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Abstract. In spite of its name, the solid effect of dynamic nuclear polarization (DNP) is operative also in viscous liquids,

where the dipolar interaction between the polarized nuclear spins and the polarizing electrons is not completely averaged out

by molecular diffusion on the time scale of the electronic spin-spin relaxation time. Under such slow-motional conditions, it is

likely that the tumbling of the polarizing agent is similarly too slow to efficiently average the anisotropies of its magnetic tensors

on the electronic T2 time scale. Here we extend our previous analysis of the solid effect in liquids to account for the effect of5

g-tensor anisotropy at high magnetic fields. Building directly on the mathematical treatment of slow-tumbling in electron spin

resonance (Freed et al., 1971), we calculate solid-effect DNP enhancements in the presence of both translational diffusion of

the liquid molecules and rotational diffusion of the polarizing agent. To illustrate the formalism, we analyze high-field (9.4 T)

DNP enhancement profiles from nitroxide-labeled lipids in fluid lipid bilayers. By properly accounting for power-broadening

and motional-broadening, we successfully decompose the measured DNP enhancements into their separate contributions from10

the solid and Overhauser effects.

1 Introduction

The sensitivity of NMR experiments is greatly increased by dynamic nuclear polarization (DNP),1 where the much larger

static polarization that is available to electronic spins is transferred to nuclear spins (Atsarkin, 2011; Wenckebach, 2016).

For the transfer to take place, the electronic and nuclear spins should be able to flip simultaneously (Abragam and Goldman,15

1978). Such concerted flips correspond to the zero-quantum (ZQ) and double-quantum (DQ) transitions of the electron-nucleus

spin system, which are enabled by the inter-spin interactions. Among the four DNP mechanisms, namely the Overhauser effect

(OE), the solid effect (SE), the cross effect, and thermal mixing, only the first two have been conclusively shown to be operative

also in the liquid state where the spin-spin interactions change randomly in time due to the thermal motions of the molecules.

In OE-DNP, the ZQ and DQ transitions are in fact possible because the dipole-dipole and contact interactions are modulated20

by the molecular motions. In SE-DNP, on the other hand, the ZQ and DQ transitions are driven directly by the microwave (mw)

1 Abbreviations used in the text: continuous wave (cw), 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), double quantum (DQ), dynamic nuclear

polarization (DNP), electron paramagnetic resonance (EPR), force-free hard sphere (FFHS), microwave (mw), nuclear magnetic resonance (NMR), Overhauser

effect (OE), 1-palmitoyl-2-stearoyl-sn-glycero-3-phosphocholine (PSPC), solid effect (SE), stochastic Liouville equation (SLE), zero quantum (ZQ).
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excitation, and the modulation of the dipolar interaction is detrimental because it constantly modifies the matching condition

that the mw frequency should satisfy in order to resonantly drive these transitions.

The initial theoretical treatments of OE (Solomon, 1955) and SE (Abragam and Proctor, 1958) modeled the ZQ and DQ

transitions by expressing the transition probabilities per unit time using Fermi’s golden rule. As the mathematical description25

of (semi-classical) relaxation theory matured around the same time (Redfield, 1957; Abragam, 1961), the Fermi golden rule

was promptly replaced in the theory of OE-DNP in liquids (Hausser et al., 1968) by the correlation function of the dipolar

interaction (or its Laplace transform, which is known as spectral density). Because the time-domain description of relaxation

leads to a correlation function in a very general way (Abragam, 1961), the same formalism works naturally with different

spectral densities (e.g., for rotational or translational diffusion). As an example, the improved analytical treatment of isotropic30

translational diffusion achieved in 1975 was immediately applied to paramagnetic relaxation in liquids (Ayant et al., 1975;

Hwang and Freed, 1975).2

During the same time period, it also became possible to account for spin dephasing and relaxation beyond second order

(Anderson, 1954; Kubo, 1954), which is important for understanding spectral line shapes outside the regime of fast averaging

(Kubo, 1969). These initial ideas were transformed into a powerful tool for the calculation and analysis of slow-motional EPR35

spectra by Freed (Freed et al., 1971; Freed, 1976).

When first presented, Abragam’s quantitative description of SE-DNP in terms of mixing of the Zeeman energy levels by the

dipolar interaction (Abragam and Proctor, 1958) conclusively explained that the NMR signal is maximally enhanced when the

mw frequency is shifted from the electronic resonance by˘ωI , where ωI is the Larmor frequency of the polarized nuclear spin.

Abragam’s perturbative analysis also correctly predicted that the effect should drop quadratically with the magnitude of the40

static magnetic field, which has lasting implications for SE-DNP at high magnetic fields. In spite of these successes, however,

the perturbative approach to SE is practically impossible to integrate with other relevant spin phenomena whose mathematical

treatment matured subsequently.

Recently, Sezer (2023a) presented a time-domain description of SE which, like semi-classical relaxation theory, allows

for different dynamical processes to modulate the relevant spin interactions. By interfacing this description with the spectral45

density of isotropic translational diffusion (Ayant et al., 1975; Hwang and Freed, 1975), it was possible to treat SE-DNP in

the presence of molecular translation, as relevant to homogeneous liquids (Sezer, 2023b). The requirement that the dipolar

interaction should not be completely averaged out by the molecular dynamics during the electronic T2 restricts liquid-state

SE-DNP to viscous media, where the tumbling of the polarizing agent may similarly be too slow to average the anisotropies

of its magnetic tensors. The current paper accounts for the effect of g-tensor anisotropy on SE in this slow-tumbling regime.50

To this end, the time-domain description of SE-DNP in liquids is interfaced here with the established mathematical treatment

of slow-motional EPR spectra (Freed et al., 1971). For the illustrative purposes of the current paper, we consider only free

(i.e., unrestricted) rotational diffusion with an isotropic diffusion coefficient. Nevertheless, the treatment can be analogously

2Surprisingly, this improved treatment is not mentioned by Müller-Warmuth et al. (1983), who continue to use the older, deficient expression of the spectral

density for translational diffusion.

2



extended to anisotropic diffusion in an orienting potential by building on the general mathematical formalism of the MOMD

and SRLS models (Meirovitch et al., 1984; Polimeno and Freed, 1995).55

To motivate the presented theoretical analysis, in Sec. 2 we formulate one specific practical problem that it addresses. There

we also introduce the experimental EPR and DNP data that are analyzed subsequently in Sec. 5 using the developed theory.

The needed background from Sezer (2023a, b) is presented in Sec. 3. Building on it, in Sec. 4 we adapt the slow-motional

formalism of Freed et al. (1971) to the treatment of SE in the liquid state. Our conclusions are in Sec. 6, and several supporting

figures are left to the appendix.60

2 Motivation

DNP aims to increase the longitudinal nuclear magnetization, iz , beyond its equilibrium Boltzmann value, ieq
z . This is done

by doping the sample with unpaired electrons, whose spins are then subjected to near-resonance microwave irradiation. In

continuous-wave (cw) DNP, which is the only variety that we consider here, a steady state magnetization issz is reached after

the microwaves have been applied for sufficiently long time. The enhancement of iz under such steady-state conditions is65

ε“
issz
ieq
z
´ 1, (1)

where ε“ 0 corresponds to the absence of DNP.

In both OE and SE, ε is directly proportional to the ratio of the gyromagnetic factors of the electronic and nuclear spins, γS

and γI . For OE (Hausser et al., 1968; Müller-Warmuth et al., 1983),

εOE “ scf
|γS |

γI
, (2)70

where s, c and f are, respectively, the electronic saturation factor, the coupling factor and the leakage factor. The former is

defined as

s“ 1´ sss
z {s

eq
z (3)

and reflects the deviation of the longitudinal electronic magnetization at steady state, sss
z , from its equilibrium value, seq

z . The

other two factors, c and f , quantify the interaction between the electronic and nuclear spins. Specifically, the leakage factor75

f “ 1´T1I{T
0
1I (4)

compares the nuclear T1’s in the presence (T1I ) and in the absence (T 0
1I ) of the polarizing agent. In DNP, T1I is typically

(much) shorter than T 0
1I due to the elevated concentration of the electronic spins, hence f « 1.

Similarly, the SE enhancement can be expressed as (Sezer, 2023a)

εSE “ pv´T1I

ˆ

1

1` v`T1I

˙

|γS |

γI
, (5)80
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where p“ 1´ s quantifies how “non-saturated” the electronic transition is, and the rate constants v˘ are related to the ability

of the microwaves to excite simultaneous flips of the electronic and nuclear spins. These concerted flips correspond to the

“forbidden” ZQ and DQ transitions, which are enabled by the dipolar interaction. In fact,

v˘ “ v2˘ v0, (6)

where v0 and v2 denote, respectively, the ZQ and DQ transition rates. In liquids, where the dipolar interaction is partially85

averaged, the contribution of the mw excitation to the nuclear relaxation rate R1I “ 1{T1I , which is quantified by v`, is

generally negligibly small. As a result, v`{R1I ! 1 and the expression in parenthesis in (5) is essentially one. Then the SE

enhancement acquires the multiplicative form

εSE « pv´T1I
|γS |

γI
pv` !R1Iq, (7)

which is analogous to εOE with the factors s, c and f being replaced by the factors p, v´ and T1I , respectively. In the numerical90

work presented in Sec. 5 we use the approximation (7). The condition v`T1I ! 1 is validated at the end of the analysis by

comparing the estimated v` to the measured T1I .

In the current paper we study the dependence of the DNP enhancement on the displacement from the electronic resonance.

Following Gizatullin et al. (2022), we call the profile of ε against the offset from resonance a “DNP spectrum”. Because DNP

experiments in the liquid state are carried out with a mw resonator (Erb et al., 1958a, b; Leblond et al., 1971b; Neudert et al.,95

2016; Gizatullin et al., 2021a; Kuzhelev et al., 2022, 2023), off-resonance conditions are achieved by varying the stationary

magnetic field at constant mw frequency (i.e., field sweep). In theoretical analysis, however, it is more convenient to work with

a fixed B0 and a variable mw frequency. Thus, when comparing calculations and experiments, we will convert the horizontal

axis of the experiments from magnetic field to offset frequency.

In the case of εOE (eq. (2)), the entire offset dependence is due to the saturation factor s, as the factors c and f are practically100

constant over such narrow frequency range. In the case of εSE (eq. (5)), both pv´ and v` are functions of the offset. For a

single, homogeneously-broadened EPR line the saturation factor can be obtained in closed analytical form from the Bloch

equations (as we review below in Sec. 3.1). Recently Sezer (2023a) showed that the SE spin dynamics is described by two

coupled Bloch equations, whose steady state can similarly be solved analytically to obtain closed-form expressions for the rate

constants v˘ (reviewed in Sec. 3.2). In liquids, where the random molecular motion modulates the dipolar interaction between105

the electronic and nuclear spins, these rate constants are no longer available analytically but can be calculated numerically for

motional models with known dipolar spectral densities (Sezer, 2023b), as reviewed below in Sec. 3.3.

