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Abstract. The first report of dynamic nuclear polarization (DNP) in liquids via the solid-effect mechanism [Erb, Motchane

and Uebersfeld Compt. rend. 246, 2121 (1958)] drew attention to the similarity between the field profile of the enhancement

and the dispersive component of the EPR line. The implications of this similarity, however, were not pursued subsequently

as practically at the same time Abragam explained the effect in terms of state mixing by the dipolar interaction. Here we

develop a description of the solid effect which is grounded in the dynamics of the electron-nucleus spin system, rather than the5

static view of state mixing. Our approach highlights the role of the coherences in the polarization transfer, and shows that the

offset dependence of the DNP enhancement can be rationalized as the response of two band-pass filters connected in series.

The first filter is the power-broadened EPR line; the second filter consists of two parts centered on both sides of the electronic

resonance and displaced by one nuclear Larmor frequency from it. Being proportional to the product of the two filters, the DNP

enhancement profile acquires its odd symmetry from the dispersive EPR line, as intuited by Erb et al. and in agreement with10

their phenomenological treatment. The developed time-domain description of the solid effect is extendable to liquids where

the dipolar interaction changes randomly in time due to molecular diffusion.

1 Introduction

The issue of Comptes rendus from April 9, 1958, contained the article “Effect of nuclear polarization in liquids and gases

adsorbed on charcoal” by Erb, Motchane and Uebersfeld (Erb et al., 1958a). It reported enhancements of the proton NMR signal15

of benzene upon microwave (mw) irradiation of the EPR line of charcoal. The enhancements were positive at fields larger than

the EPR resonance position and negative at smaller fields. Because fields symmetrically displaced from the resonance yielded

the same magnification factor, the enhancement profile was odd in the field offset and resembled the dispersive component of

the EPR line. The similarity between the two prompted the authors to augment the Solomon equation (Solomon, 1955) with

two new terms proportional to sx and sy (Erb et al., 1958a):20

i̇z = λ(iz − ieq
z ) +µ(sz − seq

z ) + νsx + ρsy. (1)

Here iz = 〈Iz〉 and sn = 〈Sn〉 (n= x,y,z) are the expectation values of the corresponding spin operators, ieq
z and seq

z are the

nuclear and electronic polarizations at equilibrium, and the dot above iz indicates differentiation with respect to time. Taking

into account that “under saturation conditions sy = 0” the authors arrived at

i̇z = λ(iz − ieq
z ) +µ(sz − seq

z ) + νsx. (2)25
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Assuming µ was small in their case, they solved (2) at steady state as

issz = ieq
z − (ν/λ)sss

x , (3)

which explained the similarity between the field profile of the enhancement and the dispersive EPR line.

The next installment of Comptes rendus from April 14, 1958, contained Abragam and Proctor’s report “A new method for

dynamic polarization of atomic nuclei in solids” (Abragam and Proctor, 1958), which was printed 132 pages after Erb et al.30

(1958a). This seminal contribution provided the theoretical understanding, and subsequently also the name, of the solid-state

effect of dynamic nuclear polarization (DNP). In particular, the authors argued that the excitation of the forbidden transitions

(++) 
 (−−) and (+−) 
 (−+), which become weakly allowed because the dipolar coupling yields mixed states of the

form (−−) + q(−+), could be used for DNP. (± are the states of the two spin types, both taken as 1/2 for simplicity.) As an

experimental verification of the theoretical proposal, the Boltzmann polarization of 19F nuclei was used to enhance the NMR35

signal of 6Li in a LiF monocrystal, thus demonstrating polarization transfer from nuclei with larger to nuclei with smaller

gyromagnetic ratios (i.e., a nuclear solid effect).

The parameter of mixing of the Zeeman energy levels, obtained from first-order perturbation theory under the assumption

that the dipole-dipole interaction with the electron is much smaller than the nuclear splitting (Abragam, 1955) is

q =
1
4
Ddip

ωI

−3cosθ sinθ eiφ

r3
. (4)40

Here ωI is the nuclear Larmor frequency, Ddip = (µ0/4π)~γSγI is the dipolar constant, and (r,θ,φ) are the spherical polar

coordinates of the relative position vector of the spins. The probability amplitude to excite a zero-quantum (ZQ) or double-

quantum (DQ) transition between the mixed energy levels is then proportional to ω1q, where ω1 is the mw nutation frequency.

Combining the probability of excitation with the Lorentzian spread of the electronic energy levels, as reflected by the homoge-

neous width of the EPR line, one arrives at the rates of the ZQ and DQ transitions (Wind et al., 1985):45

v0,2(Ω) = 4(q∗q)v1(Ω±ωI) (5)

(the upper sign belongs to v0 and the lower to v2), where

v1(Ω) =
1
2
ω2

1

R2S

R2
2S + Ω2

(6)

is the rate of the allowed (single-quantum) EPR transition. In these expressions, Ω = ωS−ω is the offset of the mw frequency ω

from the electronic resonance frequency ωS , and R2S is the electronic T2 relaxation rate. In essence, the rates of the forbidden50

transitions are obtained by shifting the rate of the allowed transition by±ωI along the frequency axis and multiplying by 4|q|2.

One month and a half after Abragam and Proctor’s report, in the May 28, 1958 issue of Comptes rendus, Erb, Motchane

and Uebersfeld published another report with the lengthy title “On a new method of nuclear polarization in fluids adsorbed on

charcoal. Extension to solids and in particular to irradiated organic substances” (Erb et al., 1958b). There, the authors state (our

translation)55
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The experiments [Erb et al. (1958a)] had been carried out with charcoal whose half-linewidth was 5 gauss and the

multiplication factor seemed to reproduce the paramagnetic dispersion curve.

The new experiments [. . . ] indicated that the increase in polarization of the proton in the adsorbed fluid is max-

imum in all cases, when the electronic and nuclear frequencies are chosen such that the nuclear resonance field

differs from the electron resonance field δH =±5 gauss (within 10%).60

These results support the suggestion of Abragam that the new theory of Abragam and Proctor on the nuclear

polarization in solids (Abragam and Proctor, 1958) must apply to these new phenomena, and invalidates the inter-

pretation proposed previously (Erb et al., 1958a).

The value of 5 gauss found in the case of the proton indeed corresponds to the value deduced from the theoretical

formula H0± δH = (ω±ωN)/γe, . . . .65

This seems to have sealed the fate of the insightful observation of Erb, Motchane, and Uebersfeld (Erb et al., 1958a) that

the odd parity of the solid-effect DNP field profile resembles the dispersive component of the EPR line. In the mean time,

Abragam’s explanation of the solid-state effect in terms of level mixing has become deeply embedded in the thinking of the

modern-day DNP researcher, whose quantitative analysis of the experimental data starts with the mixing parameter q (Wind

et al., 1985).70

In this paper we demonstrate that eq. (2) is correct. We show that the DNP field profile is odd in the field offset for the same

reason that the dispersive component of the EPR line is odd, as intuited by Erb, Motchane and Uebersfeld (Erb et al., 1958a).

In fact, one could justifiably say that sx and sy are indeed responsible for the solid effect, exactly as described in (1). The

contribution of sy does become negligible at lower mw powers or higher magnetic fields, where the solid effect is solely due

to the dispersive component, in agreement with (2).75

To arrive at these results we depart from the static picture of the solid effect, in which the ratio of the dipolar and nuclear

Zeeman interaction energies serves as a perturbation parameter (eq. (4)). In this approach the rates of the forbidden transitions

acquire a factor of ω−2
I from |q|2, and a factor of ω2

1 from the mw excitation (eq. (6)), without any room for non-trivial cross-talk

between these two frequencies. Such cross-talk is also not provided by the Lorentzian dependence on Ω.

Instead, starting with the Liouville-von Neumann equation of the density matrix, we obtain equations of motion for the80

expectation values of the spin operators that are relevant to the solid effect. We identify the rates of the forbidden transitions by

analyzing the steady state of these dynamical equations. The resulting analytical expressions are exact, and like the classical

expressions (eq. (5)) contain the squares of the dipolar interaction and of ω1 as multiplicative factors. Their offset dependence,

however, couples ω1 and ωI in a non-trivial way, which reduces to the classical expressions when ω1� ωI but predicts

qualitatively different dependence when ω1 is similar to or larger than ωI . Given the large mw powers currently used in DNP,85

ω1 ≈ ωI should hold at X band (Neudert et al., 2016) and to a lesser degree at Q band.

The main visual understanding that arises from our dynamical analysis can be summarized as follows. In the solid effect,

the transfer of polarization from the electron to the nucleus is mediated by several coherences of two different types: (i)

purely electronic and (ii) containing both the electronic and nuclear spin operators. The former act as a Lorentzian band-pass
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Figure 1. Two band-pass filters centered at ωS (blue) and ωS±ωI (red). The solid effect efficiency is proportional to the product of the even

(with respect to ωS) component of one of the filters and the odd component of the other filter, since the two filters are connected in series.

