which

:::
we

::::::::
identified the rates v±, we will

similarly need to consider only the coherent evolution of iz without worrying about the nuclear T1 relaxation. In fact, once the

rate constants of mw excitation are identified, the steady-state analysis is identical to the one we already carried out in Sec
::
is765

:::::::
depicted

::
in

::
fig. ?? for the rate equations of the polarizations.

For completeness, here we proceed one step further andsolve the equation for sss
z by moving the self-arrows

::
4b

:::::
and,

::::::::::
equivalently,

:
in fig. ??cto the denominator:

sss
z =

R1S

R1S +ω1
1

R2S+Ω 1
R2S

Ω
ω1

seq
z .

This result (fig. ??d) is equivalent to
::
4c.770

The above successive elimination of the variables from the steady-state Bloch equations (figs
:::
The

::::
three

:::::::
colored

::::::
arrows

::
in

::
fig.

??b-d) is just the poor man’s inversion of the Bloch matrix. Nevertheless, it allowed us to follow the step-by-step emergence
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of the functions

fy(Ω) =
1

R2S + Ω 1
R2S

Ω
, fx(Ω) =

Ω

R2S
fy(Ω)

h(ω1,Ω) =
1

R1S +ω1fy(Ω)ω1
,

which have units of time (Table 1, first row). In terms of these functions, the ratios between the variables of the Bloch equations775

at steady state are

sss
x,y

sss
z

=±ω1fx,y(Ω),
sss
z

seq
z

=R1Sh(ω1,Ω) = p.

(The last equality follows from .)These ratios are depicted as transfer functions in
::
4b

::::::::::
correspond

::
to

:::
the

:::::
three

:::::
terms

:::
on

:::
the

::::::::
right-hand

::::
side

::
of

:
(42)

:
,
:::::
before

:::
the

:::::::::
transverse

::::::::::
components

::::
sss
x,y ::::

were
:::::::
replaced

:::
by

:::
sss
z .

::::::::::
Specifically,

:

Ti = Re{Fz}, T ′x = Re{iFz(ω1Fy)}, T ′y = Re{iFz(−ω1Fx)}.
:::::::::::::::::::::::::::::::::::::::::::::::::::::

(48)780

:::
The

:::::::::
cumulative

:::::::
transfer

:::::::
function

:::::
from

::
sz::

to
::
iz:(fig. ??e. Note that the weights of the dashed arrows are dimensionless, as they

equal the product of a variable with units of inverse time and a function with units of time (Table 1, second row). For our

purposes it will be convenient to think of the steady-state Bloch equations as a system that takes seq
z as an input and produces

the outputs sss
x,y , as suggested graphically

:::
4c)

:
is
::::::::
obtained

::
by

::::::
adding

:::
the

:::::::::::
contributions

:::
of

:::
the

:::
two

:::::::
parallel

:::::
paths in fig. ??e.

:::
4b.

:::
The

::::
sum785

Tz = ω1fxT
′
x−ω1fyT

′
y

= ω2
1 Re{iFz(Fyfx +Fxfy)}= v−/δ

2

::::::::::::::::::::::::::::::::::

(49)

:::
was

::::::
already

:::::::::
evaluated

::
in (43)

:
.

Functions characterizing the steady-state properties of the two sets of Bloch equations. classical Bloch eqs. second Bloch

eqs. unit of time fx,fy,h Fx,Fy,H dimensionless ω1fx,ω1fy,R1Sh ω1Fx,ω1Fy, δH

5.1
::::

Bloch
:::::::::
equations790

To examine the properties of this system
:::::::::
steady-state

:::::::::
properties

::
of

:::
the

:::::
Bloch

:::::::::
equations, in fig. 5 we plot its transfer functions

::
the

::::::
ratios

::::::::::::::::
sss
z /s

eq
z = p(Ω,ω1)

::::
(first

:::::
row)

:::
and

::::::::::::::::::::
sss
x,y/s

ss
z =±ω1fx,y(Ω)

:::::::
(second

:::::
row) against the offset frequency

::
Ω for four

different values of B1. A free radical with g = 2 was assumed when converting B1 to ω1, so that B1 = 6 G corresponds to

ω1/2π = 16.8 MHz. This maximum value of B1 is intended to reflect the actual mw field of modern-day DNP spectrometers

at X band (Neudert et al., 2016) and at J band (Kuzhelev et al., 2022). The electronic relaxation times used in the plots were795

T2S = 60 ns and T1S = 9T2S::::::::::::::::::
T1S = 9T2S = 540 ns.

The
::::
From

:::
the

:
first row of fig. 5 shows the transfer function R1Sh, which is the electronic polarization factor under mw

power. The
::
we

:::
see

::::
that

:::
the

:::::::::
electronic

:
saturation is most efficient on resonance (Ω = 0) and quickly becomes inefficient at

larger offsets. With increasing mw power
::::::::
(different

::::::::
columns) the deviation of sss

z from equilibrium spreads to larger offsets.
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Figure 5. Transfer functions at
:::::::::::
characterizing the steady state of the classical Bloch equations. The conversion of B1 to ω1 was for free

radical with g = 2, hence B1 = 6G corresponds to ω1/2π = 16.8MHz. In all plots T2 = 60 ns and T1 = 9T2. The positions of the nuclear

Larmor frequencies at X (14 MHz), Q (45 MHz) and W (140 MHz) bands are indicated with vertical dashed lines.

As our main interest is in the solid effect, we have indicated with dashed vertical lines the offsets Ω that correspond to the800

nuclear Larmor frequencies of a proton spin
:::::
proton

:::::::
Larmor

:::::::::
frequencies

:
at the X (9.2 GHz/14 MHz), Q (30 GHz/45 MHz) and

W (92 GHz/140 MHz) mw bands. Considering that DNP is performed at high mw powers, let us examine the saturation at

B1 = 6 G (fig. 5, upper right plot).

Looking at Ω = ωI at X band, we see that the allowed EPR transition is almost completely saturated. Because the efficiency

of the solid effect scales with p= 1− s (dashed orange arrow in fig
:
p
:::
(eq. ??g(26)) any gain from efficiently driving the805

forbidden transitions will be squashed down dramatically, thus substantially reducing the ultimate enhancement of the NMR

signal. This observation implies that at X band the best solid-effect enhancement may occur at less than maximum mw power,

as we demonstrate numerically later.
::
in

::::
Sec.

:::
6.2.

:

The second row of fig. 5 shows the offset dependence of the transfer functions connecting the longitudinal component sss
z to

the transverse components sss
x,y . The observed increase in magnitude from left to right reflects the multiplication by ω1 of the810

functions fx,y which are independent of ω1 (eq. ). These functions are (11)
:
).
:::::
Being

:
the real (fy) and imaginary (fx) components

of a complex-valued Lorentzian with width R2S and center frequency Ω = 0. In other words, they
:
,
::::
these

::::::::
functions

:
correspond

to the absorptive and dispersive components of a homogeneous EPR line. The absorptive component (blue line) is largest at

Ω = 0, while the two extrema of the dispersive component (orange line) are located at Ω =±R2S . At offsets much larger than

the locations of these extrema (i.e., Ω�R2S), the absorptive component drops as 1/Ω2 while the dispersive component drops815

as 1/Ω.

The third row of fig. 5 shows the net transfer functions relating the outputs
::::
input

:
of the Bloch equations, sss

x,y , to the input

seq
z . They

:::
seq
z ,

::
to
:::::

their
:::::::
ultimate

:::::::
outputs,

::::
sss
x,y .

:::::
These

:::::::
transfer

::::::::
functions

:
are obtained by multiplying the solid black lines in the
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first row with the lines in the second row. In essence, what we see are the absorptive and dispersive components of a power-

broadened EPR line. The power broadening (i.e., multiplication by 1− s) leads to qualitative differences. For example, while820

the peak of the blue line in the second row of the figure increased linearly with ω1, it now decreases as 1/ω1. In the case of the

orange line, the locations of its extrema are now shifted towards larger offsets (Ω≈±ω1

√
T1S/T2S:::::::::::::::::::

Ω≈±ω1(T1S/T2S)1/2)

and their magnitude is approximately independent of B1 (≈
√
T2S/T1S/2 :::::::::::::::

≈ 0.5(T2S/T1S)1/2, which equals 1/6≈ 0.17 for

the choice of relaxation times in fig. 5). Clearly, the tail of the power-broadened dispersive (orange) component extends further

into the range of interest for the solid effect at high mw frequencies than the tail of the absorptive (blue) component. One could825

thus expect that
::
the

::::
path

:::::::
through

:
sss
x contributes to the solid effect more than

:
in

:::
fig.

:::
3a

::::::
(orange

:::::::
arrows)

:::::::::
contributes

::
to

:::
v−:::::

more

:::
than

:::
the

:::::
path

::::::
through

:
sss
y ::::

(blue
:::::::
arrows), simply because the latter

:::
sss
y does not survive at offsets equal to the nuclear Larmor

frequencies at high fields. This observation is in line with the decision of Erb, Motchane and Uebersfeld to drop the therm

proportional to sy when arriving at (Erb et al., 1958a).

The functions in the second row of fig. 5 were depicted as the even and odd components of the first filter in fig. 10. In fact,830

we should have shown the power-broadened versions of these functions (third row of fig. 5). The peak of the solid blue line in

fig. 10 would then be substantially reduced at high mw powers, providing additional reason for the absence of the solid effect

in the vicinity of ωS . In contrast, the peak of the dashed blue line is not reduced with power but only moves away from the

EPR resonance position, without compromising the possibility of solid-effect DNP enhancement at the “wrong” offset which

corresponds to the blue star in fig. 10.835

5.2 Steady state of the coupled
::::::::::
Generalized

:
Bloch equations

We now proceed to the analysis of the two coupled Bloch equations from fig. 2d. Our goal is to compare their steady state

with fig. 2e and thus identify the forbidden-transition rates v±. Because we already determined the electronic steady state, the

problem we need to solve looks like shown in fig. ??a.