Liquid-state SE-DNP is restricted to viscous media, where the dipolar interaction is not averaged out completely by the

molecular motions on the decoherence time scale of the electronic spins. Under these conditions, the tumbling of the polarizing

agent is also expected to be too slow to average the anisotropies of its magnetic tensors on the electronic T2 time scale. One110

thus expects substantial deviations from the Lorentzian EPR line shape of the Bloch equations. Such deviations are unavoidable

in the case of nitroxide-based polarizing agents whose g and A tensors are rather anisotropic. A recent SE-DNP study at 9.4 T

demonstrated that even the narrow-line radical trityl exhibited g-tensor broadening in liquid glycerol (Kuzhelev et al., 2023).
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Figure 1. Experimental cw-EPR spectra (a, b) and DNP spectra (c, d) of spin-labeled lipids in DOPC lipid bilayers at 9.4 T and « 320K.

The nitroxide spin label (Doxyl) is either at position 10 (a, c) or at position 16 (b, d) of the aliphatic lipid chain. The integrated cw-EPR

spectra (dashed-dotted blue lines in a and b) are used to decompose the DNP spectra (c and d) into contributions from OE (dashed-dotted

blue lines) and SE (dashed green lines).

This paper extends the theoretical description of SE-DNP to the regime of slow radical tumbling where the cw-EPR line

shape in not Lorentzian. Given our longstanding efforts in liquid-state DNP at 9.4 T, here we focus on high magnetic fields,115

where the width of the EPR spectrum is dominated by the anisotropy of the g tensor. We will thus completely neglect the

hyperfine tensor. This possibility greatly simplifies the needed adjustments to the Lorentzian case (Sec. 4).

To illustrate the practical problem that motivated this theoretical work, we now turn to the experimental data in fig. 1.

The characterized samples comprised liposomes of hydrated lipid bilayers composed of DOPC (1,2-dioleoyl-sn-glycero-3-

phosphocholine) lipids. As the phase transition temperature of DOPC is about ´17˝C, the lipids were in their fluid, liquid-120

crystalline phase in the experiments at « 320 K. The DOPC lipids were mixed at a ratio of 20:1 with PSPC lipids spin-labeled

either at position 10 (1-palmitoyl-2-stearoyl-(10-doxyl)-sn-glycero-3-phosphocholine) or at position 16 along one of their

aliphatic chains. Both the EPR spectra (fig. 1a,b) and the DNP enhancements (fig. 1c,d) were recorded in our home-built

Fabry-Pérot resonator at 9.4 T, equipped with temperature control (Denysenkov et al., 2022). While the target temperature of

the experiments was 320 K, an extra temperature rise of less than 10˝C can be expected at the maximum mw power of 5.5 W125

that was used for DNP (Denysenkov et al., 2022). Details about the experiments and the sample preparation will be published

elsewhere.
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The cw-EPR spectrum of 10-Doxyl-PC in fig. 1a (orange line) is seen to deviate substantially from (the derivative of) a

Lorentzian line shape. At this high magnetic field, the EPR line width is expected to be dominated by the large anisotropy of

the nitroxide g tensor, with comparatively much smaller contribution from the nitroxide hyperfine tensor. (These expectations130

are tested and verified below in Sec. 5.1.) For comparison, in fig. 1b we show the cw-EPR spectrum of the sample doped

with 16-Doxyl-PC. Visually, this narrower spectrum more closely resembles a homogeneous Lorentzian line, although it still

deviates from it (as discussed in Sec. 5.2).

In fig. 1c we show the DNP spectrum (filled red circles) of the sample containing 10-Doxyl-PC as a polarizing agent. The

enhanced NMR signal belongs to the acyl chain protons of the lipids. Thanks to the high magnetic field of the experiment, it135

was possible to resolve the NMR signal of these non-polar protons from the polar protons of water and of the lipid head groups.

The DNP spectrum is seen to have a complex line shape, with the positive enhancement values at offsets of about `400 MHz

demonstrating contribution from SE. At the same time, the comparatively larger negative enhancements in the vicinity of the

electronic resonance (i.e., around 0 MHz) point to a contribution from OE. Such coexistence of SE and OE is well documented

for nitroxide free radicals at the classical EPR fields of about 0.35 T (Leblond et al., 1971b; Neudert et al., 2017; Gizatullin140

et al., 2021a, b). Evidently, it also persists at 9.4 T. The DNP spectrum of 16-Doxyl-PC in fig. 1d also exhibits a mixture of SE

and OE.

More than half a century ago Korringa and coworkers developed a rigorous theoretical framework to predict such mixed

DNP spectra in viscous liquids (Papon et al., 1968; Leblond et al., 1971a). Likely because of its complexity, as well as its

neglect of translational diffusion, their formal analysis has not been applied to recent DNP data. As a simple and practical145

alternative, Neudert et al. (2017) disentangle the OE and SE components of such mixed DNP spectra using only the integral

of the measured cw-EPR signal. Their approach is based on the following insightful observations: (i) up to an overall scaling

factor the EPR line shape is equal to the saturation factor and thus to the OE enhancement (eq. (2)); (ii) up to an overall scaling

factor the SE enhancement lines at ˘ωI are shifted versions (and flipped for the ZQ transition) of the same EPR line shape.

One can thus identify the contributions of OE and SE to the DNP spectrum by placing the integrated cw-EPR spectrum at,150

respectively, zero and ˘ωI offsets, and independently adjusting the magnitudes of the two components.

This approach is illustrated in figs. 1c and 1d, where the dashed-dotted blue lines are the integrals of the cw-EPR spectra

from figs. 1a and 1b, respectively (flipped here to reflect the dipolar nature of OE), and the dashed green lines are the same EPR

spectra but centered at ´400 MHz and +400 MHz. The sum of the OE and SE contributions determined in this way is shown

with a dotted black line. This sum is seen to agree closely with the DNP spectrum of 10-Doxyl-PC (fig. 1c) and to capture well155

the overall shape of the DNP spectrum of 16-Doxyl-PC (fig. 1d).

In spite of the good general agreement between the experimental DNP spectra and the dotted black lines in figs. 1c and 1d,

some persistent differences remain. In particular, (i) the OE feature in the experiment appears to be consistently broader than

the EPR line and (ii) the enhancement between the central OE feature and the negative SE feature is consistently larger than

what is predicted by the overlap of the two copies of the EPR line shape. Both of these aspects are especially clear in the case160

of 16-Doxyl-PC (fig. 1d). The theory presented below (Sec. 4) aims to address these deficiencies of the simple approach.
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In fact, the first deficiency is easy to rationalize. Cw-EPR spectra are recorded at low mw power and their widths reflect

mechanisms contributing to the electronic T2 relaxation. The DNP spectrum, on the other hand, is recorded at high mw power,

where the EPR line width experiences power-broadening that also depends on the electronic T1 relaxation. That the OE-

DNP spectrum “represents an indirect observation of the electron resonance when greatly saturated” was understood early on165

(Carver and Slichter, 1956, fig. 6). To properly model the contribution of OE to mixed DNP spectra, therefore, it is necessary to

calculate the cw-EPR spectrum under saturating conditions. How to rigorously do that in the regime of slow radical tumbling

is known (Freed et al., 1971).

While power-broadening affects OE, it is not immediately clear whether one should also take it into account when modeling

SE. (We address this point in Sec. 4.4.) Even leaving power-broadening aside, however, we know that in liquids the SE lines of170

the DNP spectrum should also be broader than the EPR line width because of the fluctuations of the dipolar interaction (Sezer,

2023b). Although Sezer (2023b) showed how to quantify this additional motional broadening in the case of translational

molecular diffusion, the theoretical treatment there assumed a Lorentzian EPR line and is thus not directly applicable to the

experiments in fig. 1. In the current paper, we extend the formalism to slow radical tumbling and g-tensor anisotropy (Sec. 4).

In Sec. 5 we apply the developed theory to the analysis of the experimental spectra in fig. 1, disentangling the contributions of175

SE and OE to the observed DNP. The needed theoretical background from Sezer (2023a, b) is reviewed next.

3 Theoretical background

The classical Bloch equations describe the dynamics of the electronic magnetization, including under saturating conditions. In

Sec. 3.1 we recall the relationship between the steady-state solution of the Bloch equations and cw-EPR. Then, in Sec. 3.2,

closed-form expressions are obtained for the rate constants of the forbidden transitions that are driven by the microwaves in180

SE-DNP. These expressions, derived in this form for the first time (Eqs. (33) and (34)), are similar to the steady-state solutions

of the Bloch equations but additionally contain (i) the strength of the electron-nucleus dipolar interaction and (ii) the Larmor

frequency of the polarized nuclear spin (Sezer, 2023a). Finally, in Sec. 3.3 we remind the reader how these expressions should

be modified in the presence of random modulation of the dipolar interaction, as relevant for liquids (Sezer, 2023b).

The reviewed results, which apply to a single Lorentzian line, will be extended in Sec. 4 to the regime of slow radical185

tumbling and anisotropic g tensor. In the process, some of the scalar variables that appear below, like the offset frequency and

the electronic relaxation rates, will be replaced by square matrices, as we explain in Secs. 4.1 and 4.2. The generalization of

Secs. 3.1, 3.2 and 3.3 along these lines is carried out in, respectively, Secs. 4.3, 4.4 and 4.5.
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3.1 Bloch equations

The evolution of the expectation values of the electronic spin operators Si (i“ x,y,z), which we denote by si, is described by190

the classical Bloch equations (in the rotating frame)
»

—

—

–

9sxptq

9syptq

9szptq

fi

ffi

ffi

fl

“´

»

—

—

–

R2 ∆ 0

´∆ R2 ω1

0 ´ω1 R1

fi

ffi

ffi

fl

»

—

—

–

sxptq

syptq

szptq

fi

ffi

ffi

fl

`R1

»

—

—

–

0

0

seq
z

fi

ffi

ffi

fl

. (8)

Here, the dot above the variable indicates differentiation with respect to time, R2 and R1 are the reciprocals of the electronic

relaxation times T2 and T1, respectively, and3

∆“ ω0´ω (9)195

is the offset between the Larmor frequency of the electronic spins, ω0, and the (angular) frequency of the oscillating magnetic

field, ω. In the case of an isotropic g-factor, g0,

ω0 “ g0µBB0{~, (10)

where µB is the Bohr magneton.

At steady state200
»

—

—

–

R2 ∆ 0

´∆ R2 ω1

0 ´ω1 R1

fi

ffi

ffi

fl

»

—

—

–

sss
x

sss
y

sss
z

fi

ffi

ffi

fl

“R1

»

—

—

–

0

0

seq
z

fi

ffi

ffi

fl

. (11)

Solving these algebraic equations for the variables sss
i , one can calculate the cw-EPR spectrum and the electronic saturation

profile. Making use of the zeros in the first and last rows of the Bloch matrix in (11), we first express sss
x and sss

z in terms of

sss
y :

sss
x “´∆T2s

ss
y , sss

z “ ω1T1s
ss
y ` s

eq
z . (12)205

The middle row of the matrix then yields

sss
y “´ω1P

´1
0 seq

z , (13)

where we defined

P0 “R2`ω
2
1T1`∆2T2. (14)

The in-phase (absorptive) and the out-of-phase (dispersive) components of the cw-EPR signal are then found to be210

abs“ sss
y {s

eq
z “´ω1P

´1
0

dsp“ sss
x {s

eq
z “´∆T2 abs. (15)

3In Sezer (2023a, b) the frequency offset was denoted by Ω. Here we reserve this symbol for the orientation of the polarizing agent (Sec. 4).
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From the longitudinal component at steady state we similarly find

s“ 1´ sss
z {s

eq
z “´ω1T1 abs, (16)

which shows that the saturation factor is directly proportional to the absorptive EPR line shape. This proportionality holds for

all mw powers, including the large powers used in DNP. In Sec. 4.3 we show that it remains valid also in the case of g-tensor215

anisotropy.