Increasing the mw power (ω1) increases the intensities of both filters, thus their product grows quadratically. Increasing the magnetic field

(ωI ) decreases the intensity of the second filter and shifts it to the right, thus quadratically decreasing the overlap with the first filter. The

second filter has another symmetrical component centered at ωS −ωI which is not shown.

filter centered at the electronic Larmor frequency; the latter as two (approximately) Lorentzian band-pass filters centered at90

ω ≈ ωS±ωI . These filters are depicted in fig. 1, which shows only half of the second filter for clarity. The polarization transfer

efficiency depends on the overlap (i.e., product) of the two filters since they are connected in series.

The classical expression for the forbidden transition rates (eqs. (5) and (6)) accounts only for the even part of the second

filter (solid red line in fig. 1). According to our picture, this even component has to be multiplied by the imaginary (odd) part

of the first filter (dashed blue line) which is nothing but the dispersive EPR line that Erb, Motchane and Uebersfeld suspected95

to play a central role in the solid effect. At the canonical offset of the solid effect, ωS +ωI , this corresponds to the product of

the blue and red filled circles in fig. 1.

Since multiplication is commutative, in this mental picture there is an apparent duality between the two types of filters. The

colored circles in fig. 1 are at the maximum of the even part of the red filter, which is multiplied by the odd part of the blue filter.

But for the solid effect one also multiplies the odd part of the red filter with the even part of the blue filter. At the maximum100

of the latter (blue diamond) the odd part of the red filter equals zero (red diamond). As a result, the solid effect is observed at

ωS ±ωI but not at ωS .

The amplitudes of the solid red line and dashed blue line increase linearly with ω1, hence their overlap at ωS +ωI scales

with ω2
1 . The amplitude of the solid red line decreases linearly with ωI . Since ωI also changes the distance of this filter from

the electronic filter, the overlap at ωS +ωI scales inversely with ω2
I . This is how the factor ω2

1/ω
2
I , which in the classical105

description resulted from substituting (4) and (6) into (5), arises in our picture.

The theoretical justification and details of this alternative description of the solid effect are presented in the following

sections. We start with an overview of the rate equations of the electronic and nuclear polarizations, and connect their steady
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state to the DNP enhancement (Sec. 2). The focus here is on the phenomenological rate constants used to describe the forbidden

transitions. After that, in Sec. 3, we derive quantum-mechanical equations of motion for the spin operators of relevance to the110

solid effect. In Sec. 4 we require that these equations of motion and the rate equations of Sec. 2 have identical steady states.

This allows us to express the phenomenological rate constants in terms of the parameters of the problem. In Sec. 5 we examine

the relationship between the classical expression of the forbidden transition rates (eq. (5)) and our results. Our conclusions are

given in Sec. 6.

Differently from the static picture based on level mixing and perturbation theory, the dynamical description developed here115

is readily extendable to liquids (Erb et al., 1958a; Leblond et al., 1971; Gizatullin et al., 2022; Kuzhelev et al., 2022) where

the dipolar interaction is time-dependent. Such extension is presented in the companion paper (Paper II). There we show that

the random molecular motions in liquids broaden the second filter in fig. 1, thus decreasing its amplitude at ωS +ωI . This

substantially reduces the product at the position of the red and blue filled circles, and hence the efficiency of the solid effect.

At the same time, however, the motional broadening increases the tail of the solid red line at the location where the dispersive120

EPR component (dashed blue line) has a maximum. As a result, the product of the two amplitudes at the positions of the

blue and red stars in fig. 1 may become sufficiently large to be manifested in the DNP field profile. One then sees solid-effect

enhancements at “wrong” offsets, in addition to the enhancements at the “correct” solid-effect offsets (Kuzhelev et al., 2022).

Under such conditions, the dispersive component of the EPR line is manifested in the solid-effect DNP field profile, visually

confirming the hunch of Erb, Motchane and Uebersfeld (Erb et al., 1958a).125

2 Rate equations

In the rate-equation treatment of DNP (Abragam, 1955; Webb, 1961; Barker, 1962) both thermal relaxation and mw excitation

are envisioned as flipping spins between pairs of energy levels with certain rates, as depicted in figs. 2a and 2b. Excitation of the

allowed EPR transition (fig. 2a) does not lead to simultaneous flips of the electronic and nuclear spins, and is thus not capable

of transferring polarization from the former to the latter. In contrast, the ZQ and DQ forbidden transitions involve simultaneous130

electron-nucleus spin flips (fig. 2b), and drive the solid-state DNP effect which is analyzed in this paper.

2.1 Derivation of the rate equations

While the forbidden transitions couple the nuclear and electronic polarizations, their influence on the latter is typically negli-

gible compared to other mechanisms of electronic relaxation. It is therefore justified to write a rate equation for the electronic

polarization considering only the allowed EPR transition.135

Below, we first examine the electronic transition on its own (fig. 2a) and then turn to the electron-nucleus transitions (fig.

2b). The derivation of the rate equations is illustrated only for the mw excitation. Relaxation is included at the end by analogy.

5

https://doi.org/10.5194/mr-2023-1

DiscussionsO
pe

n 
A
cc

es
s

Preprint. Discussion started: 6 March 2023
c© Author(s) 2023. CC BY 4.0 License.



2.1.1 Allowed electronic transition

Let n+ and n− be the populations of the two electronic spin energy levels in fig. 2a. Assuming the spins are not destroyed or

created, the sum of the two populations is constant in time. Treating the mw excitation as a process that randomly flips the140

spins with rate constant v1, we have

ṅ+|mw =−ṅ−|mw =−v1(n+−n−). (7)

(The subscript of the vertical bar indicates that the time derivative accounts only for mw excitation.) Note that v1 ≥ 0, since a

negative rate constant does not make physical sense.

The electron spin polarization PS = (n+−n−)/(n+ +n−) is negative at thermal equilibrium, i.e., P eq
S < 0. Differentiating145

PS with respect to time and using (7), we find ṖS |mw =−2v1PS .

The action of thermal relaxation is analogous but PS decays towards its thermal equilibrium with rate 2w1S =R1S = 1/T1S ,

where T1S is the electronic T1 relaxation time. Combining mw excitation and thermal relaxation we obtain the following rate

equation for the electronic polarization:

ṖS =−R1S(PS −P eq
S )− 2v1PS . (8)150

Equation (8) is depicted in fig. 2c. In this graphical representation of the differential equation, we use an oval node to

represent a dynamical variable (PS in this case) whose time derivative is calculated by summing the contributions of all arrows

that point into the node. The contribution of an arrow is obtained by multiplying the weight of the arrow by the variable from

which the arrow originates. Differently from similar graphical representations in chemical kinetics, here an arrow does not

deplete the node at its origin but only contributes to the node at its pointed end. By shading a node in gray we indicate that the155

corresponding variable remains constant in time. Each arrow in fig. 2c corresponds to one of the summands on the right-hand

side of (8). The two gray arrows account for thermal relaxation and the red arrow for mw excitation.

We refer to arrows that leave a node and enter the same node as self-arrows. To prevent positive feedback, and thus ensure

dynamical stability, the total contribution of all self-arrows of a node should not be positive. For the electronic polarization this

means R1S + 2v1 ≥ 0. (We always write the weight of a self-arrow with an explicit negative sign, which is placed inside the160

loop formed by the arrow.)

2.1.2 Forbidden transitions

Now we turn to the four-level system in fig. 2b. Let n++, n+−, n−+ and n−− be the populations of the levels. While their

sum, n= n++ +n+−+n−+ +n−−, remains constant in time, the individual populations change due to ZQ and DQ transitions

with rate constants v0 and v2 as follows:165

ṅ−+|mw =−ṅ+−|mw =−v0(n−+−n+−)

ṅ++|mw =−ṅ−−|mw =−v2(n++−n−−). (9)

It is implicitly assumed that v0 ≥ 0 and v2 ≥ 0, as negative rate constants would not make physical sense.

6
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Figure 2. Energy levels of (a) single electronic spin (S = 1/2) and (b) one electronic spin and one nuclear spin (I = 1/2). Diagrammatic

representation of the rate equations of (c) the electronic and (d) nuclear polarizations. (e) Rate equation of the electronic polarization at

steady state and (f) its solution. (g) Rate equation of the nuclear polarization at steady state. (a,b) Microwaves excite single-, zero- and

double-quantum transitions (wiggly red arrows) with rate constants v1, v0, and v2. Thermal relaxation (thick grey arrows) arises from

coupling to external degrees of freedom, e.g., motion. (c-g) An arrow flowing into a node contributes either to the time derivative of the

variable (oval node) or directly to the variable (rectangular node). A gray node indicates that the variable is constant in time. (e,g) The sum

of the arrows flowing into a gray oval node equals zero. (f,g) Dashed arrows are deduced relationships between the variables at steady state.