In this figure, the outputs sss
x,y of the first set of Bloch equations serve as inputs to the second set of Bloch equations. This840

second set (enclosed in a dashed rectangle in fig. ??a) constitutes the dynamical system whose steady-state response we aim

to characterize. In addition to the two inputs mentioned above, this system takes a third input (iz) and produces the output that

comes out of the red arrow. Our task is to determine the relationship between the three inputs and the output of this system at

steady state.

The steady-state solution of is845 
gss
x

gss
y

gss
z

=−i
1

4
A1B

−1


−isss

y

isss
x

issz

 .
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Figure 6. The functions Fy , Fx and Fz characterizing the steady state of the second set of Bloch equations. (a) Angular frequencies are

measured in units of R2S . R1S =R2S/9 as in the other figures. To calculate Fz we used ω1 = 1.5, which for T2S = 60 ns corresponds to

B1 ≈ 1.5G. Solid black lines are cross-sections at ωI = 0,0.5,1.5,3. (b) Numerical parameters as in fig. 5. Recall thatB1 = 6G corresponds

to ω1/2π = 16.8MHz.

Because only gss
z feeds into the time derivative of iz (eq. ), we have

i̇z|sscoh =−δ2 Re{
[
0 0 1

]
B−1


−isss

y

isss
x

issz

},
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where the dipolar coupling was factored out as

δ2 = (A∗1A1)/4.850

Clearly, the output is a linear combination of the three inputs and can be written as

i̇z|sscoh =−δ2(Tixs
ss
x +Tiys

ss
y +Tiii

ss
z ),

which is illustrated
:::::::::
Numerical

:::::::::
parameters

::
as in fig. ??b . Since δ has units of inverse time, the transfer functions Tin (n= x,y, i)

must have units of time. Comparing and , we see that

Tiy = Re{−iB−1
31 }, Tix = Re{iB−1

32 }

Tii = Re{B−1
33 },855

where B−1
ij is the ijth element of the matrix B−1

:
5.

The needed matrix elements in the last row of B−1 can be obtained from the cofactors of the last column of B as follows:

B−1
31 = ω1Ω/∆, B−1

32 = ω1(R2S + iωI)/∆

B−1
33 = [(R2S + iωI)2 + Ω2]/∆,

where the determinant of B is

∆ = (R1S + iωI)[(R2S + iωI)2 + Ω2]+ω2
1(R2S + iωI).860

5.2.1 Characterizing the second set of Bloch equations

Let us now introduce the complex-valued functions

Fy =
1

R2S + iωI + Ω 1
R2S+iωI

Ω

Fx =
Ω

R2S + iωI
Fy, H =

1

R1S + iωI +ω1Fyω1
,

which generalize the functions of the classical Bloch equations by supplementing their relaxation rates with an imaginary part.

Like their classical analogs, these functions have units of time (Table 1).In terms of them, the matrix elements can be rewritten865

as

B−1
31 = ω1FxH, B−1

32 = ω1FyH, B−1
33 =H.

Then, using , we express the three transfer functions of interest (fig. ??b)as

Tix,y =±ω1Re{iFy,xH}, Tii = Re{H}.
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Because all steady-state properties of the second set of Bloch equations (inside the dashed rectangle in fig.
:::
The

:::::::
transfer870

:::::::
functions

::::::::
indicated

:::::
with

::::::
colored

:::::::
arrows

::
in

:::
fig. ??a) are contained in the functions , let us examine them more closely.

::
4b

::::::
depend

::
on

:::
the

::::::::
auxiliary

::::::::
functions

::::
Fx,y:::

and
:::
Fz::::

(eq. (48)
:
). These three complex-valued functions are plotted in the ωI -Ω plane

in fig. ??
:
6a. In these

::
the

:
plots, the angular frequencies are reported in units of R2S . Cross-sections at ωI = 0,0.5,1.5,3 are

drawn over the surfaces with solid black lines.

The black lines at ωI = 0 show that the imaginary parts of the functions Fy , Fx and H vanish
::
Fz::::::

vanish,
:
and their real parts875

become equal to fy , fx and h
::
fz of the classical Bloch equations (cf. fig. 5, first two rows). In particular, at ωI = 0, Fy and Fx

as functions of Ω are like the absorptive and dispersive components of the EPR line. To plot the function H
:::::
When

:::::::
plotting

:::
Fz

we used ω1 = 1.5 (in units of R2S). Because both the real and imaginary parts of H
:::
Fz decay very rapidly with increasing ωI ,

we also show the logarithm of the real part and the product of the imaginary part with ωI . These transformations make visible

the small values
::
of

:::
Fz at large ωI .880

In fig. ??
:
6b we show these functions against Ω at four different nuclear Larmor frequencies and, in the case of H

:::
Fz , three

different mw powers. In each case, the locations of the Larmor frequencies along the horizontal axis are indicated with vertical

dashed lines. In the first and second rows we see Fy and Fx, which do not change with mw power. The real and imaginary parts

of Fy (first row) look like the real and imaginary parts of two complex-valued Lorentzians centered at Ω =−ωI and Ω = +ωI .

Indeed, with885

L± = [R2S + i(ωI ±Ω)]−1, (50)

it is straightforward to show that Fy = (L−+L+)/2. These Lorentzians have the same width as fy and fx of the classical Bloch

equations (fig. 5, second row). The function Fx in the second row of fig. ??
:
6b also has Lorentzian-like features centered at

Ω =±ωI , but the Lorentzian on the right is flipped around the horizontal axis. Indeed, it can be shown that Fx = (L−−L+)/2.

Differently from Fx,y , H
::
Fz:depends on ω1 (eq. (40)). In the last three rows of fig. ??

:
6b we plot H(Ω)

:::::
Fz(Ω)

:
for three890

different values of B1, starting with B1 = 6 G (third row) and going down to B1 = 1.5 G (last row). The first thing to notice is

that both the real (blue) and imaginary (orange) parts of this function decrease rapidly with increasing ωI , i.e., moving to the

right in a given row. (The former as 1/ω2
I and the latter as 1/ωI .) As all transfer functions (48) are proportional to H

::
Fz , we

expect these to also decrease rapidly with increasing nuclear Larmor frequency.

At the lower mw powers and higher magnetic fields H
::
Fz:is seen to be dominated by its imaginary part, as its real part895

remains close to zero. At higher mw powers and lower magnetic fields (B1 = 6 G, X and K bands, and B1 = 3 G, X band)

the real and imaginary parts are seen to be comparable in magnitude. Moving from the former to the latter regime, there is a

major qualitative change: the features at Ω =±ωI shift towards the origin (B1 = 6 G, K band, and B1 = 3 G, X band) until

they coalesce into a single line (B1 = 6 G, X band).

In Paper II we calculate the inverse of the matrix B
::
Fz:approximately using perturbation theory. The matrix element900

B−1
33 =H is found to be

H ≈ cos2α

R̃1 + iωI
+

1
2 sin2α

R̃2 + i(ωI −ωeff)
+

1
2 sin2α

R̃2 + i(ωI +ωeff)
,
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:
,
:::
and

::::
find

Fz ≈
cos2α

R̃1 + iωI
+

1
2 sin2α

R̃2 + i(ωI −ωeff)
+

1
2 sin2α

R̃2 + i(ωI +ωeff)
,

::::::::::::::::::::::::::::::::::::::::::::::

(51)

where the frequency ωeff =
√

Ω2 +ω2
1:::::::::::::::::
ωeff = (Ω2 +ω2

1)1/2 corresponds to the effective magnetic field, α is the angle between905

this field and B0(cosα= Ω/ωeff ,
:
,
::::
such

:::
that

:::::::::::::
cosα= Ω/ωeff:::

and
:
sinα= ω1/ωeff ), and

R̃1 =R1S(cosα)2 +R2S(sinα)2

R̃2 =R2S [1− (sinα)2/2] +R1S(sinα)2/2. (52)

This result is exact for R1S =R2S and is perturbative in the difference of the two electronic relaxation rates
:::::::::::
(Sezer, 2023).

The approximation (51) is shown with dotted black lines in the last three rows of fig. ??
:
6b. It is seen to correctly capture both

the shift of the peaks towards smaller offsets and their coalescence at Ω = 0. Inspecting (51) we see that the dependence of H910

::
Fz:on Ω is in the form of two Lorentzians centered at ωeff =±ωI , which implies Ω2 = ω2

I −ω2
1:::::
comes

:::::
from

:::
the

::::::
second

::::
and

::::
third

:::::::::
summands.

::::
The

::::::
second

::::::::
summand

::
is

:
a
::::::::::::::
complex-valued

:::::::::
Lorentzian

:::::::
centered

::
at

:::::::::
ωeff = ωI ,

:::::
which

::::::::::
corresponds

::
to

:::
the

::::::
offsets

::::::::::::::::
Ω =±(ω2

I −ω2
1)1/2. This explains the deviation of the maxima from the canonical solid-effect positions Ω =±ωI for ω1 ≈ ωI .