When generalizing the Bloch equations to an anisotropic g tensor, we will need to work with high-dimensional abstract

vectors. To distinguish these vectors from the vectors in 3D space, we will denote the latter by placing an arrow above their

symbols, and will use bold symbols for the former. (A 3D unit vector will be indicated with a hat rather than an arrow.)

Additionally, we will use capital hollow letters to denote 3ˆ3 matrices that act on the 3D vectors. With this understanding, we220

will write the Bloch equations (8) as

9
tsptq “ ´B0tsptq`R1k̂s

eq
z , (17)

where

tsptq “

»

—

—

–

sxptq

syptq

szptq

fi

ffi

ffi

fl

, k̂ “

»

—

—

–

0

0

1

fi

ffi

ffi

fl

, (18)

225

B“

»

—

—

–

R2` iωI ∆ 0

´∆ R2` iωI ω1

0 ´ω1 R1` iωI

fi

ffi

ffi

fl

, (19)

and B0 “ BpωI “ 0q. The iωI that has been added to the main diagonal of the matrix B will be needed for the dynamical

description of the solid effect (see Sec. 3.2). The subscript of B0 is intended as a reminder that B is evaluated at ωI “ 0, where

ωI is the Larmor frequency of the polarized nuclear spin.

3.2 Solid effect in solids230

SE relies on the dipolar interaction between the electronic and nuclear spins whose coupling is

A1 “Ddip
´3cosθ sinθ

r3
eiφ. (20)

Here Ddip “ pµ0{4πq~γSγI is the dipolar constant, which equals approximately 2πp79 kHz nm3) for protons, and pr,θ,φq are

the spherical polar coordinates of the inter-spin vector.

In liquids, A1 changes in time because of molecular diffusion. The treatment of SE-DNP for time-dependent A1 in Sezer235

(2023b) was developed under the assumption that the nuclear T1 is orders of magnitude larger than the correlation time of

the electron-nucleus dipolar interaction, which is practically always the case in liquids. For the same analysis to apply to

9



solids, nuclear spin diffusion, which analogously to molecular diffusion in liquids spreads out the nuclear polarization across

the sample, should be much faster than the nuclear T1. Although this condition is not necessarily satisfied in the solid state,

for the mathematical description in terms of a dipolar correlation function to apply, we will assume that spin diffusion is240

fast when referring to solids. Similarly, when accounting for g-tensor anisotropy below, we will assume that the tumbling of

the radical is much faster than the nuclear T1. This assumption is clearly violated in solids where “tumbling” is infinitely

slow. Nevertheless, for the purposes of comparison, we will refer in the following to ‘solids’ with the understanding that the

correlation time of the dipolar interaction is much shorter than the nuclear T1 (in order to treat nuclear spin diffusion on the

level of a translational correlation function) but much longer than all other relaxation time scales (in order to treat the electron-245

nucleus dipolar interaction as constant). Because we will keep all other parameters, including the time scale of radical tumbling,

the same when comparing ‘solids’ and liquids, it should be kept in mind that our treatment is not a good model for the solid

state (hence the quotation marks).

For SE-DNP, in addition to the Bloch equations it is necessary to consider the following dynamical equations of the electron-

nucleus coherences gi “ xSiI`y (i“ x,y,z) (Sezer, 2023a):250
»

—

—

–

9gxptq

9gyptq

9gzptq

fi

ffi

ffi

fl

“´B

»

—

—

–

gxptq

gyptq

gzptq

fi

ffi

ffi

fl

´
1

4
A1

»

—

—

–

syptq

´sxptq

0

fi

ffi

ffi

fl

´ i
1

4
A1

»

—

—

–

0

0

izptq

fi

ffi

ffi

fl

. (21)

Again, we are only interested in the steady state of the dynamics where

B

»

—

—

–

gss
x

gss
y

gss
z

fi

ffi

ffi

fl

“´
1

4
A1

»

—

—

–

sss
y

´sss
x

0

fi

ffi

ffi

fl

´ i
1

4
A1

»

—

—

–

0

0

issz

fi

ffi

ffi

fl

. (22)

The rate constants pv´ and v` needed to calculate the SE enhancement (eq. (5)) are determined from gss
z using the following

equality, which combines (Sezer, 2023a, eq. (31)) and (Sezer, 2023b, eq. (42)):255

9iz|
ss
coh “´RetiA˚1g

ss
z u “ ´R

A
1I i

ss
z ´ v`i

ss
z ´ pv´s

eq
z . (23)

(Retu takes the real part of its argument.) The term proportional to RA1I on the right-hand side of (23) accounts for the contri-

bution of the coherences gi to the nuclear T1 relaxation in the absence of mw excitation. This contribution should be removed

when calculating the mw-related rates v` and pv´.

To a good approximation the electronic spin dynamics is independent from the dipolar interaction with the nuclear spins,260

as other mechanisms are more efficient in causing electronic relaxation, especially in liquids. As a result, the steady-state

expressions from Sec. 3.1 can be used when solving (22) for gss
z .

Inverting the matrix B in (22), and using sss
x,y from before, we find

gss
z “ ω1

1

4
A1prB´1szx`∆T2rB´1szyqP

´1
0 seq

z

´ i
1

4
A1rB´1szzi

ss
z , (24)
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where rB´1sij is the ijth matrix element of B´1. Substituting this gss
z into (23) we identify the desired SE rate constants265

RA1I “ δ
2RetrB´1

ω1“0szzu

v` “ δ
2RetrB´1szzu´R

A
1I

pv´ “´δ
2ω1P

´1
0 ImtrB´1szx`∆T2rB´1szyu, (25)

where

δ2 “ pA˚1A1q{4 (26)

reflects the strength of the dipolar interaction. (Imtu takes the imaginary part of its argument.)

In liquids, where A1 is time-dependent, we will need to modify the matrix B´1 in (25) without changing the structure of270

these expressions (Sec. 3.3). In the case of solids (i.e., when A1 does not change with time), it is possible to carry out the

inversion of B by expressing gss
x and gss

z in terms of gss
y , analogously to our treatment of the Bloch equations in the previous

subsection.

From the upper and lower rows of B in (22) we find

gss
x “´∆pR2` iωIq´1gss

y ´
1

4
A1pR2` iωIq´1sss

y

gss
z “ ω1pR1` iωIq´1gss

y ´ i
1

4
A1pR1` iωIq´1issz . (27)275

Substituting this gss
z into (23) we obtain

9iz|
ss
coh “´ω1RetiA˚1 pR1` iωIq´1gss

y u

´ δ2RetpR1` iωIq´1uissz . (28)

The first term on the right-hand side of the equality in (28) vanishes when ω1 “ 0. In contrast, the term in the second line is

independent of ω1 and thus contributes also in the absence of mw excitation. We thus identify this second term with the thermal

relaxation rate280

RA1I “ δ
2RetpR1` iωIq´1u. (29)

Since we are not interested in this rate, the second summand in (28) can be dropped at this stage. The rate constants v` and

pv´ will thus be identified using only the first line in (28):

ω1RetiA˚1 pR1` iωIq´1gss
y u “ v`i

ss
z ` pv´s

eq
z . (30)

Substituting gss
x and gss

z from (27) into the middle equation in (22), and using the electronic steady state, we find285

gss
y “

1

4
A1ω1∆P´1

0 rR´1
2 `pR2` iωIq´1sP´1 seq

z

` i
1

4
A1ω1pR1` iωIq´1P´1 issz , (31)

11



where

P “R2` iωI `ω2
1pR1` iωIq´1`∆2pR2` iωIq´1 (32)

generalizes (14) such that P0 “ P pωI “ 0q. Finally, using this gss
y in (30) we obtain

v` “´δ
2ω2

1 Re

$

&

%

pR1` iωIq´2

R2` iωI `
ω2

1

R1`iωI
` ∆2

R2`iωI

,

.

-

(33)290

and

pv´ “´δ
2ω2

1

∆

R2`ω2
1T1`∆2T2

ˆ Im

$

&

%

rR´1
2 `pR2` iωIq´1spR1` iωIq´1

R2` iωI `
ω2

1

R1`iωI
` ∆2

R2`iωI

,

.

-

. (34)

In these expressions we have written down the combinations P and P0 explicitly in order to show in closed form how v` and

pv´ depend on all parameters. For example, we immediately see that pv´ is odd in the offset ∆ while v` is even. Because the

SE-DNP enhancement is proportional to the ratio of these two rates (eq. (5)), it has the characteristic odd (i.e., antisymmetric)295

dependence on the offset from the electronic resonance.

When generalizing the SE spin dynamics to g-tensor anisotropy, we will write the dynamical equations (21) as

9
tgptq “ ´Btgptq´

1

4
A1Gtsptq´ i

1

4
A1k̂izptq (35)

with

tgptq “

»

—

—

–

gxptq

gyptq

gzptq

fi

ffi

ffi

fl

, G“

»

—

—

–

0 1 0

´1 0 0

0 0 0

fi

ffi

ffi

fl

“
BB
B∆

. (36)300

3.3 Solid effect in liquids

The modulation of the dipolar interaction by translational diffusion was described in Sezer (2023b) on the level of the spectral

density of the motional model, which was denoted by J11psq since this is the Laplace transform of the auto-correlation function

of the dipolar interactionA1 (hence the double subscript of J). As an example, the spectral density of the force-free hard-sphere

(FFHS) model of translational diffusion is (Ayant et al., 1975; Hwang and Freed, 1975)305

Jffhs
11 psq “ xδ

2yτ
psτq

1
2 ` 4

psτq
3
2 ` 4psτq` 9psτq

1
2 ` 9

. (37)

Here, the parameter

τ “ b2{Dtrans (38)
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is the diffusive time scale of the model, which depends on the contact distance of the electronic and nuclear spins, b, and on

the coefficient of their relative translational diffusion, Dtrans, and310

xδ2y “D2
dip

6π

5

N

3b3
. (39)

is the average of the dipolar interaction strength δ2 over the sample volume, times the concentration of the electronic spins, N .

It is convenient to write J11, which has units of angular frequency, as

J11psq “ xδ
2yj11psq, (40)

where j11psq has units of time. This factorization confines the effect of the parametersN , b and the constantDdip to the scaling315

factor xδ2y. The factor j11psq then fully accounts for the line shape of the SE-DNP spectrum, which results from the interplay

between the offset frequency and the time scale of the translational motion.