The polarizations of the nuclear and electronic spins are

PI = [(n++−n+−) + (n−+−n−−)]/n

PS = [(n++−n−+) + (n+−−n−−)]/n. (10)

While, as before, P eq
S < 0, the sign of PI at thermal equilibrium will depend on the gyromagnetic ratio of the nuclear spin. We170

will assume protons, hence γI > 0 and P eq
I > 0.

Differentiating PI with respect to time and using (9), we obtain

ṖI |mw =−(v2 + v0)PI − (v2− v0)PS , (11)

which shows that mw excitation of the forbidden transitions couples the evolution of the nuclear polarization to the polarization

of the electrons. This coupling is responsible for the solid-state DNP effect.175
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Because one always encounters either the difference or the sum of the ZQ and DQ rate constants, we introduce

v± = v2± v0. (12)

In fact, as we show later, the individual rates v0 and v2 may become negative, and thus meaningless from the rate-equation

point of view.

The two terms on the right-hand side of (11) are represented by the two red arrows in fig. 2d. (The gray arrows correspond180

to thermal relaxation which is considered below.) For dynamical stability, R1I + v+ ≥ 0.

Of main interest for the current paper are the rates that describe the effect of the microwaves (i.e., the red arrows in fig. 2).

Nevertheless, we also discuss thermal relaxation as it is essential for reaching steady state.

Thermal relaxation of the nuclear spins due to their coupling to the electronic spins acts analogously to (11) after replacing

the rates v0,2 byw0,2 and the polarizations by their deviations from thermal equilibrium. Further including nuclear T1 relaxation185

due to mechanisms other than the coupling to the electrons, we arrive at

ṖI |th =−R0
1I(PI −P eq

I )− 2w1(PI −P eq
I )

−w+(PI −P eq
I )−w−(PS −P eq

S ), (13)

where R0
1I is the nuclear T1 relaxation rate in the absence of the polarizing agent, and

w± = w2±w0 (14)

analogously to (12). The cross-relaxation rate w− is seen to couple the dynamics of PI to PS . This coupling is responsible for190

the Overhauser DNP effect.

From (13), the total nuclear T1 relaxation rate (i.e., in the presence of the free radical) is identified asR1I =R0
1I+2w1+w+.

Combining the contributions of mw excitation (eq. (11)) and relaxation (eq. (13)), we arrive at the following rate equation for

the nuclear polarization:

ṖI =−R1I(PI −P eq
I )−w−(PS −P eq

S )

− v+PI − v−PS . (15)195

This is the full differential equation depicted in fig. 2d.

2.2 Steady state of the rate equations

Although the rate equations (8) and (15) describe the evolution of the electronic and nuclear polarizations in time, one is almost

exclusively interested in their steady state (Webb, 1961). In fact, the only use of the rate equations appears to be in their steady

state.200

At steady state the time derivatives vanish and the dynamical variables settle at constant values, which we denote with the

superscript ‘ss’. In our diagrams, the node of a constant variable is shaded gray. Thus a gray oval node implies that the sum of

all inflowing arrows equals zero. With this understanding, fig. 2e represents the rate equation of PS at steady state.

8
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Since the dynamics of the electronic polarization is decoupled from the polarization of the nuclei, the steady state of (8) can

be analyzed on its own. The condition that all inflowing arrows sum to zero yields205

P ss
S =

R1S

R1S + 2v1
P eq
S = pP eq

S , (16)

where the second equality defines the factor p. (Observe how the weights of the two self-arrows in fig. 2e end up in the

denominator.) This steady-state solution is depicted in fig. 2f.

We use a rectangular node when the inflowing arrows contribute directly to the value of the variable inside the node. (In

contrast, when a variable is inside an oval node the arrows contribute to its time derivative.) The distinction between solid210

arrows and dashed arrows is that the former are reserved for fundamental, causal relationships between the variables which

dictate their dynamics at all times, while the dashed arrows indicate deduced mathematical relationships at steady state, which

need not reflect direct causal links.

We will view the dashed arrow in fig. 2f as a transfer function that multiplies the variable at its input to produce the variable

at its output. In this case the transfer function is p= 1− s, where s is the familiar saturation factor of the (allowed) electronic215

transition. Since p quantifies how close the steady-state polarization is to its Boltzmann value (eq. (16)), we call it the electronic

polarization factor, and use it interchangeably with 1− s.
Before turning to the steady state of the nuclear polarization, we observe that PS and PI reach steady state on time scales of

the order of T1S and T1I , respectively. Since T1S is typically much shorter than T1I , there must be intermediate times where

PS has already reached steady state but PI has not. Thus, it should be possible to replace PS by P ss
S in the rate equation of the220

nuclear polarization (eq. (15)). Further using (16), we have

ṖI =−R1I(PI −P eq
I ) + sw−P

eq
S − v+PI − pv−P eq

S . (17)

This rate equation at steady state is depicted in fig. 2g.

There are two links from P eq
S to the derivative of P ss

I . One of them scales with s and relies on the efficient saturation of the

allowed EPR transition; the other scales with p= 1− s. These two pathways correspond to the Overhauser and the solid-state225

DNP effects, respectively.

Solving the steady state of (17) for the nuclear polarization, we get

P ss
I = pX

[
P eq
I +

sw−
R1I

P eq
S −

pv−
R1I

P eq
S

]
, (18)

where we have defined the factor

pX =
R1I

R1I + v+
. (19)230

Because of its similarity to p in (16), we refer to pX as the nuclear cross-polarization factor. Clearly, for large steady-state

nuclear polarization, pX should be as large as possible.

DNP is generally quantified through the enhancement of the nuclear polarization,

ε= P ss
I /P

eq
I − 1, (20)

9
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which is defined such that it equals zero at thermal equilibrium. Taking into account that P eq
S /P eq

I =−|γS |/γI , from (18) we235

obtain

ε= εX + εOE + εSE, (21)

where we have introduced the following additive contributions to the DNP enhancement:

εSE = pX
pv−
R1I

|γS |
γI

, εOE =−pX
sw−
R1I

|γS |
γI

εX = pX − 1. (22)

The first two correspond to the solid and Overhauser effects. The last one is due to neither of them. When pX 6= 1 (i.e., v+ 6= 0)240

this term can shift the final enhancement by about one unit at most, and should be negligible in most cases of practical interest.

3 Spin dynamics

The above rate-equation analysis identified how different factors contribute to the DNP enhancement. However, for a quantita-

tive understanding of the solid effect it is necessary to know how the excitation rate constants v1 and v± depend on the various

experimental parameters. Such expressions are obtained in Sec. 4 after we analyze the relevant spin dynamics in the present245

section.

Quantum mechanically the polarizations PS and PI correspond to the expectations of the electronic and nuclear spin oper-

ators Sz and Iz . The coherent evolution of the expectation value q = 〈Q〉 of a general spin operator Q, under the action of a

spin Hamiltonian H (in units of angular frequency) is given by (Abragam, 1961)

q̇|coh = i〈[H,Q]〉. (23)250

In this section we use (23) to obtain equations of motion for the expectation values of the operators relevant to the solid effect.

As in the previous section, we first analyze the electronic spins, and tackle the coupled electronic and nuclear spins after that.

3.1 Bloch equations

The interaction of the electronic spins with the magnetic field is described by the Hamiltonian

H = ΩSz +ω1Sx, (24)255

where the first term accounts for the Zeeman interaction with the constant magnetic field B0, and the second term for the

interaction with the mw field B1. The offset frequency Ω = ωS −ω appears because the Hamiltonian is in the rotating frame.

Using (23) with the Hamiltonian (24), one can determine the coherent dynamics of sz = 〈Sz〉, sy = 〈Sy〉 and sx = 〈Sx〉.
After appending electronic T1 and T2 relaxation by hand, one obtains the familiar Bloch equations

ṡx =−Ωsy −R2Ssx

ṡy = Ωsx−ω1sz −R2Ssy

ṡz = ω1sy −R1Ssz +R1Ss
eq
z . (25)260
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ω1

−ω1

Ω

-
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−Ω -
R2S

seqz
R1S

-
R1S(a)

(b)

(c)

seqz sz s+

−Re iω1

−iω1

- R2S − iΩ
R1S

-
R1S

seqz sz

-
R1S

- 2v1
R1S

(d)

(e)

iz

szi+sxi+ syi+

sy sxsz

−Re iA∗
1

-
R1S + iωI

ω1

−i1
4
A1

-

R2S + iωI

−1
4
A1

−Ω

-

R2S + iωI

−ω1

Ω
1
4
A1

-
R2S

-
R2S−ω1

ω1

−Ω

Ω

sz

iz

−v− = −(v2 − v0)

−v+ = −(v2 + v0)

Figure 3. (a) Real-valued and (b) complex-valued classical Bloch equations and (c) corresponding dynamics according to the rate equation

of the electronic polarization. (d) Spin dynamics of relevance to the solid effect and (e) corresponding dynamics implied by the rate equation

of the nuclear polarization.