At X band, when B1 = 6 G, ω1 is larger than ωI and the two Lorentzians fuse together.
:
It

::
is

::::::::::
noteworthy

:::
that

::::
the

:::::::
equality

::::::::
ωeff = ωI ,

:::::::
implied

:::
by

:::
the

::::::::::::
approximation

:
(51)

:
,
::::
also

:::::
arises

:::
as

:::
the

::::::::
matching

::::::::
condition

:::
of

:::
the

::::::
pulsed

::::
DNP

:::::::
method

::::::
known

:::
as915

:::::::
NOVEL

:::::::
(nuclear

:::::::::
orientation

::
via

:::::::
electron

::::
spin

:::::::
locking)

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Henstra et al., 1988; Henstra and Wenckebach, 2008; Jain et al., 2017).

5.2.1 Combining the two sets of Bloch equations

Having examined the functions Fx,y and H , we
:::
We now turn to the transfer functions , which are indicated (48)

:
,
:::::
which

:::::
were

:::::::
depicted

::::
with

::::::
colored

::::::
arrows

:
in fig. ??

:
4b. These are plotted in the second and third rows of fig. ??.920

Transfer functions at the steady state of the coupled Bloch equations. B1 = 6 G, T2S = 60 ns and T1S = 9T2S .

As Tii :
7.
:::
As

:::
Ti (solid red lines) is just the real part of H

:::
Fz , it exhibits all the features that we already talked about when

discussing fig. ??b. Although, in principle, Tii corresponds to the rate v+, it accounts for both the two-step and four-step loops

that we observed in
::
6b.

::::
The

::::::
dashed

:::
red

:::::
lines

::
in

:::
the

::::
third

::::
row

::
of

:
fig. 2d. The former corresponds to the

:
7
:::::::::
correspond

:::
to

:::
the

:::::::::::::
mw-independent

::::
part

::
of

:::
Ti,:::::::

namely
:::::::::::::::
T 0
i = Ti(ω1 = 0),

:::::
which

::::::::::
contributes

::
to

:::
the

:::::::
nuclear relaxation rate w1 in fig. ??b, and is925

already included in R1I . Hence its contribution has to be removed when identifying
:::::
rather

::::
than

::
to

:
v+ .

Since the nuclear T1 is typically measured with the microwaves switched off, we identify

T 0
ii = Re{H(ω1 = 0)}= Re{(R1S + iω1)−1}

as contributing to relaxation. Subtracting it from Tii, we deduce

v+/δ
2 = Tii−T 0

ii = Re{H − (R1S + iω1)−1}.930
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Figure 7.
::::::
Transfer

:::::::
functions

:::::::::::
characterizing

:::
the

::::::
steady

::::
state

::
of

:::
the

:::
two

:::::::
coupled

:::
sets

:::
of

:::::
Bloch

::::::::
equations.

::::
Used

:::::::::
parameters:

:::::::::
B1 = 6G,

:::::::::
T2S = 60 ns

:::
and

::::::::::
T1S = 9T2S .

T 0
ii is plotted with red dashed lines in the third row of fig.

:::
(eq. ??(47)). At the high mw field that we have used (B1 =

6 G)it
:
,
:::
T 0
i is negligible compared to Tii itself

::
Ti:(solid red line), thus subtracting the relaxation would not make much of a

difference. However, at lower mw powers the contribution of Tii ::
Ti to thermal relaxation becomes comparable to the rest, and

the correction makes a difference. (This can be seen in the bottom plot of fig. A1 where B1 = 1 G.)

In the second row of fig. ??
:
7, the functions Tix,y :::

T ′x,y:resulted from the product of Fy,x and H
::
Fz:(eq. (48)). Interestingly,935

their Lorentzian-like features are at the same frequency offsets as those of Tii::
Ti, the real part of H . (The functions Tix,y were

shown in fig. 10 as the even and odd components of the second filter).
::
Fz .

:
We observe that Tix ::

T ′x (orange) and Tiy ::
T ′y:(blue)

are similar in magnitude. Thus, if the inputs sss
x and sss

y were comparable in magnitude, the contributions of the two parallel

branches from sss
z to the output

::
issz:would be similar (see flow diagram in the right margin of fig. ??

:
7). We know, however, that

sss
y is much smaller than sss

x at large offsets ,
:::
(fig.

::
7,

::::
first

:::::
row), and so the path via Tix ::

T ′x (orange) will contribute more.940

To determine the rate v−, which connects sz to the time derivative of iz at steady state (fig. ??c), we should treat sss
z as an

input (not sss
x,y). Multiplying the functions Tix,y :::

T ′x,y:(fig. ??
:
7, second row) by the functions in the first row, we obtain the

orange and blue lines in the last row of the figure. (The functions in the first row were shown before in fig. 5. They are plotted

here again only for B1 = 6 G. The four plots are identical to each other but appear different due to the different scales of the

horizontal axes.) Comparing the first and second rows of fig. ??
:
7, we see that an odd/even function in the first row is multiplied945

by an even/odd function in the second row to produce the corresponding orange and blue lines in the bottom row. As a result,

the contribution of both parallel paths from sss
z to issz (via either sss

x or sss
y ) is odd in Ω.
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The cumulative transfer function of the two parallel paths is obtained by adding the orange and blue lines in the last row of

fig. ??. It equals (compare fig
::
(eq. ??b and fig. ??c)

Tiz = ω1fxTix−ω1fyTiy = v−/δ
2,950

and (49))
:
is also plotted in the last row of fig. ??

:
7
:
with black dashed lines.

As already mentioned in the introduction, this cumulative transfer function results from two band-pass filters connected in

series and centered at Ω = 0 (fig. ??, top row) and at Ω≈±ωI (fig. ??, second row). The composite filter (fig. ??, bottom row)

will only “pass a signal” to the extend that the tails of the “dispersive” component of one of the filters and the “absorptive”

component of the other filter overlap. When this overlap is small, the corresponding transitions are “forbidden”.955

At Q and W bands the cumulative transfer function (fig. ??, bottom row, black dashed lines)
:
it
:
is seen to be essentially identi-

cal to its first additive contribution ω1fxTix ::::::
ω1fxTx:(orange line), which means that the electronic polarization is transferred to

the nucleus almost entirely through the dispersive component sss
x . This conclusion supports the assumption of Erb, Motchane

and Uebersfeld (Erb et al., 1958a).

From and we have960

Tiz = ω2
1 Re{i(fxFy + fyFx)H}.

Incidentally,

fxFy + fyFx = fxFy
2R2S + iωI
R2S + iωI

= fxF
′
y,

::
In

:::
the

::::
light

::
of

::::
this

::::::::::
observation,

:::
we

::::
will

::::
now

::::::
rewrite

:::
the

::::::::::
cumulative

::::::
transfer

::::::::
function

::
Tz::::

(eq.
:
(49)

:
)
::
as

::
if

:::
the

::::::::::
polarization

::::
was

:::::::::
transferred

::::
only

::::::
through

:::
the

:::::::::
dispersive

::::::::::
component.

:::
We

::::
start

::
by

:::::::::
observing

:::
that

:
965

Fyfx +Fxfy = Fy
2R2S + iωI
R2S + iωI

fx = F ′yfx,
::::::::::::::::::::::::::::::::::

(53)

where the last equality defines F ′y . The second R2S in the numerator of (53) comes from fyFx :::::
Fxfy and can be viewed as

a “correction” to fxFy due to fyFx. The last row of fig. ?? already demonstrated that this correction becomes negligible at

increasingly large nuclear Larmor frequencies. Here we see this analytically.

Using the cumulative transfer function from sss
z to issz can be expressed as if there was only one path through sss

x , as illustrated970

in fig. ??d. In other words, it is possible to rewrite exactly,
::::
Fyfx::::

due
::
to

:::::
Fxfy .

::::::::::
Introducing

Tx = Re{iFz(ω1F
′
y)},

::::::::::::::::::

(54)

::::::::
(compare

:::
this

:::
Tx ::::

with
::
T ′x::

in
:
(48)

:
),
:::
we

::::::
rewrite

:
(42) in a way that contains sss

x but does not contain sss
y :

i̇z|sscoh =−δ2(T ′ixs
ss
x +Tiii

ss
z ),
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with975

T ′ix = ω1Re{iF ′yH}.

(Compare this T ′ix with Tix in eq. .) Hence, the phenomenological equation of Erb, Motchane and Uebersfeld is , in fact, exact

with ν =−δ2T ′ix :
as

:::::::
follows:

:

i̇z|sscoh =−(δ2Ti)i
ss
z − (δ2Tx)sss

x .
::::::::::::::::::::::::::

(55)

::::
Note

:::
that

::::
this

:::::::::
expression

::
is

:::::
exact,

:::
and

:::::
does

:::
not

:::::
result

::::
from

::::::
simply

::::::::
dropping

:::
the

:::
last

::::
term

::
in

:
(42)

:
,
:::::
which

::
is

::::::::::
proportional

::
to
::::
sss
y ,980

::
as

:::
the

::::::::::
contribution

::
of

:::
the

::::
path

:::::::
through

::
sss
y::

is
:::::
taken

::::
into

::::::
account

::
in
:::
the

:::::::::
definition

::
of

::
Tx.

In summary, we derived the following exact expressions for the rate constants of the forbidden transitions:

v+ = δ2(Tii−T 0
ii), v− = δ2Tiz = δ2(ω1fx)T ′ix.

:::::::
Equation

:
(55)

:
is

:::::::
depicted

::
in

:::
fig.

:::
4d,

::::::
which

:::::
shows

::::
only

::::
one

::::
path

::::
from

:::
sss
z ::

to
::
issz:::::

going
:::::::
through

:::
sss
x .

:::::
From

:::
fig.

:::
4d,

:

v− = (ω1fx)(δ2Tx).
::::::::::::::::

(56)985

::::
This

::::::::::
factorization

::
is

:::::::
revisited

::
in
::::
Sec.