According to Sezer (2023b), the modification from solids to liquids amounts to replacing the matrix B´1 in (25) by the

matrix

Q“ j11pBq, (41)320

and also replacing δ2 by xδ2y. The desired SE rate constants in liquids are thus

RA1I “ xδ
2yRetrQω1“0szzu

v` “ xδ
2yRetrQszzu´RA1I

pv´ “´xδ
2yω1P

´1
0 ImtrQszx`∆T2rQszyu. (42)

We now clarify the meaning of (41). Following the definition of a function of a matrix, one should first solve the eigenvalue

problem of B, i.e., BU“ UΛ, where the diagonal matrix Λ“ diagpλ1,λ2,λ3q contains the three eigenvalues and the columns

of U contain the corresponding (right) eigenvectors. Then one should evaluate the spectral density at the three eigenvalues:325

`n “ j11pλnq. Finally, one should form the diagonal matrix L“ diagp`1, `2, `3q and calculate Q“ ULU´1. Comparing this

expression of Q with B´1 “ UΛU´1 we see that in the transition from solids to liquids, where B´1 is replaced by Q, we

essentially “process” the eigenvalues of B with the spectral density function j11. This step prevents us from eliminating the

variables gss
x,z the way we did previously for solids (Sec. 3.2). Because of that, the rate constants in liquids (eq. (42)) need to

be calculated numerically.330

Nonetheless, it is still possible to simplify the expression for RA1I since when ω1 “ 0 the zz component of B is decoupled

from the rest of the matrix. One then finds

RA1I “ xδ
2yRetj11pR1` iωIqu. (43)

Clearly, the time-dependence of the dipolar interaction modifies all rate constants, including RA1I (cf. eq. (29)).
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4 Slow-motional EPR and DNP spectra for anisotropic g tensor335

In this section we show how to account for g-tensor anisotropies when the tumbling of the radical is slow. Because our

description of SE is built around the Bloch equations (Sezer, 2023a, b), we first adapt the treatment of isotropic rotational

diffusion of Freed et al. (1971) to our needs (Secs. 4.1, 4.2 and 4.3) and then generalize it to SE-DNP (Secs. 4.4 and 4.5).

If needed, further generalization to anisotropic diffusion and an orienting potential can be carried out analogously, following

the mathematical treatment of the MOMD and SRLS models for slow-motional EPR (Meirovitch et al., 1984; Polimeno and340

Freed, 1995).

4.1 Stochastic Liouville equation for isotropic tumbling

Following Freed et al. (1971), we account for the effect of tumbling on the EPR spectrum using the SLE formalism (Anderson,

1954; Kubo, 1954). We describe the rotational state of the radical statistically with the probability density P pΩ, tq, which

quantifies the likelihood that at time t the molecular system of coordinates in which the g tensor is diagonal has orientation Ω345

with respect to the laboratory system of axes defined by the magnetic fields B0 and B1. In the case of isotropic rotation this

probability evolves with the Fokker-Planck equation

B

Bt
ppΩ, tq “Drot∇2

Ω ppΩ, tq, (44)

where Drot is the rotational diffusion constant of the radical and the Laplacian differential operator ∇2
Ω acts on the orientation

variable Ω. The operator350

KΩ “´Drot∇2
Ω (45)

satisfies the following eigenvalue problem

KΩD`
mnpΩq “Drot`p`` 1qD`

mnpΩq, (46)

where the eigenfunctions D`
mnpΩq are the Wigner rotation matrix elements, which are orthogonal to each other:

ż

DL˚
MN pΩqD

`
mnpΩqdΩ“

8π2

2L` 1
δL`δMmδNn. (47)355

From (46) it is clear that the time derivative on the left-hand side of (44) vanishes for the equilibrium probability

peqpΩq “
1

8π2
“

1

8π2
D0

00pΩq. (48)

In the presence of g-tensor anisotropy, the electronic Larmor frequency depends on the orientation Ω of the radical as

follows:4

ωpΩq “ ω0` γ
2
0D2

00pΩq` γ
2
2 rD

2
´20pΩq`D2

20pΩqs, (49)360

4We follow Freed et al. (1971) and consider the effect of the g-tensor anisotropy only on the secular terms in the electronic spin Hamiltonian, i.e., those

proportional to the spin operator Sz . The response of the non-secular terms to the g anisotropy is neglected.
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where the angular frequencies (Freed et al., 1971)

γ2
0 “

2

3

„

gzz ´
1

2
pgxx` gyyq



µBB0{~

γ2
2 “

1
?

6
pgxx´ gyyqµBB0{~ (50)

are formed from the components gxx, gyy and gzz of the g-tensor in the molecular frame. In (49), the first index in the

subscripts of the Wigner rotation matrix elements refers to molecular system of axes while the second index refers to the

laboratory system. The second indices are zero here because we consider only the secular terms, which are proportional to Sz .365

Since the electronic Larmor frequency depends on Ω, the offset frequency ∆ also becomes a function of the molecular

orientation. As an example, for a fixed Ω the Bloch equations (17) should be modified as

9
tsptq “ ´rB0`FpΩqstsptq`R1k̂s

eq
z , (51)

where the orientation dependence is confined to the 3ˆ 3 matrix

FpΩq “
 

γ2
0D2

00pΩq` γ
2
2 rD

2
´20pΩq`D2

20pΩqs
(

G. (52)370

(The matrix G was introduced in (36).) It should be stressed, however, that (51) is not a legitimate equation of motion, as it

does not account for the dynamics of the orientation Ω.

The SLE formalism remedies this deficiency by introducing the orientation-conditioned averages tspΩ, tq, whose spatial part

evolves according to the Bloch equations (51) and whose Ω dependence evolves according to the diffusion equation (44):

B

Bt
tspΩ, tq “ ´pKΩbE`EΩbB0qtspΩ, tq

´EΩbFpΩqtspΩ, tq`R1k̂s
eq
z p

eqpΩq. (53)375

Here E is the 3ˆ 3 identity matrix in 3D space and EΩ is the identity operator in the same abstract space as KΩ. The outer

product b is needed to create a combined operator that acts simultaneously in both of these spaces.

Since the functions D`
mnpΩq form a complete set, we expand tspΩ, tq as follows:

tspΩ, tq “
1

8π2

8
ÿ

`“0

ÿ̀

m“´`

ÿ̀

n“´`

D`
mnpΩqts

`
mnptq. (54)

The coefficients ts`mn, which contain the time-dependence, can be obtained from tspΩ, tq using the orthogonality of D`
mnpΩq380

(eq. (47)):

tsLMN ptq “ p2L` 1q

ż

DL˚
MN pΩqtspΩ, tqdΩ. (55)

Ultimately, the only property that we care about is the integral of the SLE variable tspΩ, tq over all orientations:
ż

tspΩ, tqdΩ“

ż

D0
00pΩqtspΩ, tqdΩ“ ts0

00ptq. (56)
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In that sense, the (vector) coefficient ts0
00ptq is the main object of interest, while all other coefficients ts`mnptq play an auxiliary,385

book-keeping role.

Substituting tspΩ, tq from (54) into (53), multiplying both sides by DL˚
MN pΩq and integrating over Ω, we get

9
tsLMN ptq “R1k̂s

eq
z δL0δM0δN0

´rDrotLpL` 1q`B0sts
L
MN ptq

´
ÿ

`mn

ˆ

2L` 1

8π2

ż

DL˚
MN pΩqD

`
mnpΩqFpΩqdΩ

˙

ts`mnptq. (57)

Clearly, the terms proportional to KΩ and B0 in the SLE (53) do not mix coefficients tsLMN with different values of L, M and

N . In other words, these two operators are diagonal in the selected representation. The term proportional to FpΩq, on the other390

hand, mixes coefficients with different L and M (but not N , as we discuss below).

The integral in the last line of (57) contains the product of three Wigner rotation matrix elements. These can be expressed in

therms of the Clebsch-Gordan coefficients CLM`1m1`2m2
. Specifically, for the D2

K0pΩq in eq. (52), we have

2L` 1

8π2

ż

DL˚
MN pΩqD

2
K0pΩqD

`
mnpΩqdΩ“ CLM2K`mC

LN
20`n, (58)

which leads to395

9
tsLMN ptq “R1k̂s

eq
z δL0δM0δN0

´rDrotLpL` 1q`B0sts
L
MN ptq

´
ÿ

`mn

rγ2
0C

LM
20`m` γ

2
2pC

LM
2´2`m`C

LM
22`mqsC

LN
20`nGts`mnptq. (59)

In (59), the sum over ` mixes only expansion coefficients with `“ L,L˘ 2 (Freed et al., 1971) because all three Wigner

rotation matrix elements in F have L“ 2 (eq. (52)). Since we need ts0
00 at the end, it is sufficient to consider only coefficients

with even values of `. Furthermore, as the Wigner rotation matrix elements in F have M “ 0,˘2 and N “ 0, the sum over m

mixes only coefficients whose values m are either equal to M or differ from it by two units, while the sum over n does not mix400

any coefficients with n different from N . These considerations imply that the triple sum in (59) will go only over ts`m0 with

even ` and m. Finally, because the Wigner rotation matrix elements with M “ 2 and M “´2 appear in a symmetrical way in

F, it becomes possible to work with the symmetrized coefficients (Freed et al., 1971)

tsLM “
1

2
ptsL´M0` tsLM0q, (60)

thus restricting M to non-negative values (0ďM ď L). The lowest-order coefficients that are coupled by the SLE dynamics405

are thus ts00, ts20, ts22, ts40, ts42, ts44, ts60, etc.

4.2 Matrix representation of the SLE dynamics

While the above considerations greatly reduce the needed coefficients, there is still an infinite number left. In any practical

work, this infinite set is truncated by selecting a maximum value of L to account for, and setting to zero the coefficients
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with Lą Lmax. Since the total number of even L such that Lď Lmax is nL “ Lmax{2` 1, the total number of remaining410

coefficients tsLM is ntot “ nLpnL`1q{2“ L2
max{8`3Lmax{4`1. For the smallest non-trivial choice of Lmax “ 2, ntot “ 3

(with ts00, ts20 and ts22). The number of coefficients increases quadratically with Lmax (e.g., ntot “ 15,28,45 for Lmax “

8,12,16, respectively).

To compactly write down how these coefficients are mixed by the SLE dynamics, we introduce the following abstract vectors

with ntot elements:415

100 “

»

—

—

—

—

—

–

1

0

0
...

fi

ffi

ffi

ffi

ffi

ffi

fl

, siptq “

»

—

—

—

—

—

–

s00
i ptq

s20
i ptq

s22
i ptq

...

fi

ffi

ffi

ffi

ffi

ffi

fl

pi“ x,y,zq, (61)

where the former is needed for the first term on the right-hand side of (59). The SLE dynamics then becomes
»

—

—

–

9sxptq

9syptq

9szptq

fi

ffi

ffi

fl

“´B0

»

—

—

–

sxptq

syptq

szptq

fi

ffi

ffi

fl

`R1

»

—

—

–

0

0

100

fi

ffi

ffi

fl

seq
z , (62)

where

B0 “

»

—

—

–

R2 ∆ 0

´∆ R2 ω1E

0 ´ω1E R1

fi

ffi

ffi

fl

(63)420

is a 3ntotˆ 3ntot matrix, and E, R1, R2 and ∆ are ntotˆntot matrices.