These are depicted in fig. 3a.

The two orange arrows in the figure correspond to the right-hand side of the first equation in (25) and the three blue arrows

to the second equation. The self-arrows of the oval nodes are due to T1 and T2 relaxation. The offset frequency leads to rotation

in the x-y plane with angular velocity Ω. This corresponds to the loop formed by the orange and blue arrows with weights −Ω

and +Ω. Similarly, the loop formed by the blue and red arrows with weights −ω1 and +ω1 indicates rotation in the y-z plane265

with angular velocity ω1 due to the mw excitation.

Alternatively, one can form the dynamical variable s+ = sx + isy and work with the complex-valued Bloch equations

ṡ+ =−(R2S − iΩ)s+− iω1sz

ṡz =−R1S(sz − seq
z )−Re{iω1s+} (26)

which are depicted in fig. 3b. Notably, the rotation in the x-y plane with angular velocity Ω has now become the imaginary part

of the self-arrow of s+ whose real part is the T2 relaxation rate.270

In the complex-valued Bloch equations we have arbitrarily retained s+ and dropped s−. Reducing the number of variables in

this way simplifies the diagrammatic representation in fig. 3b compared to fig. 3a. (The simplification will be more substantial

when we move to the analysis of the coupled electron-nucleus system.) Note however that the contribution of s− is recovered

when the real part of is+ is used to calculate the time derivative of sz in the second line of (26).

In fig. 3c we recall the dynamics of sz implied by the rate equation of the electronic polarization (fig. 2c). The visual275

comparison of this dynamics with the Bloch equations above it makes clear that the rate v1 of the allowed EPR transition

is supposed to account in some effective way for the coupling between sz and sy (due to ω1), and for the dynamics of the

transverse components (due to Ω and R2S). The rate constant v1 is thus expected to be a function of ω1, Ω and R2S .
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3.2 Generalization to two coupled Bloch equations

To carry out a similar analysis for the nuclear polarization, we consider the spin Hamiltonian (Wenckebach, 2016)280

H = ΩSz +ω1Sx−ωIIz +
1
2

(A∗1SzI+ +A1SzI−), (27)

which is in the rotating frame for the electronic spin and in the laboratory frame for the nuclear spin. The first two terms are

the same as in the Hamiltonian (24). The third term describes the nuclear Zeeman interaction. The sign of ωI is negative since

we assumed a nuclear spin with positive gyromagnetic ratio.

The last two terms in the Hamiltonian account for the dipolar interaction between the electronic and nuclear spins. We285

have truncated this interaction by dropping all non-secular terms containing Sx and Sy . Similar to the assumption behind

the derivation of the mixing factor (eq. (4)), we take the dipolar interaction to be small compared to the nuclear Zeeman

splitting and drop the secular term proportional to SzIz . The remaining, pseudosecular terms scale with the dipolar coupling

(Wenckebach, 2016)

A1 =Ddip
−3cosθ sinθ

r3
eiφ (28)290

where Ddip/2π ≈ 79.066kHznm3 for protons. The subscript of A1 indicates that its angular dependence is identical to the

second-degree spherical harmonic of order m= 1.

We start our derivation of equations of motion with iz = 〈Iz〉, as it corresponds to the nuclear polarization. There is no

contribution from the first three terms in the Hamiltonian (27) as Iz commutes with all of them (eq. (23)). From the commutator

with the dipolar terms we obtain295

i̇z|coh = i
1
2

(A1g
∗
z −A∗1gz) =−Re{iA∗1gz}, (29)

where

gn = 〈SnI+〉 (n= x,y,z). (30)

Proceeding in the same way, we first find

ġz|coh =−iωIgz +ω1gy − i(A1/4)iz (31)300

and then

ġy|coh = Ωgx− iωIgy −ω1gz + (A1/4)sx

ġx|coh =−iωIgx−Ωgy − (A1/4)sy. (32)

The chain of dynamical equations can be terminated at this stage, as sx,y obey the classical Bloch equations discussed above.

(The dynamics of the electronic spin was taken to be independent of its dipolar coupling with the nuclei.)

12

https://doi.org/10.5194/mr-2023-1

DiscussionsO
pe

n 
A
cc

es
s

Preprint. Discussion started: 6 March 2023
c© Author(s) 2023. CC BY 4.0 License.



In addition to the coherent evolution considered so far, gz = 〈SzI+〉 and gx,y = 〈Sx,yI+〉 are expected to decay with rates305

R1S +R2I and R2S +R2I , respectively. Neglecting R2I compared to R1S and R2S , we arrive at the following system of

coupled differential equations:



ġx

ġy

ġz


=−B




gx

gy

gz


− i

1
4
A1




−isy

isx

iz


 , (33)

with

B =




R2S + iωI Ω 0

−Ω R2S + iωI ω1

0 −ω1 R1S + iωI


 . (34)310

This matrix is essentially the familiar Bloch matrix of the real-valued Bloch equations (25) but with iωI added to its main

diagonal.

If desired, one can also supplement (29) with nuclear T1 relaxation. However, because our aim is to identify the forbidden-

transition rates v±, this is not necessary. In any case, we already analyzed the balance between thermal relaxation and mw

excitation at steady state using the rate-equation formalism (Sec. 2.2).315

Equations (29) and (33), supplemented by the Bloch equations (25), constitute the generalization of the Bloch equations to

the four-level system in fig. 2b as relevant to the solid effect. This system of equations is depicted in fig. 3d, where blue, orange

and green arrows flow into the nodes gx, gy and gz , respectively. Black arrows correspond to the classical Bloch equations.

For comparison, in fig. 3e we recall the description of the same spin dynamics according to the rate-equation formalism (red

arrows in fig. 2d). Evidently, the two rates v± are expected to summarize in some faithful way the complexity of the proper,320

quantum-mechanical dynamics in fig. 3d.

The graphical representation of the spin dynamics in fig. 3d provides visual access to many aspects of the solid effect.

Regarding the overall organization, we notice that the classical Bloch-equations pattern connecting the top three nodes (black

arrows) is recapitulated between the nodes gn (n= x,y,z) below them. As a result, there are two sets of Bloch equations

which are connected back to back, with the y variable of one of them feeding into the x variable of the other, and vice versa.325

The connection between these two set is established by the dipolar coupling (A1). Due to the involvement of the nuclear spin

operator I+, the second set of Bloch equations is “shifted” by the nuclear Larmor frequency, as evidenced by the imaginary

part of the self-arrows of gn. Although the coherences SnI− are not explicitly modeled, their contribution is recovered when

we feed the real value of iA∗1gz into the time derivative of iz . At this stage, +ωI and −ωI contribute symmetrically.

Turning attention to the pathways bridging sz to iz , we gain visual understanding of the mechanism of the dynamical330

coupling between the electronic and nuclear polarizations in the solid effect. Following the “flow” of the arrows, iz is reached

from sz in four steps (not counting the mixing of the transverse components by ±Ω). First, the mw excitation (ω1) generates

the transverse components sx,y from sz . This step is described by the classical Bloch equations. Then, from sx,y the dipolar

coupling (A1) generates the coherences sx,yi+. These are then converted to szi+ by the mw excitation, and finally the dipolar
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interaction transforms szi+ to iz . Because the weights ω1 and A1 appear twice along the path from sz to iz , the net efficiency335

of the solid effect scales with the squares of both ω1 and A1.

Additionally, we observe that all paths from sz to iz traverse the arrows with weights ±Ω. Thus, on resonance (Ω = 0)

the possibility of polarization transfer is severed. This observation does not appear to be particularly useful as driving the

forbidden transitions requires Ω≈±ωI anyway. However, as going along an arrow with weight ±Ω amounts to multiplication

by Ω, we realize that crossing from the left side of the dynamical network to the right side involves change of parity in Ω. In340

other words, because sz is an even function of the frequency offset, its effect on iz must be odd in Ω. This is the reason for

the anti-symmetric field profile of the solid effect (in contrast to the symmetric profile of the Overhauser effect). The diagram

makes clear that the solid effect is odd in Ω for the same reason that sx is odd, as intuited by Erb, Motchane and Uebersfeld

(Erb et al., 1958a).

The above observations were related to the paths from sz to iz , which contribute to the rate v− (fig. 3e). Examining the345

paths that contribute to the self-loop with weight v+, we see that there are two possibilities: one consisting of two steps and the

other of four (fig. 3d). The shorter path from iz to gz , and back to iz , relies only on the dipolar coupling between the electronic

and nuclear spins and must be active even in the absence of mw excitation. The longer path additionally goes from gz to gx,y

(the latter are mixed by Ω) and back, and contributes only under mw irradiation. Considering the separate treatment of thermal

relaxation and mw excitation, we realize that the short loop in fact contributes to the nuclear T1 relaxation (more precisely to350

the rate w1 in fig. 2b), hence its contribution should be removed when calculating the rate v+.