::::
7.1.

6 Use of
:::::
Closer

::::
look

:::
at the rate constants

6.1 Relation to the classical rates

Now
::::
Here

:
we show that the classical expression

::
of

::
the

::::
ZQ

:::
and

:::
DQ

::::::::
transition

:::::
rates

:::
(eq.

:
(28)

:
) follows from the exact rates

::::
(eqs.

(47)
:::
and (56))

:
when ω1� ωI .990

To simplify the analysis, we take from the start a long electronic T1 relaxation time, such that R1S � ωI . This should be the

case under solid-effect DNP conditions
::
for

:::::::::
high-field

::::
DNP

::
in

::::::
solids,

:
where the electronic T1 is at least a microsecond. In this

case the function H
:::
Fz (eq. (40)) simplifies to

H ≈ 1

iωI +ω2
1Fy

=
1

iωI

(
1 +

ω2
1

iωI
Fy

)−1

.

995

Fz ≈
1

iωI +ω2
1Fy

=
1

iωI

(
1 +

ω2
1

iωI
Fy

)−1

.

::::::::::::::::::::::::::::::::::

(57)

For ω1� ωI , to first order in ω2
1 ,

H ≈ 1

iωI
+
ω2

1

ω2
I

Fy.
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From

Fz ≈
1

iωI
+
ω2

1

ω2
I

Fy.

:::::::::::::::

(58)1000

::::
Note

::::
that,

:::::::
because

:::
the

::::::::
relaxation

::::
rate

::::
R1S::::

was
::::::::
neglected,

:::::::::::::::::::::::
T 0
i = Re{Fz(ω1 = 0)}= 0.

:::
In

::::
other

::::::
words,

:::
the

::::::::::
contribution

:::
of

:::
the

::::
short

::::
path

::
in

:::
fig.

:::
3b

::::
(blue

:::
and

:::
red

::::::
arrow)

::
to

:::
the

:::::::
nuclear

::::::::
relaxation

:::
rate

::::::::
vanishes.

:::::
From

:
(47)

:::
and

:
(56), retaining only terms of up

to first order in ω2
1 ,

v+ ≈ δ2ω
2
1

ω2
I

Re{Fy}, v− ≈ δ2ω
2
1

ω2
I

ωIfxRe{F ′y}.

1005

v+ ≈ δ2ω
2
1

ω2
I

Re{Fy}, v− ≈ δ2ω
2
1

ω2
I

ωIfxRe{Fy
2R2S + iωI
R2S + iωI

}.
:::::::::::::::::::::::::::::::::::::::::::::::::

(59)

To establish the equivalence of these expressions with (28), we need to show that Re{Fy} and ωIfxRe{F ′y} equal, respec-

tively, the sum and difference of two real-valued Lorentzians centered at Ω =±ωI . For the complex-valued Lorentzians (50),

we already observed that L−+L+ = 2Fy . One can also confirm that Re{L−−L+}= 2ωIfxRe{F ′y}. Hence,

v± ≈
1

2
δ2ω

2
1

ω2
I

(Re{L−}±Re{L+}),1010

and thus

v0,2 ≈
1

8
(A∗1A1)

(
ω1

ωI

)2

Re{L±},

v± ≈ δ2ω
2
1

ω2
I

1

2
(Re{L−}±Re{L+}),

:::::::::::::::::::::::::::::

(60)

:::
and

::::
thus1015

v0,2 ≈
1

8
(A∗1A1)

ω2
1

ω2
I

Re{L±},
:::::::::::::::::::::::

(61)

which is the classical result (28).

The sum and difference of the classical rates v2 and v0 is compared with the exact v± in the first two rows of fig. 8.

Naturally, the Lorentzians associated with the classical rates remain centered at ±ωI even when the maxima of the exact rates

shift closer to each other at Q and K bands, and converge at X band. At high fields (e.g. W band), where ωI � ω1, the classical1020

approximations work perfectly.

In the last row of fig. 8 we show the DQ-transition rate v2. While, classically, it is always non-negative (black dashed lines),

the exact rate deduced from v± (solid brown lines) is seen to become negative at some offsets. From the perspective of the

rate-equation formalism, such negative rates are meaningless. In that sense, the description of the forbidden transitions in terms

of v± is more fundamental than their description in terms of v0 and v2.1025
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Figure 8. Forbidden-transition rates calculated either exactly (solid lines) or using the classical expression (28) with v± = v2± v0 (dashed

lines). As in the previous figures, B1 = 6G, T2S = 60 ns and T1S = 9T2S .

6.2 Solid-effect DNP enhancement

The DNP enhancement of the solid effect (eq. (26)) was
::
can

:::
be

::::::
written

::
as the product of |γS |/γI with the following two factors:

pX =
R1I/δ

2

R1I/δ2 + (Tii−T 0
ii)
,

pv−
R1I

=
pTiz
R1I/δ2

,

:::::::::::
dimensionless

:::::::
factors:1030

pX =
R1I/δ

2

R1I/δ2 + (Ti−T 0
i )
,

pv−
R1I

=
pTz

R1I/δ2
,

:::::::::::::::::::::::::::::::::::::::

(62)

which we have rewritten here in terms of the transfer functions Tii, T 0
ii and Tiz::

Ti,:::
T 0
i :::

and
:::
Tz . These transfer functions already

appeared in the last two rows of fig. ??
:
7. Thus, to calculate the DNP enhancement, we only need to specify the ratio R1I/δ

2.

In the case of δ, rather than calculating A1 (eq. (30)) for some arbitrary inter-spin vector, let us average A∗1A1 over the entire

3D space. With b denoting the so called “distance of closest approach” or “contact distance”, and N denoting the number of1035

electron spins per unit volume, we have

〈δ2〉=
1

4
〈A∗1A1〉=D2

dip

6π

5

N

3b3
, (63)

where, in this case, the angular brackets denote spatial averaging. We will use b= 1 nm and N = 0.1 M as representative, but

otherwise arbitrary values.

While the average over 3D space in (63) is clear mathematically, it is important to understand that physically it implies1040

fast spin diffusion (Wind et al., 1985). Since the nuclear polarization in solids is homogenized across the sample through spin
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Figure 9. Decomposition of the DNP field profile (εSE) in terms of the multiplicative contributions pX and pv−/R1I . The new parameters

used here are T1I = 30ms, b= 1 nm and N = 0.1M. Other parameters: B1 = 6G, T2S = 60 ns and T1S = 9T2S .

diffusion, replacing the individual δ2’s of the nuclear spins by the average over all nuclei is only legitimate when spin diffusion

is faster than the nuclear spin-lattice relaxation. In practice, spin diffusion is rather slow and is often the bottleneck for efficient

polarization transfer in solids (Hovav et al., 2011; Smith et al., 2012; Pinon, 2018). As a result, the DNP enhancement values

that we will calculate with (63) are expected to be appreciably larger than what could be observed experimentally.1045

Similar considerations also apply for the choice of the nuclear spin-lattice relaxation time. In principle T1I will depend on

the distance of the nucleus from the electronic spin, and thus will vary greatly across the sample. In the limit of fast spin

diffusion, however, only its average value becomes relevant. In general, this time depends on the radical concentration and on

the magnetic field B0. However, for the purposes of illustration, here we take a generic numerical value of T1I = 30 ms across

all mw bands. Again, this value is realistic but otherwise arbitrary.1050

Using b= 1 nm, N = 0.1 M and T1I = 30 ms we find R1I/〈δ2〉= 1.78 ns. Let us visually compare this time scale with

(Tii−T 0
ii) = v+/〈δ2〉

:::::::::::::::::
(Ti−T 0

i ) = v+/〈δ2〉
:
by consulting the solid red line in the first row of fig. 8. We observe that at X and

K bands the maxima of the red line are much larger than 2 ns, which means that the minima of pX will be close to zero. At

Q band the maxima of the red line are comparable to 2 ns, and at W band they are much smaller. The minima of the nuclear

cross-polarization factor are thus expected to be about one half and one, respectively. These expectations are confirmed by the1055

maroon lines in the first row of fig. 9, which demonstrate that
::
the

::::
ratio

:
pX can substantially deviate from one at lower magnetic

fields.

To estimate the expected magnitude of the second factor in (62), we need to compare the time scaleR1I/〈δ2〉= 1.78 ns with

pTiz . While Tiz ::::
pTz .

:::::
While

:::
Tz:was shown with black dashed lines in the bottom row of fig. ??

:
7, now it has to be multiplied

by the electronic polarization factor in the top row of fig. 5. From the line for B1 = 6 G in this row, we see that Tiz ::
Tz will be1060
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significantly suppressed at X band, so it is hard to judge how the reduced value will compare with 1.78 ns. At Q band, Tiz ::
Tz

will be reduced by a little more than a factor of two, which will make its peak in fig. ??
:
7 comparable to R1I/〈δ2〉. At W band,

where the factor p is about 0.9, Tiz ::
Tz:will be only slightly reduced, so its peak is expected to be about one fifth of 1.78 ns.

Again, these estimates are confirmed by the green lines in the second row of fig. 9.

The last row of fig. 9 shows the product of the first two rows times |γS |/γI , assuming a proton spin. The result is the solid-1065

effect DNP enhancement (eq. (26)). In the figure we have also shown the factors predicted by the classical expression of the

rates (eq. (28)) with black dashed lines. While there are quantitative differences between the exact calculations and the classical

approximation, the magnitudes of the DNP enhancements in the two cases are, in fact, comparable. A closer look reveals that,

for the specific B1 and relaxation times used in the calculations, the classical description of the solid effect (eq. (28)) works

perfectly at Q band and at larger mw frequencies. (In fig. A2 we show that by reducing the mw power to B1 = 1 G the classical1070

expressions are also perfect at X band.) The amplitudes of the maximum enhancements at the four mw bands are roughly in the

ratios 1 : 2 : 4 : 2 (X:K:Q:W). On the other hand, considering the inverse dependence on ω2
I , we expect the ratios 100 : 40 : 10 : 1.