The first three of these sub-matrices are purely diagonal: E is the identity matrix and

R1,2 “R1,2E`DrotCD, (64)

with the diagonal elements of CD being equal to LpL`1q. For the simplest case of Lmax “ 2 with only three coefficients (ts00,

ts20 and ts22),425

E“

»

—

—

–

1

1

1

fi

ffi

ffi

fl

, CD “

»

—

—

–

0

6

6

fi

ffi

ffi

fl

. (65)

In (63), the diagonal matrices R1,2 and E, which originate from the second line in (59), do not mix coefficients with different

L and M . Only the sub-matrix ∆, which is of the form

∆“∆E` γ2
0C0` γ

2
2C2, (66)
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mixes coefficients of different orders. In fact, the mixing is due to the matrices C0,2, which modify the frequency offset ∆ in430

proportion to the g-tensor anisotropies γ2
0 and γ2

2 . For Lmax “ 2,

C0 “

»

—

—

–

0 1
5 0

1 2
7 0

0 0 ´ 2
7

fi

ffi

ffi

fl

, C2 “

»

—

—

–

0 0 1
5 ˆ 2

0 0 ´ 2
7 ˆ 2

1 ´ 2
7 0

fi

ffi

ffi

fl

. (67)

(The factors of two in the last column of C2 arise from the fact that coefficients with M “ 0 pose an exception to the sym-

metrization (60).) The matrix elements of these two matrices in the most general case are

rC0sLM,`m “ C
LM
20`mC

L0
20`0

rC2sLM,`m “ pC
LM
2´2`m`C

LM
22`m` δM0C

LM
22`mqC

L0
20`0, (68)435

where the summand proportional to δM0 in the second line accounts for the factor of two that is needed by the coefficients tsL0.

Selecting Lmax “ 0 in the above formalism amounts to retaining only the (3D vector) coefficient ts00. Then the matrix B0

in (63) reduces to B0, and (62) reduces to the classical Bloch equations for a homogeneous line. For Lmax ą 0, the diagonal

matrices R1 and R2 cause the coefficients sLMz and sLMx,y , respectively, to decay exponentially, with those with larger L

being suppressed more strongly by the tumbling. Analogously to the Bloch equations, the mw excitation mixes the y and z440

components of tsLM , without mixing their LM dependence. The latter is mixed only by the offset matrix ∆, as elaborated

above.

By building the SLE dynamics on top of the classical Bloch equations, we have arrived at a rather intuitive picture of how the

g-tensor anisotropy is incorporated into the spin dynamics. Specifically, every element of the Bloch matrix B0 (eq. (19) with

ωI “ 0) is replaced by a matrix in the space of LM indices (eq. (63)). In this replacement, all elements except the frequency445

offset become diagonal matrices in the LM space, with the mixing in this space being entirely due to the offset. Since we

describe the solid effect by two coupled Bloch equations, this intuition about the effect of g-tensor anisotropy on the spin

dynamics will be helpful when adapting the approach to SE-DNP.

4.3 EPR spectrum and saturation

The cw-EPR spectrum and the electronic saturation factor under g-tensor anisotropy are obtained from the steady state of (62),450

B0

»

—

—

–

sss
x

sss
y

sss
z

fi

ffi

ffi

fl

“R1

»

—

—

–

0

0

100

fi

ffi

ffi

fl

seq
z , (69)

which can be solved by inverting the 3ntotˆ3ntot matrix B0 numerically. However, it is also possible to solve (69) by inverting

a single matrix with dimensions that are three times smaller (i.e., ntotˆntot), as we show next.
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First, taking advantage of the zeros in B0 (eq. (63)), we express sss
x and sss

z in terms of sss
y :455

sss
x “´R´1

2 ∆sss
y

sss
z “ ω1R

´1
1 sss

y `R1R
´1
1 100seq

z . (70)

Because only the first element of 100 is non-zero, and the diagonal matrix R1 does not mix coefficients with different values

of LM , the second equality in (70) becomes

sss
z “ ω1R

´1
1 sss

y `100seq
z . (71)

For the 00th (i.e., first) element of sss
z we thus have s00

z “ ω1T1s
00
y ` s

eq
z , which is identical to the second equality in (12). We460

thus conclude that the proportionality between the electronic saturation factor and the in-phase EPR line shape (eq. (16)) is not

limited to a homogenous line but applies also under g-tensor anisotropy, at least in the case of isotropic rotational diffusion.

Second, from the middle row of the matrix B0 (eq. (63)), and after substituting sss
x and sss

z from (70), we find

sss
y “´ω1P

´1
0 100seq

z , (72)

where we have introduced the ntotˆntot matrix465

P“ pR2` iωIq`ω2
1pR1` iωIq´1`∆pR2` iωIq´1∆ (73)

and P0 “PpωI “ 0q. The matrix P0 generalizes P0 (eq. (14)) and (72) generalizes (13) to the case of g-tensor anisotropy.

From the 00th components of sss
y and sss

x we find

abs“´ω1rP
´1
0 s11, dsp“ ω1T2r∆P´1

0 s11, (74)

where we used the fact that R2 is a diagonal matrix. These expressions generalize eqs. (15) to the case of g-tensor anisotropy.470

The corresponding saturation factor as a function of the offset is then (from eqs. (16) and (74))

sp∆q “ ω2
1T1rP

´1
0 p∆qs11. (75)

As claimed, to solve for the steady state numerically we need to invert the matrix P0 whose dimensions are three times

smaller than those of B0. (The two matrix inversions needed to calculate P0 itself involve the diagonal matrices R1,2.)

The cw-EPR spectrum in derivative mode can be calculated from the derivative of P0 with respect to the (scalar) frequency475

offset ∆:

BP0

B∆
“R´1

2 ∆`∆R´1
2 . (76)

The in-phase and out-of-phase derivative spectra are then obtained from the first (i.e., 00th) components of the vectors

Bsy
B∆

“ ω1P
´1
0 pR´1

2 ∆`∆R´1
2 qP´1

0 100seq
z

Bsx
B∆

“´R´1
2 psy `∆

Bsy
B∆

q. (77)
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Figure 2. Continuous-wave EPR spectra for g “ diagp2.00755,2.00555,2.0023q and different tumbling times τrot. LargerLmax is necessary

for slower tumbling. The needed Lmax also depends on the anisotropies, which are pγ0,γ2q “ p´373,107qMHz for B0 “ 9.403T. Other

simulation parameters were B1 “ 0.02G, T1 “ 100 ns, T homog
2 “ 20 ns.

These expressions are used in Sec. 5 to fit the experimental EPR spectra from fig. 1.480

In fig. 2 we show examples of (integral) EPR spectra calculated using the presented approach for different tumbling times

τrot. The different columns in the figure correspond to different choices of Lmax. The g-tensor values used in the simulations

are characteristic of nitroxide spin labels. We also selected a small mw magnetic field (B1 “ 0.02 G) to mimic the low-power

conditions typical for cw-EPR. The main message of this figure is that slower tumbling requires larger Lmax. At the same time,

we see that Lmax “ 8 is already good enough for τrot ď 10 ns, which is the range of rotational time scales of relevance to our485

experimental data (Sec. 5). By selecting Lmax “ 10, to be on the safe side, we only need to invert a 21ˆ 21 matrix at every

frequency offset, which makes the calculation of g-broadened EPR spectra very fast. This allows us to perform an automated

search over the various parameters and fit the experimental cw-EPR spectra in less than a minute.
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4.4 Solid effect in ‘solids’

Extending the above treatment to SE-DNP, we combine the spin dynamics in (35) with the rotational dynamics in (44) to form490

the following SLE:

B

Bt
tgpΩ, tq “ ´pKΩbE`EΩbBqtgpΩ, tq

´EΩbFpΩqtgpΩ, tq

´
1

4
A1GtspΩ, tq´ i

1

4
A1k̂izptqp

eqpΩq. (78)

As before, we introduce the expansion

tgpΩ, tq “
1

8π2

8
ÿ

`“0

ÿ̀

m“´`

D2
m0pΩqtg

`
m0ptq, (79)

where we have set n“ 0 from the start, and find495

9
tgLM0ptq “ ´rDrotLpL` 1q`BstgLM0ptq

´
ÿ

`m

rγ2
0C

LM
20`m` γ

2
2pC

LM
2´2`m`C

LM
22`mqsC

L0
20`nGtg`m0ptq

´
1

4
A1GtsLM0ptq´ i

1

4
A1k̂ izptqδL0δM0. (80)

Again, we switch to the symmetrized coefficients

tgLM “
1

2
ptgL´M0` tgLM0q (81)

and form the following three, ntot-dimensional vectors from the spatial components of the 3D vectors tgLM :

gi “

»

—

—

—

—

—

–

g00
i

g20
i

g22
i

...

fi

ffi

ffi

ffi

ffi

ffi

fl

pi“ x,y,zq. (82)500

The steady state of the resulting spin dynamics is then

B

»

—

—

–

gss
x

gss
y

gss
z

fi

ffi

ffi

fl

“´
1

4
A1

»

—

—

–

sss
y

´sss
x

0

fi

ffi

ffi

fl

´ i
1

4
A1

»

—

—

–

0

0

100

fi

ffi

ffi

fl

issz , (83)

where

B “ B0` iωI (84)

generalizes the matrix B0 from (63).505
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Our goal is to solve for gss
z since its 00th component should be used in (23) to calculate the rate constants pv´ and v`. After

inverting B in (83) we find

gss
z “´

1

4
A1rB´1szxs

ss
y ´

1

4
A1rB´1szyp´s

ss
x q

´ i
1

4
A1rB´1szz1

00issz . (85)

Note that now rB´1sij denotes the ntotˆntot sub-matrix of B´1 at position ij, and not a scalar matrix element. Using sss
x,y

from the previous subsection, we find that the first component of gss
z is510

g00
z “ ω1

1

4
A1rprB´1szx`rB´1szyR

´1
2 ∆qP´1

0 s11s
eq
z

´ i
1

4
A1rrB´1szzs11i

ss
z . (86)

Substituting this result into (23) we obtain

RA1I “ δ
2RetrrB´1

ω1“0szzs11u

v` “ δ
2RetrrB´1szzs11u´R

A
1I

pv´ “´δ
2ω1ImtrprB´1szx`rB´1szyR

´1
2 ∆qP´1

0 s11u. (87)

These expressions, which require the inversion of the 3ntotˆ3ntot matrix B, are directly generalizable to liquids (Sec. 4.5).

In ‘solids’, it is possible to obtain alternative expressions that require the inversion of a smaller, ntotˆntot matrix. To this end,515

we express gss
x and gss

z in terms of gss
y using the first and last rows of B:

gss
x “´pR2` iωIq´1∆gss

y ´
1

4
A1pR2` iωIq´1sss

y

gss
z “ ω1pR1` iωIq´1gss

y ´ i
1

4
A1pR1` iωIq´1100issz . (88)

Substituting the first (i.e., 00th) component of gss
z in (23) we find

RA1I “ δ
2RetrpR1` iωIq´1s11u. (89)

Because R1 is a diagonal matrix, this result is identical to (29), showing that RA1I is not affected by the anisotropy of the g520

tensor.