These general observations are developed in more detail below.

4 Excitation rate constants

It is clear that the polarization dynamics in fig. 3c could approximate the Bloch equations in fig. 3a only under some special

conditions. For example, if the T2S and T1S relaxation times are well separated, it is possible to eliminate the fast variables355

sx,y from the Bloch equations and thus obtain a closed dynamical equation for the slow variable sz , which will be valid at

times longer than the fast time scale T2S (Van Kampen, 1985). Similarly, the reduced dynamics in fig. 3e could be a good

approximation of the true dynamics in fig. 3d under some conditions.

If, however, the reduced equations are not required to provide a faithful description of the dynamics, there is a regime in

which they are exact without any additional requirements. This is the regime of steady state. In fact, since the use of the rate360

equations from Sec. 2 lies in the steady state that they describe, and not in the dynamics that they unwittingly imply, nothing is

sacrificed by confining them to steady state.

In this section we analyze the steady state of the quantum-mechanical equations of motion (Sec. 3) and compare it with the

steady state of the rate equations (Sec. 2.2). The comparison will allow us to identify the phenomenological rate constants v1,

v± in terms of the parameters of the spin dynamics.365
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Figure 4. (a) Real-valued Bloch equations at steady state. (b) Elimination of sssx . (c) Further elimination of sssy . (d) Solution for sssz . (e)

Steady-state solution of the Bloch equations with the dashed arrows viewed as transfer functions.

4.1 Steady state of the Bloch equations

At steady state, the sum of all arrows flowing into an oval node equals zero. Shading the oval nodes in fig. 3a in gray, we arrive

at fig. 4a which represents the classical Bloch equations at steady state. The condition that the two orange arrows flowing into

sss
x sum to zero yields

sss
x =− Ω

R2S
sss
y . (35)370

(Observe how the weight of the self arrow of sss
x ends up in the denominator.) This steady-state relationship is depicted by the

black dashed arrow in fig. 4b.

Using (35) one can eliminate sss
x from the differential equation of sy (second equation in (25)). The remaining two equations,

which contain only the variables sss
y and sss

z , are represented in fig. 4b. The elimination of sss
x resulted in the self-arrow of sss

y

drawn with a dashed blue line.375
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Proceeding further, we now express sss
y in terms of sss

z using the second Bloch equation in (25):

sss
y =− ω1

R2S + Ω 1
R2S

Ω
sss
z . (36)

(Again the self-arrows of the eliminated node end up in the denominator.) This relation is represented by the black dashed

arrow in fig. 4c. Using (36) we now eliminate sss
y from the equation of sss

z (last equation in (25)). The term that contained sss
y

corresponds to the self-arrow of sss
z which is shown with red dashed arrow in fig. 4c.380

Visual comparison of the remaining equation of sss
z (fig. 4c) with fig. 3c directly yields

v1 =
1
2
ω2

1

R2S

R2
2S + Ω2

(37)

for the rate constant of the allowed EPR transition. This result agrees with (6). Our derivation makes clear that this functional

dependence of v1 on ω1, R2S and Ω is, in fact, exact at steady state.

If the purpose is to determine the rate constant v1, the analysis can be terminated at this point without ever encountering385

the T1 relaxation of the electronic spins. Below, when we determine the rates v±, we will similarly need to consider only the

coherent evolution of iz without worrying about the nuclear T1 relaxation. In fact, once the rate constants of mw excitation

are identified, the steady-state analysis is identical to the one we already carried out in Sec. 2 for the rate equations of the

polarizations.

For completeness, here we proceed one step further and solve the equation for sss
z by moving the self-arrows in fig. 4c to the390

denominator:

sss
z =

R1S

R1S +ω1
1

R2S+Ω 1
R2S

Ω
ω1

seq
z . (38)

This result (fig. 4d) is equivalent to (16).

The above successive elimination of the variables from the steady-state Bloch equations (figs. 4b-d) is just the poor man’s

inversion of the Bloch matrix. Nevertheless, it allowed us to follow the step-by-step emergence of the functions395

fy(Ω) =
1

R2S + Ω 1
R2S

Ω
, fx(Ω) =

Ω
R2S

fy(Ω)

h(ω1,Ω) =
1

R1S +ω1fy(Ω)ω1
, (39)

which have units of time (Table 1, first row). In terms of these functions, the ratios between the variables of the Bloch equations

at steady state are

sss
x,y

sss
z

=±ω1fx,y(Ω),
sss
z

seq
z

=R1Sh(ω1,Ω) = p. (40)

(The last equality follows from (16).) These ratios are depicted as transfer functions in fig. 4e. Note that the weights of the400

dashed arrows are dimensionless, as they equal the product of a variable with units of inverse time and a function with units of

time (Table 1, second row). For our purposes it will be convenient to think of the steady-state Bloch equations as a system that

takes seq
z as an input and produces the outputs sss

x,y , as suggested graphically in fig. 4e.
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Table 1. Functions characterizing the steady-state properties of the two sets of Bloch equations.

classical Bloch eqs. second Bloch eqs.

unit of time fx,fy,h Fx,Fy,H

dimensionless ω1fx,ω1fy,R1Sh ω1Fx,ω1Fy, δH

0.0

0.5

1.0

ss
s z
/
se

q z

B1 = 0.5 G B1 = 1.5 G B1 = 3 G B1 = 6 G

−5.0

−2.5

0.0

2.5

ss
s x
,y
/
ss

s z

x

y

-50 0 X Q 100 W

−0.15

0.00

0.15

ss
s x
,y
/
se

q z

x

y

-50 0 X Q 100 W -50 0 X Q 100 W -50 0 X Q 100 W0.0 0.2 0.4 0.6 0.8 1.0

Offset frequency (Ω/2π) [MHz]

0.0

0.2

0.4

0.6

0.8

1.0 seqz

sssz

sssxsssy

p = 1− s

ω1fx−ω1fy

Figure 5. Transfer functions at the steady state of the classical Bloch equations. The conversion of B1 to ω1 was for free radical with g = 2,

hence B1 = 6 G corresponds to ω1/2π = 16.8MHz. In all plots T2 = 60 ns and T1 = 9T2. The positions of the nuclear Larmor frequencies

at X (14 MHz), Q (45 MHz) and W (140 MHz) bands are indicated with vertical dashed lines.

To examine the properties of this system, in fig. 5 we plot its transfer functions (40) against the offset frequency for four

different values of B1. A free radical with g = 2 was assumed when converting B1 to ω1, so that B1 = 6 G corresponds to405

ω1/2π = 16.8 MHz. This maximum value of B1 is intended to reflect the actual mw field of modern-day DNP spectrometers

at X band (Neudert et al., 2016) and at J band (Kuzhelev et al., 2022). The electronic relaxation times used in the plots were

T2S = 60 ns and T1S = 9T2S .

The first row of fig. 5 shows the transfer function R1Sh, which is the electronic polarization factor under mw power. The

saturation is most efficient on resonance (Ω = 0) and quickly becomes inefficient at larger offsets. With increasing mw power410

the deviation of sss
z from equilibrium spreads to larger offsets.

As our main interest is in the solid effect, we have indicated with dashed vertical lines the offsets Ω that correspond to the

nuclear Larmor frequencies of a proton spin at the X (9.2 GHz/14 MHz), Q (30 GHz/45 MHz) and W (92 GHz/140 MHz) mw

bands. Considering that DNP is performed at high mw powers, let us examine the saturation at B1 = 6 G (fig. 5, upper right

plot).415

17

https://doi.org/10.5194/mr-2023-1

DiscussionsO
pe

n 
A
cc

es
s

Preprint. Discussion started: 6 March 2023
c© Author(s) 2023. CC BY 4.0 License.



Looking at Ω = ωI at X band, we see that the allowed EPR transition is almost completely saturated. Because the efficiency

of the solid effect scales with p= 1− s (dashed orange arrow in fig. 2g) any gain from efficiently driving the forbidden

transitions will be squashed down dramatically, thus substantially reducing the ultimate enhancement of the NMR signal. This

observation implies that at X band the best solid-effect enhancement may occur at less than maximum mw power, as we

demonstrate numerically later.420

The second row of fig. 5 shows the offset dependence of the transfer functions connecting the longitudinal component sss
z to

the transverse components sss
x,y . The observed increase in magnitude from left to right reflects the multiplication by ω1 of the

functions fx,y which are independent of ω1 (eq. (39)). These functions are the real (fy) and imaginary (fx) components of a

complex-valued Lorentzian with width R2S and center frequency Ω = 0. In other words, they correspond to the absorptive and

dispersive components of a homogeneous EPR line. The absorptive component (blue line) is largest at Ω = 0, while the two425

extrema of the dispersive component (orange line) are located at Ω =±R2S . At offsets much larger than the locations of these

extrema (i.e., Ω�R2S), the absorptive component drops as 1/Ω2 while the dispersive component drops as 1/Ω.