These expected ratios are indeed observed at the much lower mw power of B1 = 1 G (fig. A2, lower plot). Comparison of figs.

9 and A2, shows that increasing B1 increases the amplitudes of the maximum enhancements at W and Q bands, but reduces

the enhancement at X band. Such reduction of the solid-effect DNP enhancement with increasing B1 has been reported at X1075

band (Neudert et al., 2016).

7 Conclusion
:::::::::
Concluding

::::::::::
discussion

In this paper we presented a way of thinking about

7.1
:::::::::::::

Refactorization
::
of

:::
the

:::::::::::
polarization

:::::::
transfer

:::::
When

::::::
pX ≈ 1

::::
(eq.

:
(26)

:
),
::::
e.g.,

::
at

::::
high

::::::::
magnetic

:::::
fields

::::
(fig.

::
9,
:::
W

:::::
band)

:::
and

::::::
lower

:::
mw

:::::::
powers

:::
(fig.

::::
A2,

:::::
lower

:::::
half),

:::
the

:::::
DNP1080

:::::::::::
enhancement

::
of the solid effect which was grounded in the dynamics of the spins

::
is

εSE ≈ (pv−)T1I |γS |/γI (pX ≈ 1).
:::::::::::::::::::::::::::::::

(64)

::::
Since

::::
T1I ::

is
:::::
easily

::::::::
accessible

:::::::::::::
experimentally,

::::
pv− :

is
:::
the

::::
only

:::::::::
non-trivial

:::::
factor

::
in

:
(64).

:::::
From

:::
fig.

::
4a

:::
we

:::::
know

:::
that

::
p
::::::
relates

::
sz ::

at

:::::
steady

::::
state

::
to

::::
seq
z ,

:::
and

:::::
from

:::
fig.

::
4c

:::
we

:::::
know

:::
that

:::
v−::::::

relates
:::
the

::::
time

::::::::
derivative

::
of

::
iz:at steady state . The spin dynamics of the

four-level system that we analyzed requires only 16 different spin operators, including the identity operator.It is thus completely1085

described by a 16× 16 propagation matrix in Liouville space, and can be simulated numerically using a spin-dynamics

simulation package (Bengs and Levitt, 2018; Yang et al., 2022). Such numerical simulations would provide answers to many

specific questions, including the efficiency of the solid effect for the parameters that we explored here. Nevertheless, having an

intuitive understanding of the spin dynamics which is relevant for a given phenomenon is invaluable.
:
to

:::
sz .

::::::
Hence,

:::
the

:::::::
product

:::
pv−::::::

relates
:::
the

::::
time

::::::::
derivative

:::
of

::
iz ::::::

directly
::
to

:::
the

:::::::::
electronic

:::::::::
Boltzmann

::::::::::
polarization

::::
seq
z ,

::
as

:::::
shown

::::::::::
graphically

::
in

:::
the

:::
left

::::
half1090

::
of

:::
fig.

:::
10.
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Figure 10.
:::
Two

::::
ways

::
of
::::::::::
decomposing

:::
the

:::::
effect

::
of

::
the

::::::::
electronic

::::::::
Boltzmann

:::::::::
polarization

::::
(seqz )

::
on

:::
the

:::::::::
steady-state

::::::
nuclear

:::::::::
polarization

::::
(issz ).

:::
The

::::::
classical

::::
way

::::
(left)

::::::::
partitions

:::
this

::::
effect

::::
into

:::
the

:::::
factors

::
p

:::
and

:::::::::::
v− = v2− v0,

:::::
which

:::::
reflect

:::::::::
respectively

:::
the

::::::::
saturation

::
of

::
the

:::::::
allowed

:::
EPR

::::::::
transition

:::
and

::
the

::::::::
excitation

::
of

:::
the

:::::::
forbidden

:::
DQ

::::
(v2)

:::
and

:::
ZQ

:::
(v0)

:::::::::
transitions.

::::::::::
Alternatively

:::::
(right),

:::
the

::::
same

:::::
effect

:::
can

::
be

::::::
written

::
as

::
the

::::::
product

::
of

:::
the

::::::::
dispersive

::::::::
component

::
of

:::
the

:::::::::::::
power-broadened

:::
EPR

::::
line

:::::::
(sssx /seqz )

:::
and

::
the

::::
rate

::::::
constant

:::::
δ2Tx.

:::
The

::::
latter

::::::::::
characterizes

:::
the

:::::
steady

:::
state

::
of

:::
the

::::::::::::
electron-nucleus

:::::::::
coherences

::::::
without

:::
any

:::::::::
contribution

::::
from

:::
the

:::::
purely

:::::::
electronic

:::::::::
coherences.

Here, we followed a systematic procedure for deriving the relevant equations of motion under a given spin Hamiltonian

(Sec
::::
Since,

:::
by

:::::::::::
construction,

:::
the

::::
rate

::::::::
equations

::
of

:::
the

:::::::::::
polarizations

:::
do

:::
not

:::::
model

:::
the

:::::::::
dynamics

::
of

:::
the

::::::::::
coherences,

::::
their

::::::
steady

::::
state

:::::::
balances

:::
the

:::::
rates

::
of

::::
mw

::::::::
excitation

::::
only

:::::::
against

:::
the

::::::::::
longitudinal

::::
(i.e.,

:::::::::::
spin-lattice)

:::::::::
relaxations.

::::
The

::::::::::
polarization

::::::
factor

:
p
::::::::
quantifies

::::
this

:::::::
balance

:::
for

:::
the

:::::::
allowed

::::
EPR

:::::::::
transition

:::
(eq. ??), and developed a graphical representation to visualize the1095

interplay of these equations ((3)
::
).

:::::::
Because

:::
the

:::
rate

::::::::
equations

:::::
work

::::
only

::::
with

::
the

::::::::::::
polarizations,

::
all

:::::::::
dynamical

::::::::
variables

:::::::
between

::
sz:::

and
::
iz::

in
:
fig. 2d ). While our analysis focused on the solid effect and the Hamiltonian , it should be possible to analyze other

related effects with different Hamiltonians in a similar way.In any case, for a four-level system the resulting dynamics will

comprise at most fifteen coupled differential equations.Here, we explicitly considered the dynamics of seven spin operators
:::
are

::::::
lumped

::::
into

:::
the

:::
rate

::::::::
constant

:::
v−.

::::::::::
Classically,

:::
this

::::
rate

:::::::
constant

:::::::::::::
(v− = v2− v0)

:
is
::::::::

obtained
::
by

::::::::::
calculating

:::
the

::::
rates

::
of

:::
the

::::
ZQ1100

:::
(v0)

::::
and

:::
DQ

::::
(v2)

:::::::::
transitions

:::::
using

::::::::
first-order

::::::::::
perturbation

::::::
theory.

:::::
From

::::
this

::::
point

:::
of

::::
view,

::::::::::::
decomposing

:::
the

::::::
product

::::
pv−::::

into

::
the

::::::
factors

::
p
:::
and

:::
v−::

is
::::::
natural.

::::
The

:::::
offset

::::::::::
dependence

::
of

:::::
these

:::
two

::::::
factors

::::
was

::::::::
visualized

::
in
::::
fig.

:
5
::::
(top

::::
row)

:::
and

::::
fig.

:
8
:::::::
(middle

:::
row,

:::::
black

::::::
dashed

::::::
lines).

:::
The

::::::
curves

:::
for

::::::::
B1 = 6 G

:::
and

:::
W

::::
band

:::
are

:::::::::
reproduced

:::
on

:::
the

::::::::
left-hand

:::
side

::
of

:::
fig.

:::
10

:::::
(black

::::
and

:::::
green

:::::
lines).

::
In

:::::::
contrast

::
to

::::
this

:::::::
classical

:::::::::
approach,

::::
here

:::
we

::::::::::
considered

:::
the

::::::::
complete

::::
spin

:::::::::
dynamics

::
of

:::::::::
relevance

::
to

:::
the

:::::
solid

::::::
effect,1105

::::::::
including

:::
the

::::::::
dynamics

::
of

:::
the

::::::::::
coherences (fig. 2d), while the dynamics of three more operators, namely SnI− (n= x,y,z),

was included implicitly when we took the real part of szi+. The remaining five operators which did not appear in our analysis

were I± and SnIz .
::::

The
:::::::
analysis

::::
was

:::::::::
simplified

::
by

:::
the

:::::::
realistic

::::::::::
assumption

:::
that

:::
the

:::::::::
electronic

::::::::
dynamics

::::
was

:::
not

:::::::
affected

:::
by
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::
the

:::::::
dipolar

:::::::::
interaction

::::
with

:::
the

::::::
nuclear

:::::
spins.