Similarly, from the middle part of B we obtain

Pgss
y “

1

4
A1rs

ss
x ´∆pR2` iωIq´1sss

y s

`ω1i
1

4
A1pR1` iωIq´1100issz . (90)

We first observe that pR1` iωIq´1100 “ 100pR1` iωIq´1 because R1 is diagonal. Then we substitute sss
x,y from before to get

525

gss
y “ ω1

1

4
A1P

´1rR´1
2 ∆`∆pR2` iωIq´1sP´1

0 100seq
z

`ω1i
1

4
A1P

´1100pR1` iωIq´1issz . (91)
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Figure 3. Solid-effect rates v` (red line) and pv´ (green line) calculated at high mw power (B1 “ 5.5G) for static dipolar interaction (i.e.,

‘solid’) and several different rates of rotational tumbling. The factorization of pv´ into p (blue line) and v´ (orange line) is also shown. All

other parameters as in fig. 2 and Lmax “ 10. In particular, T1 “ 100 ns.

Finally, substituting the 00th element of gss
y in (30) we find

v` “´δ
2ω2

1 RetpR1` iωIq´2rP´1s11u

pv´ “´δ
2ω2

1ImtpR1` iωIq´1

ˆrP´1pR´1
2 ∆`∆pR2` iωIq´1qP´1

0 s11u. (92)

Observe how these expressions generalize (33) and (34) to the case of g-tensor anisotropy.

In the last two rows of fig. 3 we show v`{δ
2 and pv´{δ2, which have units of time. Although the electronic non-saturation530

factor p and the rate constant v´ always appear together as pv´, it is helpful to separate these two factors when rationalizing

SE. We show p and v´{δ2 in the first two rows of fig. 3. Note that v`{δ2 and pv´{δ2 were calculated directly from (92),

whereas v´{δ2 was determined by dividing pv´{δ2 by p“ 1´ω2
1T1rP

´1
0 s11 (eq. (75)).

The columns in fig. 3 reveal the effect of the g-tensor anisotropy on the different factors relevant to SE. v`{δ2 in the third

row of the figure is composed of two SE lines centered at ´ωI and `ωI . At the fastest tumbling (leftmost column), each of535

these two lines is symmetric and approximately Lorentzian. When the tumbling slows down, each line broadens and becomes

asymmetric. At the slowest tumbling rate (rightmost column), each line resembles a powder EPR spectrum with anisotropic g
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tensor. We see that in the regime of slow tumbling the profile of v`{δ2 is no longer symmetric (i.e., even) with respect to the

electronic resonance at zero offset frequency.

In the second row of fig. 3 we show v´{δ
2 (orange line), which is also composed of two SE lines centered at ´ωI and540

`ωI , with the former flipped with respect to the horizontal axis. For comparison, in the second row we also plotted v`{δ2

and ´v`{δ2 (dashed red lines). We see that, for all tumbling rates, the two SE lines comprising v´{δ2 exactly match their

counterparts in v`{δ2.

The first row of fig. 3 shows the electronic saturation under g-tensor anisotropy (we actually plot the “non-saturation”

p“ 1´ s). Because of the large B1 used in the calculations (B1 “ 5.5 G) appreciable electronic saturation is achieved for545

all shown tumbling rates. From the perspective of the solid effect, it is noteworthy that the saturation is more localized to

on-resonance conditions when the g-tensor anisotropy is averaged out by the tumbling, and spreads to larger off-resonance

frequencies when the tumbling slows down. This spread broadens the saturation profile and reduces its maximum. However,

in spite of the substantial increase of the spectral width of the saturation when going from τrot “ 2 ns to τrot “ 20 ns, the

maximum decreases only moderately, remaining close to 50% at the slower tumbling rate.550

Of course, the amplitude of the saturation profile depends not only on B1 but also on the electronic T1 relaxation time. To

illustrate this dependence, we recalculated all curves in fig. 3 after increasing T1 five-fold to 500 ns. The result, which is shown

in fig. A1, demonstrates larger saturation for all tumbling rates. At the same time, v´{δ2 and v`{δ2 (second and third rows)

remain entirely unaffected. This demonstrates that the SE lines do not experience the power-broadening that affects the EPR

spectrum.555

Finally, the last row of fig. 3 shows pv´{δ2 (solid green line), which equals the product of the first and second rows. From

(7) we know that pv´{δ2 basically gives the SE-DNP spectrum, up to an overall scaling factor. Since pv´ is suppressed by the

electronic saturation compared to v´, we see that pv´{δ2 is somewhat reduced at offsets between the canonical SE positions

˘ωI . Because both the electronic saturation profile and the profile of v´ are asymmetric in the slow motional regime where the

EPR line exhibits clear g-broadening, the line shape of the SE-DNP spectrum (proportional to pv´) is no longer antisymmetric560

(i.e., odd) with respect to the electronic resonance. This is most visible for the green line in the lower rightmost corner of fig.

3.

4.5 Solid effect in liquids

In the light of Sec. 3.3, the generalization to liquids consists of calculating the matrix

Q“ j11pBq, (93)565

and using it instead of B´1 in (87):

RA1I “ xδ
2yRetrrQω1“0szzs11u

v` “ xδ
2yRetrrQszzs11u´R

A
1I

pv´ “´xδ
2yω1ImtrprQszx`rQszyR´1

2 ∆qP´1
0 s11u. (94)
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Figure 4. Same as fig. 3 for the FFHS model of translational diffusion with τffhs “ 6 ns.

Because the zz sub-block of B is diagonal and does not couple to the rest when ω1 “ 0, we deduce that

RA1I “ xδ
2yRetj11pR1` iωIqu, (95)

which is identical to (43). Thus, as we already observed for ‘solids’, the expression for RA1I is not affected by the anisotropy of570

the g tensor and the slow tumbling of the radical.

In fig. 4 we show the same properties as in fig. 3 but now in the presence of translational diffusion treated by the FFHS

model with motional time scale τffhs “ 6 ns. Several changes compared to ‘solids’ (fig. 3) are worth pointing out.

In line with our previous understanding (Sezer, 2023b), the SE lines comprising v`{xδ2y are broadened by the translational

motion that modulates the dipolar interaction (red lines in the third row of fig. 4). This motional broadening reduces their575

maximum intensities compared to ‘solids’ (fig. 3, third row). Previously, in the case of Lorentzian lines, the reduction of

intensity in the transition from solids to liquids was dramatic, by more than a factor of ten (Sezer, 2023b, figs. 3, 4 and 5). In

contrast, the reduction in the presence of g-tensor broadening is about a factor of two (compare third rows of figs. 3 and 4).

This observation may help rationalize why the maximum SE-DNP enhancement in liquids, e.g., about 50 for trityl in glycerol

at 320 K (Kuzhelev et al., 2023), is not negligibly smaller compared to the enhancements that are obtained in the solid state. We580

also point out that, while reducing the maximum SE intensities in the vicinity of ˘ωI , the motional broadening substantially

increases the intensities at the smaller offsets around the electronic resonance.
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Besides the motional broadening, the progression from left to right in the third row of fig. 4 demonstrates additional g-

tensor broadening, which was present also in ‘solids’. However, now the two SE lines are affected differently by the g-tensor

anisotropy, making the profile of v`{xδ2y at slow tumbling rates rather irregular.585

Moving on to the second row in fig. 4, we see that the SE lines that make up v´{xδ2y (orange) are now completely different

from their counterparts in v`{xδ2y (dashed red). The increased intensity in the vicinity of the electronic resonance due to

motional broadening is also manifested by v´{xδ2y. For the fastest tumbling in the figure (leftmost column), the fluctuations of

the dipolar interaction not only broaden the SE lines but also enable a new phenomenon, which is manifested as near-resonance

peaks that are comparable in magnitude to the peaks at ˘ωI but clearly distinct from them (orange line). These peaks reflect590

the multiplicative contribution of the dispersive EPR signal to v´ (Sezer, 2023a, b). For faster translational diffusion the near-

resonance peaks may become larger than the peaks at ˘ωI , as can be seen in the leftmost column of fig. A3a (orange line).

Because they are more strongly suppressed by the electronic saturation, however, these peaks do not exceed the SE peaks in

the final enhancement profile (fig. A3a, leftmost column, green line).

Up to an overall scaling factor, the green lines in the last row of fig. 4 correspond to the SE-DNP enhancement profile.595

Because its middle part is suppressed by the electronic saturation, this profile in the presence of g-tensor broadening becomes

very non-symmetric and responds sensitively to the tumbling of the polarizing agent. To further illustrate the influence of

the electronic saturation on the SE-DNP spectrum, in fig. A2 we show the same curves but calculated with five-fold longer

electronic spin-lattice relaxation time (T1 “ 500 ns), which leads to larger saturation. Similarly, to illustrate the effect of trans-

lational diffusion, we recalculated the curves in fig. 4 for τffhs “ 3 ns (two times faster) and τffhs “ 12 ns (two times slower).600

The results are presented in fig. A3. These additional simulations show that the SE-DNP line shape is very sensitive to the

times scales of molecular motion.

In the next section, we systematically vary the degrees of power broadening and motional broadening to match the experi-

mental DNP profiles from fig. 1.

5 Disentangling the solid and Overhauser DNP effects605

Using the developed methodology, we now analyze the experiments from fig. 1. In the light of eqs. (2) and (7) for the OE

and SE enhancements, we will identify the profile of the electronic saturation (fig. 4, first row) with εOE and the profile of

pv´{xδ
2y (fig. 4, last row, green line) with εSE. The tumbling times to be used in the DNP calculations will be obtained by

fitting the experimental cw-EPR spectra. We start with 10-Doxyl-PC (fig. 1a,c) as its experimental spectra were more amenable

to unrestricted fits of all parameters.610
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5.1 Analysis of 10-Doxyl-PC

5.1.1 Fit to the cw-EPR spectrum

Derivative EPR spectra were calculated from the first (i.e., 00th) components of the expressions in (77) for different values

of the fitting parameters. In the fit, we varied the time scale of tumbling, τrot, as well as the g-tensor anisotropies γ2
0 and γ2

2

(eq. (50)). As we have no precise knowledge of the field B0 at the sample, we freely shifted the calculated spectra along the615

horizontal axis to achieve best match with experiment. Since this leaves one of the g-tensor components undetermined we took

gzz “ 2.0023, which is typical for nitroxides.

The numerical integrals of the derivative EPR spectra in figs. 1a and 1b (dotted-dashed blue lines) do not come down exactly

to zero at the end of the integration range at high frequency offsets. This points to the possibility that the in-phase component,

sy , is mixed slightly with the out-of-phase component, sx. To account for this possibility, we fitted the derivative EPR spectra620

by calculating

Bs00
y

B∆
cosφ`

Bs00
x

B∆
sinφ, (96)

where the angle φ controlled the degree of mixing.

All in all, not counting the shift along the horizontal axis, we had four fitting parameters: γ2
0 , γ2

2 , τrot and φ. The best fit to

the cw-EPR spectrum of 10-Doxyl-PC is shown in fig. 5a. The corresponding fitting parameters are given in the upper half of625

Table 1.