The third row of fig. 5 shows the net transfer functions relating the outputs of the Bloch equations, sss
x,y , to the input seq

z .

They are obtained by multiplying the solid black lines in the first row with the lines in the second row. In essence, what we see

are the absorptive and dispersive components of a power-broadened EPR line. The power broadening (i.e., multiplication by430

1− s) leads to qualitative differences. For example, while the peak of the blue line in the second row of the figure increased

linearly with ω1, it now decreases as 1/ω1. In the case of the orange line, the locations of its extrema are now shifted towards

larger offsets (Ω≈±ω1

√
T1S/T2S) and their magnitude is approximately independent of B1 (≈

√
T2S/T1S/2, which equals

1/6≈ 0.17 for the choice of relaxation times in fig. 5). Clearly, the tail of the power-broadened dispersive (orange) component

extends further into the range of interest for the solid effect at high mw frequencies than the tail of the absorptive (blue)435

component. One could thus expect that sss
x contributes to the solid effect more than sss

y , simply because the latter does not

survive at offsets equal to the nuclear Larmor frequencies at high fields. This observation is in line with the decision of Erb,

Motchane and Uebersfeld to drop the therm proportional to sy when arriving at (2) (Erb et al., 1958a).

The functions in the second row of fig. 5 were depicted as the even and odd components of the first filter in fig. 1. In fact,

we should have shown the power-broadened versions of these functions (third row of fig. 5). The peak of the solid blue line in440

fig. 1 would then be substantially reduced at high mw powers, providing additional reason for the absence of the solid effect

in the vicinity of ωS . In contrast, the peak of the dashed blue line is not reduced with power but only moves away from the

EPR resonance position, without compromising the possibility of solid-effect DNP enhancement at the “wrong” offset which

corresponds to the blue star in fig. 1.

4.2 Steady state of the coupled Bloch equations445

We now proceed to the analysis of the two coupled Bloch equations from fig. 3d. Our goal is to compare their steady state

with fig. 3e and thus identify the forbidden-transition rates v±. Because we already determined the electronic steady state, the

problem we need to solve looks like shown in fig. 6a.
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Figure 6. (a) Steady state of the generalized Bloch equations. (b-d) Transfer functions describing the steady-state relationship between the

time derivative of iz (output) and different choices of the electronic input.

In this figure, the outputs sss
x,y of the first set of Bloch equations serve as inputs to the second set of Bloch equations. This

second set (enclosed in a dashed rectangle in fig. 6a) constitutes the dynamical system whose steady-state response we aim to450

characterize. In addition to the two inputs mentioned above, this system takes a third input (iz) and produces the output that

comes out of the red arrow. Our task is to determine the relationship between the three inputs and the output of this system at

steady state.

The steady-state solution of (33) is



gss
x

gss
y

gss
z


=−i

1
4
A1B

−1




−isss
y

isss
x

issz


 . (41)455

Because only gss
z feeds into the time derivative of iz (eq. (29)), we have

i̇z|sscoh =−δ2 Re{
[
0 0 1

]
B−1




−isss
y

isss
x

issz


}, (42)

where the dipolar coupling was factored out as

δ2 = (A∗1A1)/4. (43)

Clearly, the output is a linear combination of the three inputs and can be written as460

i̇z|sscoh =−δ2(Tixsss
x +Tiys

ss
y +Tiii

ss
z ), (44)
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which is illustrated in fig. 6b. Since δ has units of inverse time, the transfer functions Tin (n= x,y, i) must have units of time.

Comparing (42) and (44), we see that

Tiy = Re{−iB−1
31 }, Tix = Re{iB−1

32 }

Tii = Re{B−1
33 }, (45)

where B−1
ij is the ijth element of the matrix B−1.465

The needed matrix elements in the last row of B−1 can be obtained from the cofactors of the last column of B as follows:

B−1
31 = ω1Ω/∆, B−1

32 = ω1(R2S + iωI)/∆

B−1
33 = [(R2S + iωI)2 + Ω2]/∆, (46)

where the determinant of B is

∆ = (R1S + iωI)[(R2S + iωI)2 + Ω2] +ω2
1(R2S + iωI). (47)

4.2.1 Characterizing the second set of Bloch equations470

Let us now introduce the complex-valued functions

Fy =
1

R2S + iωI + Ω 1
R2S+iωI

Ω

Fx =
Ω

R2S + iωI
Fy, H =

1
R1S + iωI +ω1Fyω1

, (48)

which generalize the functions (39) of the classical Bloch equations by supplementing their relaxation rates with an imaginary

part. Like their classical analogs, these functions have units of time (Table 1). In terms of them, the matrix elements (46) can

be rewritten as475

B−1
31 = ω1FxH, B−1

32 = ω1FyH, B−1
33 =H. (49)

Then, using (45), we express the three transfer functions of interest (fig. 6b) as

Tix,y =±ω1Re{iFy,xH}, Tii = Re{H}. (50)

Because all steady-state properties of the second set of Bloch equations (inside the dashed rectangle in fig. 6a) are contained

in the functions (48), let us examine them more closely. These three complex-valued functions are plotted in the ωI -Ω plane in480

fig. 7a. In these plots, the angular frequencies are reported in units of R2S . Cross-sections at ωI = 0,0.5,1.5,3 are drawn over

the surfaces with solid black lines.

The black lines at ωI = 0 show that the imaginary parts of the functions Fy , Fx and H vanish and their real parts become

equal to fy , fx and h of the classical Bloch equations (cf. fig. 5, first two rows). In particular, at ωI = 0, Fy and Fx as functions

of Ω are like the absorptive and dispersive components of the EPR line. To plot the function H we used ω1 = 1.5 (in units of485
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Figure 7. The functions Fy , Fx and H characterizing the steady state of the second set of Bloch equations. (a) Angular frequencies are

measured in units of R2S . R1S =R2S/9 as in the other figures. To calculate H we used ω1 = 1.5, which for T2S = 60 ns corresponds to

B1 ≈ 1.5 G. Solid black lines are cross-sections at ωI = 0,0.5,1.5,3. (b) Numerical parameters as in fig. 5. Recall thatB1 = 6 G corresponds

to ω1/2π = 16.8 MHz.

R2S). Because both the real and imaginary parts of H decay very rapidly with increasing ωI , we also show the logarithm of

the real part and the product of the imaginary part with ωI . These transformations make visible the small values at large ωI .
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In fig. 7b we show these functions against Ω at four different nuclear Larmor frequencies and, in the case ofH , three different

mw powers. In each case, the locations of the Larmor frequencies along the horizontal axis are indicated with vertical dashed

lines. In the first and second rows we see Fy and Fx, which do not change with mw power. The real and imaginary parts of490

Fy (first row) look like the real and imaginary parts of two complex-valued Lorentzians centered at Ω =−ωI and Ω = +ωI .

Indeed, with

L± = [R2S + i(ωI ±Ω)]−1, (51)

it is straightforward to show that Fy = (L−+L+)/2. These Lorentzians have the same width as fy and fx of the classical

Bloch equations (fig. 5, second row). The function Fx in the second row of fig. 7b also has Lorentzian-like features centered at495

Ω =±ωI , but the Lorentzian on the right is flipped around the horizontal axis. Indeed, it can be shown that Fx = (L−−L+)/2.

Differently from Fx,y , H depends on ω1 (eq. (48)). In the last three rows of fig. 7b we plot H(Ω) for three different values

of B1, starting with B1 = 6 G (third row) and going down to B1 = 1.5 G (last row). The first thing to notice is that both the

real (blue) and imaginary (orange) parts of this function decrease rapidly with increasing ωI , i.e., moving to the right in a given

row. (The former as 1/ω2
I and the latter as 1/ωI .) As all transfer functions (50) are proportional to H , we expect these to also500

decrease rapidly with increasing nuclear Larmor frequency.

At the lower mw powers and higher magnetic fields H is seen to be dominated by its imaginary part, as its real part remains

close to zero. At higher mw powers and lower magnetic fields (B1 = 6 G, X and K bands, and B1 = 3 G, X band) the real

and imaginary parts are seen to be comparable in magnitude. Moving from the former to the latter regime, there is a major

qualitative change: the features at Ω =±ωI shift towards the origin (B1 = 6 G, K band, and B1 = 3 G, X band) until they505

coalesce into a single line (B1 = 6 G, X band).