::::::
Thus,

::
in

:::
our

::::::::::
description,

:::
the

:::::
purely

:::::::::
electronic

:::::::
degrees

::
of

:::::::
freedom

::::::::
constitute

:::
an

::::::
isolated

:::::::::
dynamical

:::::::
system,

:::::
which

:::::::::
influences

:::
the

::::
other

:::::::::
dynamical

::::::::
variables

:::
but

::
is

:::
not

::::::
affected

:::
by

::::
them.1110

The main insight of our dynamical description of the solid effect relates to the role of the coherences. We demonstrated the

involvement of two types of coherences: purely electronic and mixed electron-nuclear.Their evolution was described by two

coupled Bloch equations (
::::
This

:::::::
division

::
of

:::
the

::::::::
complete

:::::::::
dynamical

::::::
system

::::
into

:
a
::::::

purely
:::::::::
electronic

:::
part

::::
and

:::
the

:::
rest

:::::
calls

:::
for

:
a
::::::
similar

:::::::::
separation

::
of

:::
the

:::::::
product

::::
pv−::

in
:
(64)

:::
into

::
an

:::::::::
electronic

::::
part

:::
and

::
a
:::::
mixed

::::::::::::::
electron-nucleus

::::
part.

:::::
Such

:::::::::::
factorization

::
of

::::
pv− ::

is
::::::::
illustrated

::
in
::::

the
::::
right

::::
half

::
of

:::
fig.

:::
10,

::::::
where

:::
the

::::::
purely

::::::::
electronic

::::
part

::
is

::::::::
identified

::::
with

::::
the

::::::::
dispersive

::::::::::
component1115

::
of

:::
the

::::
EPR

::::
line.

::::
This

::::::
would

::
be

::::
the

::::::::::
out-of-phase

::::::::
cw-EPR

:::::::
spectrum

::::::::
recorded

:::::
under

:::
the

:::::
same

::::
mw

:::::
power

:::
as

::::
used

::
in

:::
the

:::::
DNP

:::::::::
experiment.

::::::
Then,

::::
from

:
(56)

:
,
:::
the

::::::
second

:::::
factor

::
is
::::::::::

recognized
::
to

:::
be

:::::
δ2Tx,

:::::
where

:::
δ2

::::::::
accounts

:::
for

:::
the

:::::::
strength

::
of

:::
the

:::::::
dipolar

:::::::::
interaction

:::
(eq.

:
(41)

:
)
::::
and

::
Tx:::::

takes
::::
care

:::
of

:::
the

::::::::::::::
interconnections

:::::::
between

:::
the

:::::::
relevant

::::::::::::::
electron-nucleus

::::::::::
coherences

::
at

::::::
steady

::::
state

:::
(eq.

:
(54)

::
).

:::
The

::::::
offset

::::::::::
dependence

::
of

:::
the

:::::::::
dispersive

::::
EPR

::::
line

::::
was

:::::::::
visualized

::::::
before

::
in

:::
fig.

::
5
:::::::
(bottom

:::::
row).

::::
The

:::::
curve

::
for

:::::::::
B1 = 6 G

::
is

:::::::::
reproduced

:::
on

:::
the

:::::::::
right-hand

::::
side

::
of

:
fig. 2d), whose steady-state response was rationalized in terms of two1120

band-pass filters connected in series (figs.
::
10

:::::
(blue

:::::
line).

::::
The

:::::
curve

::::::
below

:
it
:::::::

(orange
:::::
line)

::::::::::
corresponds

::
to

:::::
δ2Tx::

at
:::
W

:::::
band,

:::::
which

::
is

:::::::::
essentially

:::
the

::::
same

::
as

:::::
δ2T ′x:::

that
::::
was

::::::
shown

::
in

::
the

:::::::
second

:::
row

::
of

:::
fig. ?? and 10)

:
7
:::::
since

::
at

:::
this

::::
high

::::::::
magnetic

::::
field

:::
T ′y

:::::::::
contributes

::::::::
negligibly

:::::
little.

:

:::::::
Because,

::
as

:::::::
already

::::::::
illustrated

::::::
above

:::
(fig.The involvement of the electron-nuclear coherences in the solid effect is directly

manifested by the lines in the DNP field profile at the canonical offsets Ω≈±ωI . The involvement of the purely electronic1125

coherences, on the other hand, is not directly visible, at least until one recognizes thatthe odd parity of the DNP field profile is

a
:::

9,
::::::
middle

::::
row,

::
W

::::::
band),

:::
the

:::::::
classical

::::::::
approach

:::
and

::::
our

::::
new

:::::::
approach

::::
lead

::
to
:::

the
:::::

same
:::::::
product

::::
pv−,

:::
the

::::
new

:::::::::::
factorization

::
on

:::
the

:::::::::
right-hand

::::
side

::
of

:::
fig.

:::
10

::::
may

::::::
appear

::
as

:
a
::::::
purely

:::::::::::
mathematical

::::::::
exercise

::
of

::::
little

:::::::
practical

:::::::
interest.

:::::
Note,

::::::::
however,

::::
that

:::::::::
recognizing

::::
the

::::::::
dispersive

:::::
EPR

::::
line

::
as

:::::::::::
contributing

:::::::::::::
multiplicatively

::
to

:::
the

:::::
DNP

:::::::::::
enhancement

::::::::
suggests

::::
that

:::
the

:::::::::
dispersive

::::::
extrema

::::::
could

:::::::
become

::::::
visible

::
in

:::
the

:::::
field

::::::
profile

::
of

::::
εSE,

::::::::
provided

::::
that

::::
they

:::
are

::::
not

::::
fully

::::::::::
suppressed

:::
by

:::
the

:::::
factor

::::::
δ2Tx.1130

::::
Such

:::::::::
possibility

::
is

:::::::::
completely

:::::::
missing

::
in

:::
the

::::::::
classical

:::::::::
description

:::
on

:::
the

:::::::
left-hand

::::
side

::
of

::::
fig.

:::
10,

:::::
where

::::
any

::::::::
reference

::
to

:::
the

::::::::
dispersive

::::
EPR

::::
line

:::
and

::
its

:::::::
extrema

::
is
:::::::::
irrelevant.

::
In

:::::
Paper

::
II

:::
we

:::::
show

::::
that,

:::
in

::::::
liquids,

::::
the

:::::::
random

:::::::::
modulation

:::
of

:::
the

:::::::
dipolar

:::::::::
interaction

::::::::
broadens

:::
the

:::::
lines

::
of

:::
the

::::::
factor

::::
δ2Tx::::

(fig.
:::
10,

::::::
orange

::::
line).

::::::
When

::
the

::::
tails

::
of

:::::
these

:::::::::
broadened

::::
lines

:::::
reach

:::
the

:::::::
extrema

::
of

:::
the

::::::::
dispersive

::::
EPR

::::
line

::::
(blue

:::::
line),

:::
the

:::::::::::
enhancement

:::
field

::::::
profile

:::::::
exhibits

::::::
features

::::
that

:::
are

:::::::::
reminiscent

::
of

:::
the

:::::
DNP

:::::
effect

:::::
known

::
as

:::::::
thermal

::::::
mixing

:::::::::::::::::::
(Kuzhelev et al., 2022).1135

:::::
These

:::::::
features

:::
are

:
a
:::::
direct manifestation of the dispersive EPR line , as intuited

::
in

::
the

:::::
DNP

::::::::
spectrum

::::::::::::
(Sezer, 2023).

7.2
::

On
:::
the

:::::
birth

::
of

:::
the

:::::
solid

:::::
effect

:::
The

:::::
issue

::
of

::::::::
Comptes

::::::
rendus

::::
from

::::
April

:::
9,

:::::
1958,

::::::::
contained

:::
the

::::::
article

:::::::
“Effect

::
of

::::::
nuclear

:::::::::::
polarization

::
in

::::::
liquids

::::
and

:::::
gases

:::::::
adsorbed

:::
on

::::::::
charcoal”

:
by Erb, Motchane and Uebersfeld (Erb et al., 1958a).

:
It

:::::::
reported

::::::::::::
enhancements

::
of
::::

the
:::::
proton

::::::
NMR

:::::
signal

::
of

:::::::
benzene

:::::
upon

:::
mw

:::::::::
irradiation

:::
of

:::
the

::::
EPR

:::
line

:::
of

::::::::
charcoal.

:::
The

::::::::::::
enhancements

:::::
were

::::::
positive

:::
at

::::
fields

::::::
larger

::::
than

:::
the1140

::::
EPR

::::::::
resonance

:::::::
position

::::
and

:::::::
negative

::
at

::::::
smaller

:::::
fields.

::::::::
Because

::::
fields

::::::::::::
symmetrically

::::::::
displaced

:::::
from

:::
the

::::::::
resonance

:::::::
yielded

:::
the

::::
same

::::::::::::
magnification

:::::
factor,

:::
the

:::::::::::
enhancement

::::::
profile

::::
was

:::
odd

::
in

:::
the

::::
field

:::::
offset

::::
and

:::::::::
resembled

:::
the

::::::::
dispersive

::::::::::
component

::
of

:::
the
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::::
EPR

::::
line.

:::
The

:::::::::
similarity

:::::::
between

:::
the

:::
two

:::::::::
prompted

:::
the

::::::
authors

::
to

::::::::
augment

:::
the

::::::::
Solomon

:::::::
equation

::::::::::::::::::
(Solomon, 1955) with

::::
two

:::
new

:::::
terms

:::::::::::
proportional

::
to

::
sx::::

and
::
sy:::::::::::::::

(Erb et al., 1958a):
:

i̇z = λ(iz − ieq
z ) +µ(sz − seq

z ) + νsx + ρsy.
:::::::::::::::::::::::::::::::::::

(65)1145

::::::
Taking

:::
into

:::::::
account

:::
that

::::::
“under

:::::::::
saturation

:::::::::
conditions

::::::
sy = 0”

:::
the

:::::::
authors

::::::
arrived

::
at

i̇z = λ(iz − ieq
z ) +µ(sz − seq

z ) + νsx.
::::::::::::::::::::::::::::::

(66)

::::::::
Assuming

::
µ

:::
was

:::::
small

::
in

::::
their

:::::
case,

::::
they

::::::
solved (66)

:
at
::::::
steady

::::
state

::
as

:

issz = ieq
z − (ν/λ)sss

x ,
::::::::::::::::

(67)

:::::
which

::::::::
explained

:::
the

::::::::
similarity

:::::::
between

:::
the

::::
field

::::::
profile

::
of

:::
the

:::::::::::
enhancement

::::
and

:::
the

::::::::
dispersive

::::
EPR

::::
line.