Encouragingly, our fitted spectrum shows rather good agreement with experiment, in spite of the simplifying assumptions of

the theoretical model, namely isotropic rotational diffusion and absence of hyperfine interaction. To check the effect of the latter

on the cw-EPR spectrum, we used Easyspin (Stoll and Schweiger, 2006) to simulate spectra with our fitted parameters but now

also including a nitroxide hyperfine tensor, A“ diagp14,14,90qMHz. The result is given in fig. A4a. The modification due to630

the hyperfine interaction, although small as expected at high magnetic fields, is clearly visible. Nevertheless, the comparison

of the integrals of the cw-EPR spectra in fig. A4b suggests that the error made by neglecting the hyperfine interaction when

calculating the DNP spectrum should be small.

Regarding the values of the fitted parameters, it was encouraging to see that the fit resulted in a negligibly small mixing angle

of φ“´1.3˝, indicating that the measured spectrum correctly reflects the in-phase EPR component. With B0 “ 9.4029 T and635

gzz “ 2.0023, the fitted g-tensor anisotropies that are given in Table 1 implied

gxx “ 2.00755, gzz “ 2.00555. (97)

These values are rather reasonable for a nitroxide spin label. Finally, the fitted time scale of rotational diffusion was τrot “

5.2 ns. For comparison, the same time scale for the nitroxide free radical TEMPOL in water is about 20 ps (Sezer et al., 2009).

However, unlike TEMPOL, our spin label is covalently attached to the lipid chain.640
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Figure 5. Fits to the experimental cw-EPR spectrum (a) and DNP spectrum (b) of 10-Doxyl-PC. In both cases, our best fits are shown with

dashed black lines. The DNP spectrum in (b) is calculated by adding the contributions of SE (solid green line) and OE (dotted-dashed blue

line), both of which are affected by the g-tensor anisotropy. The fit parameters are given in Table 1.

Table 1. Parameters obtained from the fits to the experimental data.B1 “ 0.02G for EPR and 5.5 G for DNP. Homogeneous T homog
2 “ 20 ns

was used for both EPR and DNP.

fit parameter 10-Doxyl-PC 16-Doxyl-PC

E
PR

γ2
0 ,γ

2
2 (MHz) ´373,107 from 10-PC

τrot (ns) 5.2 1.9

φ (˝) ´1.3 ´2

shown in figure 5a 6a

D
N

P

τffhs (ns) 6.4 from 10-PC 15.3

T1 (ns) 123 153 141

σOE (-) 2.43 2.385 2.57

σSE (ps´1) 1.51 1.35 1.09

shown in figure 5b 6b 7

5.1.2 Fit to the DNP spectrum

Fixing the g-tensor components and the tumbling time to the values obtained from the fit to the cw-EPR spectrum, we proceeded

to fit the DNP spectrum of 10-Doxyl-PC (fig. 1c). In the calculations, we fixed the mw field to B1 “ 5.5 G, which is our best

estimate for the home-built Fabry-Pérot resonator operating at maximum power (Denysenkov et al., 2022). During the fits,

we again allowed for global shift of the calculation along the horizontal axis. In addition, we fitted the electronic T1 time,645

which has a direct effect on the electronic saturation profile, as well as the time scale of translational diffusion, τffhs, which is

responsible for the motional broadening of the SE lines.
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In the fit, we calculated the electronic saturation factor (eq. (75)) and the time scale pv´p∆q{xδ2y (last equation in (94)) as

functions of the offset frequency ∆. Up to unknown multiplicative factors, these correspond to, respectively, the OE and SE

enhancement profiles (eqs. (2) and (7)). We then fit the experimental DNP spectrum by calculating650

εp∆q “ σOEˆ sp∆q`σSEˆ
pv´
xδ2y

p∆q, (98)

where the scaling parameters σOE and σSE were also allowed to vary freely. As a result, not counting the shift along the

horizontal axis, our fit contained four fitting parameters: τffhs, T1, σOE and σSE. The best fit to the DNP spectrum of 10-Doxyl-

PC is shown in fig. 5b. It is noteworthy how the total DNP enhancement (dashed black line) emerges from the sum of the SE

(green line) and OE (dotted-dashed blue line) contributions. The corresponding fitting parameters are given in the bottom half655

of Table 1.

In the case of 10-Doxyl-PC, the intuitive analysis of Neudert et al. (2017) for identifying the OE and SE components of

a mixed DNP spectrum using the integrated cw-EPR line shape already performed very well (fig. 1c). It is, therefore, not

surprising that our analysis, which has more fitting parameters, agrees better with the experimental DNP spectrum (fig. 5b).

Both deficiencies of the intuitive approach, namely, too narrow OE and SE contributions due to the lack of, respectively, power660

broadening and motional broadening, appear to be satisfactorily addressed.

On a more fundamental level, our simulation shows that, due to the simultaneous power- and motional-broadening, the

OE and SE contributions to the DNP enhancement are not only rather asymmetric but also overlap extensively. It should,

therefore, be practically impossible to extract any molecular information from the mixed DNP spectrum without a complex,

quantitative analysis. In our specific case, the fit resulted in a translational time scale τffhs “ 6.4 ns, and suggested that the665

electronic relaxation time should be about T1 “ 120 ns. At the high magnetic field of the experiment (B0 “ 9.4 T) this spin-

lattice relaxation time is practically impossible to measure in the liquid state.

In addition to τffhs and T1, the fit to the DNP spectrum of 10-Doxyl-PC also produced the following numerical values for

the two scaling parameters in eq. (98): σOE “ 2.4 and σSE “ 1.5 ps´1. These will be analyzed in Sec. 5.3 together with the

corresponding values for 16-Doxyl-PC.670

5.2 Analysis of 16-Doxyl-PC

Because the g-tensor anisotropies are largely averaged in the cw-EPR spectrum of 16-Doxyl-PC (fig. 1b), we did not attempt

to fit them. Instead, we fixed all three components to the values obtained from 10-Doxyl-PC. This left only the rotational time,

τrot, and the mixing angle, φ, as fitting parameters, not counting the shift along the horizontal axis. As the automated fitting

did not behave well, we varied these two parameters manually. One satisfactory fit, obtained with the parameters that are given675

in Table 1, is shown in fig. 6a. We mention that the relative heights of the two lines in the calculation were slightly improved

by using a small mixing angle of φ“´2˝.

Although, overall, the fit is not bad, the middle part of the calculated spectrum changes too sharply and its high-frequency

line is too narrow compared to experiment. We again used Easyspin to check whether these deficiencies are due to the lack of

hyperfine interaction. The spectra for τrot “ 1.9 ns with and without hyperfine interaction are shown in fig. A5a. As the whole680
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Figure 6. Same as fig. 5 but for 16-Doxyl-PC. The fitted parameters are given in the second to last column of Table 1. Because all fitted lines

in figs. 5, 6 and 7 are calculated only at the experimental offsets, the green SE lines are not perfectly smooth.

spectrum is narrower than that of 10-Doxyl-PC, the effect of the hyperfine tensor is comparatively larger. Nonetheless, the

integrated EPR lines in fig. A5b show that the extra width due to the hyperfine tensor should not compromise our subsequent

analysis of the DNP spectrum, which will experience additional power-broadening and motional-broadening.

Moving on to the DNP spectrum, we observed that the free fit of all parameters resulted in τffhs that was more than two

times larger than that of 10-Doxyl-PC, as we explain below. Considering this to be unrealistic, we fixed τffhs to the value that685

was obtained from 10-Doxyl-PC. Thus, not counting the horizontal translation of the calculated DNP spectrum, our automated

fit had three fitting parameters: T1, σOE and σSE. The outcome is shown in fig. 6b. The corresponding parameters are given in

the second-last column of the lower half of Table 1.

At 9.4 T the electronic Larmor precession time scale is about half a picosecond, which is three orders of magnitude less than

the rotational time scales inferred from the cw-EPR spectra. On such sub-ps time scales, the local dynamics of the spin labels690

at positions 10 and 16 should not be very different from each other. Since the spin-lattice relaxation is determined by dynamics

on the electronic Larmor time scale, we were satisfied that the fitted T1 “ 150 ns was close to that from 10-Doxyl-PC.

The performance of the simple analysis of Neudert et al. (2017) was poorer for 16-Doxyl-PC (fig. 1d). Compared to it, our

fit to the DNP enhancement profile is excellent (fig. 6b). The only part of the DNP spectrum that our calculation systematically

underestimates are the five leftmost experimental points. Although there are other individual experimental points that lie further695

from the calculated spectrum, these five points are persistently lower by about 0.2 enhancement units.

Observe that the downward shift of the fifth experimental point (together with the first four points) produces an enhancement

peak at around ´400 MHz. The only way our automated fit can create a pronounced peak at this offset is by making the SE

contribution (green line) more “solid-like”, i.e., by increasing τffhs and reducing the motional broadening. (The lower left

corner of fig. A3b provides an example of such more solid-like SE line shape.) We thus identify the systematic displacement700

of the leftmost five points to be responsible for the increase of τffhs when it is allowed to vary freely during the fit.
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Figure 7. Same as fig. 6b but also fitting τffhs. The fitted parameters are given in the last column of Table 1. Observe that the OE contribution to

the DNP spectrum (dotted-dashed blue line) is narrower (i.e., more “liquid-like”) than that of 10-Doxyl-PC (fig. 5b), while the SE contribution

is more “solid-like” because the time scale τffhs is 2.4 times longer.

The best fit that we obtained when τffhs was included among the other fitting parameters is shown in fig. 7. (The resulting

fit parameters are given in the last column of the lower half of Table 1.) Indeed, with τffhs “ 15.3 ns, the SE lines (green) have

become sharper and a small enhancement peak at ´400 MHz has emerged (dashed black line). Although the enhancement

around `400 MHz has been compromised in the process, the overall fit to all experimental points is improved compared to fig.705

6b.

The two alternative fits in figs. 6b and 7 correspond to very different time scales of translational diffusion. Nevertheless,

within the variability of the measurements, they both agree with the DNP data. Considering the experimental challenges of

liquid-state DNP at such high magnetic fields and large mw powers, further decreasing the experimental variability will be

very hard. It is, therefore, important to analyze together several different experimental constructs, like our 10- and 16-Doxyl-710

PC. The final decision of which fit to the DNP spectrum of 16-Doxyl-PC is “better” can only be based on the overall consistency

of the fitted parameters across all analyzed data. We return to this point in Sec. 5.3.

The other two parameters that emerged from the fit to the DNP spectrum of 16-Doxyl-PC were σSE and σOE. These deter-

mine the amplitudes of the SE contribution (solid green lines in figs. 6b and 7) and OE contribution (dotted-dashed blue lines)

to the DNP enhancement (dashed black lines). We now turn to the analysis of these scaling parameters.715

5.3 Additional molecular parameters

Ultimately, the motivation to disentangle a mixed DNP spectrum into its OE and SE components lies in the desire to extract

information about the molecular and spin properties that the respective DNP mechanism depends on. The main advantage of

our procedure over the intuitive approach of Neudert et al. (2017) is that our decomposition produces physically interpretable

parameters, like τffhs and T1. In addition, our scaling parameters σOE and σSE multiply, respectively, the saturation factor and720

v´{xδ
2y, whose absolute magnitudes are part of the calculation (fig. 4, vertical axes). Thus, we can extract further information
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Table 2. Analysis of the scaling parameters σOE and σSE. Nuclear spin-lattice relaxation times with (T1I ) and without (T 0
1I ) spin labels were

measured at two different temperatures. These determine the leakage factor f . The coupling factor c is obtained from f and σOE using eq.