In Paper II we calculate the inverse of the matrix B approximately using perturbation theory. The matrix element B−1
33 =H

is found to be

H ≈ cos2α

R̃1 + iωI
+

1
2 sin2α

R̃2 + i(ωI −ωeff)
+

1
2 sin2α

R̃2 + i(ωI +ωeff)
, (52)

where the frequency ωeff =
√

Ω2 +ω2
1 corresponds to the effective magnetic field, α is the angle between this field and B0510

(cosα= Ω/ωeff , sinα= ω1/ωeff ), and

R̃1 =R1S(cosα)2 +R2S(sinα)2

R̃2 =R2S [1− (sinα)2/2] +R1S(sinα)2/2. (53)

This result is exact for R1S =R2S and is perturbative in the difference of the two electronic relaxation rates.

The approximation (52) is shown with dotted black lines in the last three rows of fig. 7b. It is seen to correctly capture both

the shift of the peaks towards smaller offsets and their coalescence at Ω = 0. Inspecting (52) we see that the dependence of H515

on Ω is in the form of two Lorentzians centered at ωeff =±ωI , which implies Ω2 = ω2
I −ω2

1 . This explains the deviation of the

maxima from the canonical solid-effect positions Ω =±ωI for ω1 ≈ ωI . At X band, when B1 = 6 G, ω1 is larger than ωI and

the two Lorentzians fuse together.
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Figure 8. Transfer functions at the steady state of the coupled Bloch equations. B1 = 6 G, T2S = 60 ns and T1S = 9T2S .

4.2.2 Combining the two sets of Bloch equations

Having examined the functions Fx,y and H , we now turn to the transfer functions (50), which are indicated in fig. 6b. These520

are plotted in the second and third rows of fig. 8.

As Tii (solid red lines) is just the real part of H , it exhibits all the features that we already talked about when discussing fig.

7b. Although, in principle, Tii corresponds to the rate v+, it accounts for both the two-step and four-step loops that we observed

in fig. 3d. The former corresponds to the relaxation rate w1 in fig. 2b, and is already included in R1I . Hence its contribution

has to be removed when identifying v+.525

Since the nuclear T1 is typically measured with the microwaves switched off, we identify

T 0
ii = Re{H(ω1 = 0)}= Re{(R1S + iω1)−1} (54)

as contributing to relaxation. Subtracting it from Tii, we deduce

v+/δ
2 = Tii−T 0

ii = Re{H − (R1S + iω1)−1}. (55)

T 0
ii is plotted with red dashed lines in the third row of fig. 8. At the high mw field that we have used (B1 = 6 G) it is negligible530

compared to Tii itself (solid red line), thus subtracting the relaxation would not make much of a difference. However, at lower

mw powers the contribution of Tii to thermal relaxation becomes comparable to the rest, and the correction makes a difference.

(This can be seen in the bottom plot of fig. 11 where B1 = 1 G.)
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In the second row of fig. 8, the functions Tix,y resulted from the product of Fy,x and H (eq. (50)). Interestingly, their

Lorentzian-like features are at the same frequency offsets as those of Tii, the real part of H . (The functions Tix,y were shown535

in fig. 1 as the even and odd components of the second filter). We observe that Tix (orange) and Tiy (blue) are similar in

magnitude. Thus, if the inputs sss
x and sss

y were comparable in magnitude, the contributions of the two parallel branches from

sss
z to the output would be similar (see flow diagram in the right margin of fig. 8). We know, however, that sss

y is much smaller

than sss
x at large offsets, and so the path via Tix (orange) will contribute more.

To determine the rate v−, which connects sz to the time derivative of iz at steady state (fig. 6c), we should treat sss
z as an540

input (not sss
x,y). Multiplying the functions Tix,y (fig. 8, second row) by the functions in the first row, we obtain the orange and

blue lines in the last row of the figure. (The functions in the first row were shown before in fig. 5. They are plotted here again

only for B1 = 6 G. The four plots are identical to each other but appear different due to the different scales of the horizontal

axes.) Comparing the first and second rows of fig. 8, we see that an odd/even function in the first row is multiplied by an

even/odd function in the second row to produce the corresponding orange and blue lines in the bottom row. As a result, the545

contribution of both parallel paths from sss
z to issz (via either sss

x or sss
y ) is odd in Ω.

The cumulative transfer function of the two parallel paths is obtained by adding the orange and blue lines in the last row of

fig. 8. It equals (compare fig. 6b and fig. 6c)

Tiz = ω1fxTix−ω1fyTiy = v−/δ
2, (56)

and is also plotted in the last row of fig. 8 with black dashed lines.550

As already mentioned in the introduction, this cumulative transfer function results from two band-pass filters connected in

series and centered at Ω = 0 (fig. 8, top row) and at Ω≈±ωI (fig. 8, second row). The composite filter (fig. 8, bottom row)

will only “pass a signal” to the extend that the tails of the “dispersive” component of one of the filters and the “absorptive”

component of the other filter overlap. When this overlap is small, the corresponding transitions are “forbidden”.

At Q and W bands the cumulative transfer function (fig. 8, bottom row, black dashed lines) is seen to be essentially iden-555

tical to its first additive contribution ω1fxTix (orange line), which means that the electronic polarization is transferred to the

nucleus almost entirely through the dispersive component sss
x . This conclusion supports the assumption of Erb, Motchane and

Uebersfeld (Erb et al., 1958a).

From (56) and (50) we have

Tiz = ω2
1 Re{i(fxFy + fyFx)H}. (57)560

Incidentally,

fxFy + fyFx = fxFy
2R2S + iωI
R2S + iωI

= fxF
′
y, (58)

where the last equality defines F ′y . The second R2S in the numerator of (58) comes from fyFx and can be viewed as a

“correction” to fxFy due to fyFx. The last row of fig. 8 already demonstrated that this correction becomes negligible at

increasingly large nuclear Larmor frequencies. Here we see this analytically.565
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Using (58) the cumulative transfer function from sss
z to issz can be expressed as if there was only one path through sss

x , as

illustrated in fig. 6d. In other words, it is possible to rewrite (44) exactly, in a way that contains sss
x but does not contain sss

y :

i̇z|sscoh =−δ2(T ′ixs
ss
x +Tiii

ss
z ), (59)

with

T ′ix = ω1Re{iF ′yH}. (60)570

(Compare this T ′ix with Tix in eq. (50).) Hence, the phenomenological equation (2) of Erb, Motchane and Uebersfeld is, in

fact, exact with ν =−δ2T ′ix.

In summary, we derived the following exact expressions for the rate constants of the forbidden transitions:

v+ = δ2(Tii−T 0
ii), v− = δ2Tiz = δ2(ω1fx)T ′ix. (61)

5 Use of the rate constants575

5.1 Relation to the classical rates

Now we show that the classical expression (5) follows from the exact rates when ω1� ωI .

To simplify the analysis, we take from the start a long electronic T1 relaxation time, such that R1S � ωI . This should be the

case under solid-effect DNP conditions where the electronic T1 is at least a microsecond. In this case the function H (eq. (48))

simplifies to580

H ≈ 1
iωI +ω2

1Fy
=

1
iωI

(
1 +

ω2
1

iωI
Fy

)−1

. (62)

For ω1� ωI , to first order in ω2
1 ,

H ≈ 1
iωI

+
ω2

1

ω2
I

Fy. (63)

From (61), retaining only terms of up to first order in ω2
1 ,

v+ ≈ δ2ω
2
1

ω2
I

Re{Fy}, v− ≈ δ2ω
2
1

ω2
I

ωIfxRe{F ′y}. (64)585

To establish the equivalence of these expressions with (5), we need to show that Re{Fy} and ωIfxRe{F ′y} equal, respec-

tively, the sum and difference of two real-valued Lorentzians centered at Ω =±ωI . For the complex-valued Lorentzians (51),

we already observed that L−+L+ = 2Fy . One can also confirm that Re{L−−L+}= 2ωIfxRe{F ′y}. Hence,

v± ≈
1
2
δ2ω

2
1

ω2
I

(Re{L−}±Re{L+}), (65)
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Figure 9. Forbidden-transition rates calculated either exactly (solid lines) or using the classical expression (5) with v± = v2± v0 (dashed

lines). As in the previous figures, B1 = 6 G, T2S = 60 ns and T1S = 9T2S .

and thus590

v0,2 ≈
1
8

(A∗1A1)
(
ω1

ωI

)2

Re{L±}, (66)

which is the classical result (5).

The sum and difference of the classical rates v2 and v0 is compared with the exact v± in the first two rows of fig. 9.

Naturally, the Lorentzians associated with the classical rates remain centered at ±ωI even when the maxima of the exact rates

shift closer to each other at Q and K bands, and converge at X band. At high fields (e.g. W band), where ωI � ω1, the classical595

approximations work perfectly.