:
1150

On a more quantitative level, we predicted that when the mw nutation frequency becomes comparable to the nuclear

Larmor frequency, the optimal
::::::::::
Intriguingly,

::::
with

::::::
µ= 0,

:::
the

:::::::::::::::
phenomenological

::::::::
equation

:
(65)

:
is

:::::::::::::
mathematically

:::::::
identical

:::
to

(42)
:
,
:::::
which

:::::::::
expressed

:::
the

:::::
time

::::::::
derivative

:::
of

::
iz::

at
::::::
steady

::::
state

:::
as

:
a
::::::

linear
::::::::::
combination

:::
of

:::
iz ,

::
sx::::

and
:::
sy .

::::
The

::::::::
argument

:::
of

:::::::::::::::::
Erb et al. (1958a) that

:::
the

:::::::::::
contribution

::
of

::
sy:::::

could
:::

be
:::::::::
neglected,

:::::
which

:::
let

::
to (66),

::
is

:::::::
justified

:::
by

:::
our

:::::::
analysis.

:::::::::::
Specifically,

::
in

::
the

::::
last

:::
row

::
of

:::
fig.

::
7
:::
we

:::::::
observed

::::
that

:::
the

::::::::::
contribution

::
of

:::
the

:::::::::
absorptive

:::::::::
component

:::
sy ::

to
::
the

::::
rate

:::::::
constant

:::
v−:::

was
:::::::
smaller

::::
than1155

:::
that

::
of

:::
the

:::::::::
dispersive

:::::::::
component

:::
sx.

:::::::::
Moreover,

:::
we

:::::::
showed

:::
that

:::
the

:::::::::::::
mathematically

:::::::
identical

::::::::
equation (55)

::::
was,

::
in

::::
fact,

:::::
exact

:::::
within

:::
the

:::::::::
framework

:::
of

:::
our

:::::::::
treatment.

:::::
Thus,

:::
the

:::::::::::::::
phenomenological

::::::::
equation (66)

:::::::
produces

:::
the

::::::
correct

::::::
steady

::::
state

:::::
when

:::
its

:::::::::
coefficients

:::
are

:::::::
selected

::
as

::::::::::
ν =−δ2Tx:::

and
::::::::::::::::
λ=−δ2(Ti−T 0

i ).
:

:::
The

::::
next

::::::::::
installment

::
of

:::::::
Comptes

::::::
rendus

::::
from

:::::
April

:::
14,

:::::
1958,

::::::::
contained

::::::::
Abragam

::::
and

:::::::
Proctor’s

::::::
report

::
“A

::::
new

:::::::
method

:::
for

:::::::
dynamic

::::::::::
polarization

::
of

::::::
atomic

:::::
nuclei

::
in

::::::
solids”

::::::::::::::::::::::::
(Abragam and Proctor, 1958),

::::::
which

:::
was

::::::
printed

:::
132

:::::
pages

::::
after

:::::::::::::::
Erb et al. (1958a).1160

::::
This

::::::
seminal

:::::::::::
contribution

:::::::
provided

:::
the

:::::::
modern

:::::::::
theoretical

:::::::::::::
understanding,

:::
and

:::::::::::
subsequently

::::
also

:::
the

::::::
name,

::
of

:::
the

:::::::::
solid-state

:::::
effect

::
of

::::::::
dynamic

::::::
nuclear

:::::::::::
polarization

::::::
(DNP).

:::
In

:::::::::
particular,

:::
the

:::::::
authors

::::::
argued

::::
that

:::
the

:
excitation of the forbidden tran-

sitions should shift from the canonical solid effectpositions to smaller offsets (fig. 8). Considering the high mw powers

accessible in modern-day DNP spectrometers (Neudert et al., 2016), this observation should be relevant at S and X bands

(Neudert et al., 2017; Gizatullin et al., 2021). However,
::::::::::::
(++) 
 (−−)

::::
and

::::::::::::::
(+−) 
 (−+),

:::::
which

:::::::
become

:::::::
weakly

:::::::
allowed1165

::::::
because

:::
the

:::::::
dipolar

:::::::
coupling

:::::
yields

::::::
mixed

:::::
states

::
of

:::
the

:::::
form

:::::::::::::
(−−) + q(−+),

:::::
could

:::
be

::::
used

:::
for

:::::
DNP.

::
(±

:::
are

:::
the

:::::
states

:::
of

:::
the

:::
two

::::
spin

:::::
types,

:::::
both

::::
taken

:::
as

:::
1/2

:::
for

::::::::::
simplicity.)

::
As

:::
an

:::::::::::
experimental

::::::::::
verification

::
of

:::
the

:::::::::
theoretical

::::::::
proposal,

:::
the

::::::::::
Boltzmann

::::::::::
polarization

::
of

:::

19F
::::::
nuclei

:::
was

:::::
used

::
to

:::::::
enhance

:::
the

:::::
NMR

:::::
signal

::
of

::::

6Li
::
in

:
a
::::
LiF

:::::::::::
monocrystal,

::::
thus

::::::::::::
demonstrating

::::::::::
polarization

::::::
transfer

::::
from

::::::
nuclei

::::
with

:::::
larger

::
to

::::::
nuclei

::::
with

::::::
smaller

:::::::::::
gyromagnetic

:::::
ratios

:::::
(i.e.,

:
a
:::::::
nuclear

::::
solid

::::::
effect).

:

:::
One

::::::
month

::::
and

:
a
::::
half

::::
after

::::::::
Abragam

::::
and

::::::::
Proctor’s

::::::
report,

::
in

:::
the

::::
May

:::
28,

:::::
1958

:::::
issue

::
of

::::::::
Comptes

::::::
rendus,

::::
Erb,

:::::::::
Motchane1170

:::
and

:::::::::
Uebersfeld

:::::::::
published

::::::
another

::::::
report

::::
with

:::
the

:::::::
lengthy

:::
title

::::
“On

::
a
::::
new

:::::::
method

::
of

::::::
nuclear

:::::::::::
polarization

::
in

:::::
fluids

::::::::
adsorbed

::
on

::::::::
charcoal.

::::::::
Extension

::
to
::::::
solids

:::
and

::
in

::::::::
particular

::
to

::::::::
irradiated

:::::::
organic

::::::::::
substances”

::::::::::::::::
(Erb et al., 1958b).

:::::
There,

:::
the

:::::::
authors

::::
state

:::
(our

::::::::::
translation)
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:::
The

::::::::::
experiments

:
[
::::::::::::::
Erb et al. (1958a)]

:::
had

::::
been

::::::
carried

:::
out

::::
with

:::::::
charcoal

::::::
whose

:::::::::::
half-linewidth

::::
was

::
5

::::
gauss

::::
and

:::
the

:::::::::::
multiplication

:::::
factor

:::::::
seemed

::
to

::::::::
reproduce

:::
the

::::::::::::
paramagnetic

::::::::
dispersion

::::::
curve.1175

:::
The

::::
new

:::::::::::
experiments

:
[. . . ]

:::::::::
indicated

::::
that

:::
the

:::::::
increase

:::
in

::::::::::
polarization

:::
of

:::
the

::::::
proton

:::
in

:::
the

::::::::
adsorbed

:::::
fluid

::
is

::::::::
maximum

::
in

:::
all

:::::
cases,

:::::
when

::::
the

::::::::
electronic

::::
and

::::::
nuclear

::::::::::
frequencies

:::
are

::::::
chosen

:::::
such

:::
that

::::
the

::::::
nuclear

:::::::::
resonance

::::
field

:::::
differs

:::::
from

:::
the

::::::
electron

:::::::::
resonance

::::
field

:::::::::::::
δH =±5 gauss

::::::
(within

::::::
10%).

:::::
These

::::::
results

::::::
support

::::
the

:::::::::
suggestion

::
of

:::::::::
Abragam

:::
that

:::
the

::::
new

::::::
theory

:::
of

::::::::
Abragam

::::
and

::::::
Proctor

:::
on

:::
the

:::::::
nuclear

::::::::::
polarization

:
in
::::::
solids

::::::::::::::::::::::::::::
(Abragam and Proctor, 1958) must

:::::
apply

::
to

::::
these

::::
new

::::::::::
phenomena,

:::
and

:::::::::
invalidates

:::
the

:::::::::::
interpretation1180

:::::::
proposed

:::::::::
previously

::::::::::::::::
(Erb et al., 1958a).

:::
The

:::::
value

::
of

::
5

:::::
gauss

:::::
found

::
in

:::
the

::::
case

::
of

:::
the

:::::
proton

::::::
indeed

::::::::::
corresponds

:::
to

::
the

:::::
value

:::::::
deduced

:::::
from

:::
the

:::::::::
theoretical

::::::
formula

::::::::::::::::::::::
H0± δH = (ω±ωN)/γe, . . . .