In the last row of fig. 9 we show the DQ-transition rate v2. While, classically, it is always non-negative (black dashed lines),

the exact rate deduced from v± (solid brown lines) is seen to become negative at some offsets. From the perspective of the

rate-equation formalism, such negative rates are meaningless. In that sense, the description of the forbidden transitions in terms

of v± is more fundamental than their description in terms of v0 and v2.600

5.2 Solid-effect DNP enhancement

The DNP enhancement of the solid effect (eq. (22)) was the product of |γS |/γI with the following two factors:

pX =
R1I/δ

2

R1I/δ2 + (Tii−T 0
ii)
,

pv−
R1I

=
pTiz
R1I/δ2

, (67)

which we have rewritten here in terms of the transfer functions Tii, T 0
ii and Tiz . These transfer functions already appeared in

the last two rows of fig. 8. Thus, to calculate the DNP enhancement, we only need to specify the ratio R1I/δ
2.605
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In the case of δ, rather than calculating A1 (eq. (28)) for some arbitrary inter-spin vector, let us average A∗1A1 over the entire

3D space. With b denoting the so called “distance of closest approach” or “contact distance”, and N denoting the number of

electron spins per unit volume, we have

〈δ2〉=
1
4
〈A∗1A1〉=D2

dip

6π
5
N

3b3
, (68)

where, in this case, the angular brackets denote spatial averaging. We will use b= 1 nm and N = 0.1 M as representative, but610

otherwise arbitrary values.

While the average over 3D space in (68) is clear mathematically, it is important to understand that physically it implies

fast spin diffusion (Wind et al., 1985). Since the nuclear polarization in solids is homogenized across the sample through spin

diffusion, replacing the individual δ2’s of the nuclear spins by the average over all nuclei is only legitimate when spin diffusion

is faster than the nuclear spin-lattice relaxation. In practice, spin diffusion is rather slow and is often the bottleneck for efficient615

polarization transfer in solids (Hovav et al., 2011; Smith et al., 2012; Pinon, 2018). As a result, the DNP enhancement values

that we will calculate with (68) are expected to be appreciably larger than what could be observed experimentally.

Similar considerations also apply for the choice of the nuclear spin-lattice relaxation time. In principle T1I will depend on

the distance of the nucleus from the electronic spin, and thus will vary greatly across the sample. In the limit of fast spin

diffusion, however, only its average value becomes relevant. In general, this time depends on the radical concentration and on620

the magnetic field B0. However, for the purposes of illustration, here we take a generic numerical value of T1I = 30 ms across

all mw bands. Again, this value is realistic but otherwise arbitrary.

Using b= 1 nm, N = 0.1 M and T1I = 30 ms we find R1I/〈δ2〉= 1.78 ns. Let us visually compare this time scale with

(Tii−T 0
ii) = v+/〈δ2〉 by consulting the solid red line in the first row of fig. 9. We observe that at X and K bands the maxima

of the red line are much larger than 2 ns, which means that the minima of pX will be close to zero. At Q band the maxima of625

the red line are comparable to 2 ns, and at W band they are much smaller. The minima of the nuclear cross-polarization factor

are thus expected to be about one half and one, respectively. These expectations are confirmed by the maroon lines in the first

row of fig. 10, which demonstrate that pX can substantially deviate from one at lower magnetic fields.

To estimate the expected magnitude of the second factor in (67), we need to compare the time scaleR1I/〈δ2〉= 1.78 ns with

pTiz . While Tiz was shown with black dashed lines in the bottom row of fig. 8, now it has to be multiplied by the electronic630

polarization factor in the top row of fig. 5. From the line for B1 = 6 G in this row, we see that Tiz will be significantly

suppressed at X band, so it is hard to judge how the reduced value will compare with 1.78 ns. At Q band, Tiz will be reduced

by a little more than a factor of two, which will make its peak in fig. 8 comparable to R1I/〈δ2〉. At W band, where the factor

p is about 0.9, Tiz will be only slightly reduced, so its peak is expected to be about one fifth of 1.78 ns. Again, these estimates

are confirmed by the green lines in the second row of fig. 10.635

The last row of fig. 10 shows the product of the first two rows times |γS |/γI , assuming a proton spin. The result is the

solid-effect DNP enhancement (eq. (22)). In the figure we have also shown the factors predicted by the classical expression

of the rates (eq. (5)) with black dashed lines. While there are quantitative differences between the exact calculations and the

classical approximation, the magnitudes of the DNP enhancements in the two cases are, in fact, comparable. A closer look
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Figure 10. Decomposition of the DNP field profile (εSE) in terms of the multiplicative contributions pX and pv−/R1I . The new parameters

used here are T1I = 30 ms, b= 1 nm and N = 0.1 M. Other parameters: B1 = 6 G, T2S = 60 ns and T1S = 9T2S .

reveals that, for the specific B1 and relaxation times used in the calculations, the classical description of the solid effect (eq.640

(5)) works perfectly at Q band and at larger mw frequencies. (In fig. 12 we show that by reducing the mw power to B1 = 1 G

the classical expressions are also perfect at X band.) The amplitudes of the maximum enhancements at the four mw bands

are roughly in the ratios 1 : 2 : 4 : 2 (X:K:Q:W). On the other hand, considering the inverse dependence on ω2
I , we expect the

ratios 100 : 40 : 10 : 1. These expected ratios are indeed observed at the much lower mw power ofB1 = 1 G (fig. 12, lower plot).

Comparison of figs. 10 and 12, shows that increasing B1 increases the amplitudes of the maximum enhancements at W and Q645

bands, but reduces the enhancement at X band. Such reduction of the solid-effect DNP enhancement with increasing B1 has

been reported at X band (Neudert et al., 2016).

6 Conclusion

In this paper we presented a way of thinking about the solid effect which was grounded in the dynamics of the spins at

steady state. The spin dynamics of the four-level system that we analyzed requires only 16 different spin operators, including650

the identity operator. It is thus completely described by a 16× 16 propagation matrix in Liouville space, and can be simulated

numerically using a spin-dynamics simulation package (Bengs and Levitt, 2018; Yang et al., 2022). Such numerical simulations

would provide answers to many specific questions, including the efficiency of the solid effect for the parameters that we

explored here. Nevertheless, having an intuitive understanding of the spin dynamics which is relevant for a given phenomenon

is invaluable.655
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Here, we followed a systematic procedure for deriving the relevant equations of motion under a given spin Hamiltonian (Sec.

3.2), and developed a graphical representation to visualize the interplay of these equations (fig. 3d). While our analysis focused

on the solid effect and the Hamiltonian (27), it should be possible to analyze other related effects with different Hamiltonians

in a similar way. In any case, for a four-level system the resulting dynamics will comprise at most fifteen coupled differential

equations. Here, we explicitly considered the dynamics of seven spin operators (fig. 3d), while the dynamics of three more660

operators, namely SnI− (n= x,y,z), was included implicitly when we took the real part of szi+. The remaining five operators

which did not appear in our analysis were I± and SnIz .

The main insight of our dynamical description of the solid effect relates to the role of the coherences. We demonstrated the

involvement of two types of coherences: purely electronic and mixed electron-nuclear. Their evolution was described by two

coupled Bloch equations (fig. 3d), whose steady-state response was rationalized in terms of two band-pass filters connected in665

series (figs. 8 and 1). The involvement of the electron-nuclear coherences in the solid effect is directly manifested by the lines

in the DNP field profile at the canonical offsets Ω≈±ωI . The involvement of the purely electronic coherences, on the other

hand, is not directly visible, at least until one recognizes that the odd parity of the DNP field profile is a manifestation of the

dispersive EPR line, as intuited by Erb, Motchane and Uebersfeld (Erb et al., 1958a).

On a more quantitative level, we predicted that when the mw nutation frequency becomes comparable to the nuclear Larmor670

frequency, the optimal excitation of the forbidden transitions should shift from the canonical solid effect positions to smaller

offsets (fig. 9). Considering the high mw powers accessible in modern-day DNP spectrometers (Neudert et al., 2016), this

observation should be relevant at S and X bands (Neudert et al., 2017; Gizatullin et al., 2021). However, because of the

additional multiplication by the electronic polarization factor (fig. 5, top row), the maxima of the enhancement end up in the

vicinity of the canonical offsets even when the condition ω1� ωI is violated (fig. 10, last row, X band).675

The classical explanation of the solid effect in terms of level mixing (Abragam and Proctor, 1958) is static in nature and

is thus hard to generalize to liquids where the dipolar interaction fluctuates randomly due to molecular motions. The time-

dependent description of the solid effect that we developed in the current paper naturally accommodates such stochastic mod-

ulation of the parameters of the Hamiltonian, in a way similar to the treatment of relaxation in liquids (Abragam, 1961). In

the companion paper we extend the formalism to the solid effect in liquids, and validate its predictions against recent DNP680

experiments at J band (Kuzhelev et al., 2022).
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Figure 11. Same as fig. 8 with smaller mw fields of B1 = 3 G (top) and B1 = 1 G (bottom).
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Figure 12. Same as fig. 10 with smaller mw fields of B1 = 3 G (top) and B1 = 1 G (bottom).
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