:

::::
This

:::::
seems

::
to

::::
have

::::::
sealed

:::
the

:::
fate

::
of

:::
the

::::::::
insightful

::::::::::
observation

::
of

::::::::::::::::::
Erb et al. (1958a) that

:::
the

:::
odd

::::::
parity

::
of

:::
the

:::::::::
solid-effect

:::::
DNP

::::
field

:::::
profile

:::::::::
resembles

:::
the

::::::::
dispersive

::::::::::
component

::
of

:::
the

::::
EPR

::::
line.1185

::::
With

:::
the

::::::::::::
understanding

::::::::
developed

:::
in

:::
the

::
65

:::::
years

::::
since

:::::
these

::::
first

::::::::::
publications

:::
on

:::
the

::::
solid

::::::
effect,

:::
the

::::::::
additional

:::::::::
transverse

::::
terms

:::
in

:
(65)

:::::
appear

:::::::
strange,

::::
and

::::
even

::::::::::
disturbing.

:::::::::::
Nevertheless,

::::
our

:::::::
analysis

:::::::
showed

:::
that

:::
in

:::
one

:::::::
specific

::::::::::::::
regime—steady

:::::::::::::
state—equation (65)

:
is

:::::
exact.

::::::::::
Admittedly, because of the additional multiplication by the electronic polarization factor (fig.

:::::::
algebraic

::::::::::
relationships

::::::::
between

::
all

:::::::::
dynamical

::::::::
variables

::
at
::::::

steady
:::::
state,

:::
the

:::::::::
transverse

::::::::::
components

:::
in (65)

:::
can

:::
be

::::::::
expressed

:::
in

:::::
terms

::
of

:::
the

::::::::::
longitudinal

::::::::::
component,

:::
as

:::
we

:::
did

:::::
when

::::::
going

::::
from

:
(42)

::
to

:
(43).

:::::
Such

::::::::::::
mathematical

:::::::::::
manipulation,

::::::::
however,

:::::
only1190

::::::::
highlights

:::
the

::::
fact

:::
that

:::
the

:::::
value

::
of

::::
any

:::::::::
description

::
of
::::

spin
:::::::::
dynamics

::
by

::::
rate

:::::::::
equations,

:::::::::::
independently

:::
of

:::::::
whether

:
it
::::::::

contains

::::::::
transverse

::::::::::
components

:::
or

:::
not,

::::
lies

::
in

:::
the

::::::
proper

:::::::
selection

:::
of

:::
the

:::::::::::::::
phenomenological

::::
rate

::::::::
constants.

::
In

::::
this

:::::
paper,

:::
we

::::::::
departed

::::
from

:::
the

:::::::
classical

::::::::
approach

::
of

:::::::::
identifying

::::
these

::::
rate

::::::::
constants

::::
with

::
the

::::::::
transition

:::::::::::
probabilities

:::
per

:::
unit

:::::
time.

::::::
Instead,

::::::::::
completely

::::::::::
disregarding

:::
the

:::::::::
dynamical

:::::
aspect

::
of

:::
the

::::
rate

:::::::::
equations,

::
we

:::::::
selected

:::
the

::::::::::::::::
phenomenological

:::
rate

::::::::
constants

::
by

::::::::
requiring

::::
that

:::
the

:::::
steady

::::
state

::
of

:::
the

:::::
exact

::::::::
quantum

::::::::
dynamics

::
is

:::::::
correctly

::::::::::
reproduced.

:
1195

::
By

:::::::
writing

:::
the

::::
rate

:::::::
equation

::
of

::::
the

::::::
nuclear

::::::::::
polarization

:::::
with

::::::
explicit

:::::::::
dispersive

:::::::::
component

::::
(eq. 5, top row), the maxima

of the enhancement end up in the vicinity of the canonical offsets even when the condition ω1� ωI is violated ((66)
:
),

:::::::::::::::::::::
Erb et al. (1958a) reached

:::
the

:::::::::
conclusion

:::
that

:::
the

::::
DNP

:::::::::::
enhancement

:::::::
depends

:::::::::::::
multiplicatively

::
on

::
sx::::

(eq. (67)
::
).

::::
This

:::::::::
conclusion

:
is
:::::::::
confirmed

::
by

::::
our

:::::::
analysis.

::::::
Indeed,

:::::
from

:::
the

:::
new

::::::::::
perspective

::::::::
illustrated

:::
on

:::
the

:::::::::
right-hand

:::
side

:::
of fig. 9, last row, X band)

:::
10,

::
the

:::::
DNP

::::
field

::::::
profile

:::::::
acquires

::
its

::::
odd

:::::
parity

::
in

::
Ω

::::::
directly

:::::
from

:::
the

::::::::
dispersive

:::::::::
component

:::
of

:::
the

::::
EPR

:::
line

:::::
(blue

::::
line),

:::::::
exactly

::
as1200

::::::
intuited

:::
by

:::::::::::::::
Erb et al. (1958a).

::::::::
Certainly,

:::
one

:::::
could

::::::
explain

:::
the

::::
odd

:::::
parity

::
of

:::
the

:::::::::
solid-effect

:::::
DNP

:::::::::::
enhancement

::
in

::::::
various

:::::
other

::::
ways

::::
that

::
do

:::
not

::::::
involve

:::
the

:::::::::
dispersive

::::
EPR

::::
line,

::
as

:::
has

::::
been

::::
done

::
in

:::
the

::::
past

::
65

:::::
years.

::::
The

:::::::
validity

::
of

::::
these

:::::
other

:::::::::::
explanations,

:::::::
however,

::::
does

:::
not

:::::::::
invalidate

:::
the

:::::::
intuition

::
of

::::
Erb,

:::::::::
Motchane,

:::
and

::::::::::
Uebersfeld.

:

7.3
:::::::::
Conclusion

::
In

:::
this

:::::
paper

:::
we

:::::::::
developed

:
a
:::::
novel

::::
way

::
of

:::::::
thinking

:::::
about

:::
the

::::
solid

::::::
effect,

:::::
which

::::
was

::::::::
grounded

::
in

:::
the

::::::::
dynamics

::
of

:::
the

:::::
spins

::
at1205

:::::
steady

:::::
state.

:::
The

:::::
main

::::::
insight

::
of

:::
our

:::::::::
dynamical

:::::::::
description

::::::
relates

::
to

:::
the

::::
role

::
of

:::
the

::::::::::
coherences.
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:::::
While

:::
our

:::::::
analysis

:::::::
focused

::
on

:::
the

:::::
solid

:::::
effect

:::
and

:::
the

:::::::::::
Hamiltonian (29),

:::
the

:::::::::
systematic

:::::::::
procedure

:::
for

:::::::
deriving

:::
the

:::::::
relevant

::::::::
equations

::
of

::::::
motion

:::::
under

::
a
:::::
given

::::
spin

:::::::::::
Hamiltonian

::::
(Sec.

:::::
3.1),

:::
and

:::
the

:::::::::
developed

::::::::
graphical

:::::::::::::
representations

::
to

::::::::
visualize

:::
the

:::::::
interplay

::
of

:::::
these

::::::::
equations

:::::
(Sec.

::
4)

:::
and

:::::
their

:::::
steady

::::
state

:::::
(Sec.

:::
5),

::::::
should

::
be

:::::::::
applicable

::
to

::::
other

::::::
related

::::::
effects

::::
with

::::::::
different

:::::::::::
Hamiltonians.

:
1210

The classical explanation of the solid effect in terms of level
:::
state

:
mixing (Abragam and Proctor, 1958) is static in nature

and is thus hard to generalize to liquids where the dipolar interaction fluctuates randomly due to molecular motions. The

time-dependent description of the solid effect that we developed in the current paper
::::::::
developed

::::
here naturally accommodates

such stochastic modulation of the parameters of the Hamiltonian, in a way similar to the treatment of relaxation in liquids

(Abragam, 1961)
:::::::::::::::::::::
(Abragam, 1961, Ch. VIII). In the companion paper we extend the formalism

:::::::::::
(Sezer, 2023),

:::
the

:::::::::
formalism

::
is1215

:::::::
extended

:
to the solid effect in liquids, and validate its predictions

::
its

::::::::::
predictions

:::
are

:::::::
validated

:
against recent DNP experiments

at J band (Kuzhelev et al., 2022).

Appendix A:
:::::::::
Additional

::::::
figures

:::
The

::::::::
numerical

::::::::
examples

::
in

:::
the

:::::
paper

::::
were

:::
for

:::
the

:::::::::
excessively

::::
high

::::
mw

::::
field

::
of

::::::::
B1 = 6 G,

:::::
which

::
is

::::::::
reachable

::::
with

:
a
::::::::::::::
custom-designed

::::::::
resonance

:::::::
structure

::::::::::::::::::::::
(Denysenkov et al., 2022).

:::
As

:::
the

::::::::::
modern-day

::::
DNP

::::::::::
experiments

::
in
::::::
solids

::
are

::::::::
generally

:::::::::
performed

:::::::
without1220

:
a
:::
mw

:::::::::
resonator,

:::
here

:::
we

:::::
show

::::::::
numerical

::::::::
examples

:::
for

:::
the

::::
lower

:::::
fields

::
of

::::::::
B1 = 3 G

::::
and

::::::::
B1 = 1 G.

::::::::
Although

:::::
these

::
are

::::
still

:::::
likely

::
an

:::::
order

::
of

:::::::::
magnitude

:::::
larger

::::
than

:::::
what

:
is
:::::

used
::
in

:::::::
practice,

:::
the

::::::
figures

::::
aim

::
to

:::::::
illustrate

::::
how

:::::
some

::
of
:::

the
:::::::

features
:::::::::
discussed

::
in

::
the

:::::
paper

::::::::::::
progressively

::::::
change

::::
upon

::::::::
reduction

::
of
::::
B1.
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Figure A1. Same as fig. ??
:
7 with smaller mw fields of B1 = 3G (top) and B1 = 1G (bottom).
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Figure A2. Same as fig. 9 with smaller mw fields of B1 = 3G (top) and B1 = 1G (bottom).
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