(99). The magnitude of the dipolar interaction responsible for SE (xδ2
y), obtained from σSE using eq. (100), provides information about the

effective contact distance (b). Combining b with τffhs from Table 1, we estimate the diffusion constant of the FFHS model (Dffhs).

Temp. Nuclear T1’s Overhauser Solid effect

Doxyl-PC T (K) T 0
1I (ms) T1I (ms) f σOE c (‰) σSE (ps´1) xδ2

yT1I (ns´1) b (nm) Dffhs (nm2/µs)

10
310 580 44 0.92

2.43
3.99

1.51 2.29
0.61 59

330 910 52 0.94 3.92 0.65 66

16
310 580 93 0.84

2.385
4.32

1.35 2.05
0.81 104

330 910 120 0.87 4.17 0.89 123

16*
310 " " "

2.57
4.65

1.09 1.66
0.87 50

330 " " " 4.50 0.95 59

from the fitted values of σOE and σSE. In contrast, because the simple approach rescales the integrated cw-EPR spectrum

whose amplitude is arbitrary, the values of its scaling factors are not informative.

Using eq. (2) for the OE enhancement, the coupling factor c is readily expressed in terms of σOE:

c“
σOE

f

γI
|γS |

, (99)725

where the leakage factor f can be obtained by measuring the nuclear spin-lattice relaxation times (eq. (4)).

We measured the T1 values for the chain protons of DOPC (without spin-labeled lipids) at 310 K and 330 K using the Fabry-

Pérot probe. These are given in the T 0
1I column of Table 2. Additionally, we measured the nuclear spin-lattice relaxation times

in the presence of either 10- or 16-Doxyl-PC (column T1I of Table 2). The target temperature of the DNP experiments (320 K)

lies between the two temperatures at which the nuclear T1 times were measured. However, considering the possibility of mild730

temperature rise by several degrees, we expect the values at 330 K to closely reflect the DNP conditions. Nonetheless, we carry

out the following analysis using the T1 values measured at both 310 K and 330 K.

The leakage factors obtained from (4) are shown in the column f of Table 2. Using the values of σOE from Table 1 in (99),

we arrived at the coupling factors in column c of Table 2. In the case of 16-Doxyl-PC, the analysis was performed for the

fit where τffhs was fixed at 6.4 ns (denoted 16 in Table 2) as well as for the fit where τffhs was free to change (denoted 16*).735

(These two alternatives correspond to the last two columns of Table 1.) For both choices, somewhat larger coupling factors

were deduced for 16-Doxyl-PC compared to 10-Doxyl-PC. The estimated coupling factors are less than two times smaller than

what we have obtained previously for TEMPOL in DMSO, and about four times smaller than the coupling factors between

TEMPOL and the protons of toluene (Prisner et al., 2016; Sezer, 2013; Küçük et al., 2015).

32



Turning now to SE, using the enhancement in (7) we express the unknown strength of the dipolar interaction in terms of the740

scaling parameter σSE as follows:

xδ2yT1I “ σSE
γI
|γS |

. (100)

The values of xδ2yT1I , which were calculated from the right-hand side of (100), are about 2 ns´1 for 10, 16 and 16* (Table 2).

Since v`{xδ2y is about 1 ps (fig. 4, third row), we conclude that v`T1I ! 1, which justifies our use of the approximation (7)

throughout the analysis, including during the fit to the DNP spectra.745

From the expression of xδ2y (eq. (39)), we can write the contact distance of the translational FFHS model as

b3 “N
2π

5
D2

dip

T1I

σSE

|γS |

γI
, (101)

where N is the number density of the electronic spins. Since, in principle, all parameters on the right-hand side of (101) are

measurable, we can determine b. To estimate N , we note that the molecular volume of DOPC is 1.3 nm3 (Greenwood et al.,

2006). Since there are 20 unlabeled lipids for one labeled one, we estimate N “ p20ˆ 1.3nm3q´1, which corresponds to a750

molar concentration of 64 mM. Using this number in (101), we obtained the values of b that are given in the second to last

column of Table 2.

When the values of b are interpreted literally as “contact distance” between the nitroxide spin label and the protons of the

lipid chains, their substantial variation between 10- and 16-Doxyl-PC is disturbing. From that perspective, it is clear that the

parameter b of the FFHS model, which we used to account for the fluctuations of the dipolar interaction due to molecular755

translations, cannot reflect the actual molecular distances of closest approach.

Because b was obtained from the scaling parameter σSE, only information about the amplitude of the SE enhancement has

been directly used in its estimate. In contrast, the motional time scale τffhs (Table 1) encodes information about the line shape

of the SE enhancement. From these complementary features of the SE contribution to the DNP spectrum, we have managed to

determine both b and τffhs. Having access to these two parameters, we can calculate the diffusion constant of the FFHS model760

from (38). The results are given in the last column of Table 2. To our surprise, we obtained very similar values for 10 and 16*,

while the diffusion constant for 16 is two-fold larger. (Given the variability in the experimental data and the fact that the fits to

the DNP spectra are not unique, the differences between Dffhs of 10 and 16* should not be seen as meaningful.)

In an effort to identify a potential candidate for the physical motion that the FFHS model emulates, we observed that the

coefficients of lateral translational diffusion for DOPC in oriented bilayers are 20 nm2 µs´1 at 323 K, and 26 nm2 µs´1 at 333 K765

(Filippov et al., 2003, fig. 6a). These, we expect, bracket the value at our DNP conditions. The diffusion in the FFHS model

corresponds to the relative translation of the nuclear and electronic spins, i.e., Dffhs “DI `DS . Assuming that the lateral

diffusion of spin-labeled PSPC in a DOPC bilayer is similar to that of DOPC, from the measured values given above we would

expect Dffhs between 40 and 52 nm2 µs´1. This range is surprisingly close to the estimates of 10 and 16* in the last column of

Table 2, which suggests that the FFHS model in our analysis likely accounts for the lateral diffusion of the lipids in the plane770

of the bilayer.

Since it leads to a diffusion constant that is similar to (i) the known lateral diffusion of DOPC and (ii) the estimate obtained

for 10-Doxyl-PC, we conclude that the fit to the DNP spectrum of 16-Doxyl-PC that is shown in fig. 7 (i.e., the one that led
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to “unreasonably” large τffhs) is more realistic than the one with fixed τffhs (fig. 6b). From the perspective of the diffusion

constant, the longer motional time scale of 16* compared to 10, which resulted in more solid-like SE line shape with less775

motional broadening, reflects the fact that the “contact distances” in the two cases are different. In retrospect, it is amazing

how the independent estimates of b and τffhs combine to yield practically identical diffusion constants for the two spin-labeling

positions.

At the moment, it is not clear to us how to properly interpret the different values of b at positions 10 and 16. Atomistic

molecular dynamics simulations (Oruç et al., 2016) could, in principle, be used to investigate whether these effective contact780

distances reflect differences in proton density along the normal of the lipid bilayer, or arise for some other reason.

5.4 Limitations of the modeling

The calculated DNP spectra of 10-Doxyl-PC (fig. 5b) and 16-Doxyl-PC (fig. 7) agree well with the experiments, in spite

of our simplistic treatment of the quantum and classical dynamics. Specifically, when modeling the spin dynamics, (i) we

completely neglected the hyperfine interaction with the nuclear spin of 14N, which is present in nitroxide spin labels. In the785

case of the classical dynamics, (ii) we modeled the reorientation of the spin labels at positions 10 and 16 of the lipid chain as

free, isotropic diffusion, and (iii) we modeled the dynamics of the acyl protons relative to the unpaired electron as isotropic

translational diffusion that extends to infinity in all three spatial directions. We now comment on these deficiencies of the

modeling.

Starting with the third point, it is clear that the translational diffusion of the polarized aliphatic protons (as well as that of790

the chain-attached spin labels) must be confined to the interior of the lipid bilayer and should not extend arbitrarily far along

the direction perpendicular to the bilayer plane. In contrast, the FFHS model whose analytical correlation function we used

in the calculations assumes isotropic diffusion in all spatial directions. To properly address this deficiency of the modeling,

one would need to solve the diffusion equation with boundary conditions that reflect the confining planar geometry of the lipid

bilayer, and then calculate the dipolar correlation function for such confined diffusion (preferably in closed, analytical form). In795

the meantime, one could argue that, because the dipolar interaction drops rapidly with distance, an overwhelming contribution

to the dipolar correlation function should come from configurations in which the electron and nucleus are close to each other.

In that case, the unphysical configurations that place the acyl protons outside the plane of the lipid bilayer (but are allowed in

the FFHS model) may contribute relatively little. To support this argument, we observe that the numerical values of the FFHS

parameter b in Table 2 indicate that the shortest relevant distances for SE are about 0.6 nm (for 10-Doxyl-PC) and 0.9 nm (for800

16-Doxyl-PC). These are three to five times smaller than the hydrophobic thickness of the DOPC lipid bilayer, which is about

3 nm (Kučerka et al., 2008).

Regarding the second deficiency, the problem here is that the nitroxide spin label is covalently fused to the lipid chain, thus

its possible orientations should reflect the preferred alignment of the chain in the hydrophobic core of the bilayer. Furthermore,

the fused nitroxide is not expected to have identical diffusion rates for rotations about different spatial directions. Clearly, both805

of these aspects (i.e., the orientational preference and the anisotropy) are missing from the free, isotropic rotational diffusion

that we implemented. It is, however, known how to account for them in a rigorous and efficient way. Indeed, the MOMD
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(microscopic order macroscopic disorder) model from the Freed lab (Meirovitch et al., 1984) treats anisotropic rotational

diffusion in a restoring potential. In fact, this model has been extensively used to simulate high-field cw-EPR spectra of lipid

bilayers by Freed (Lou et al., 2001; Costa-Filho et al., 2003) and Marsh (Livshits et al., 2004, 2006). The studies of Marsh810

and colleagues have focused on DMPC lipid bilayers containing appreciable amount of cholesterol, which puts them in a

liquid-ordered phase. For DMPC with 40 mol % cholesterol at 30˝C, 10-Doxyl-PC was deduced to be aligned with the director

(i.e., the direction normal to the bilayer plane) with an order parameter S “ 0.67 (Livshits et al., 2004). If the orientational

motion is imagined as being confined to a cone (Lipari and Szabo, 1982), this order parameter would correspond to a maximum

possible deviation from the director of θ0 “ 40˝ in all directions. The lipid bilayers in our experiments are composed of pure815

DOPC lipids and are in their liquid-crystalline phase, where the ordering is substantially reduced. The liquid-crystalline phase

of pure DPPC lipid bilayers has been characterized in the studies of Freed and colleagues. The order parameter reported for

16-Doxyl-PC in pure DPPC at 50˝C is S “ 0.16 (Costa-Filho et al., 2003). It corresponds to a maximum possible deviation

from the director of θ0 “ 75˝, assuming the diffusion is confined to a cone. Although 10-Doxyl-PC is expected to be more

ordered than 16-Doxyl-PC, it is not clear how much smaller than θ0 “ 75˝ its corresponding cone angle would be. (Because820

S is the expectation value of a rank-2 spherical harmonic, the free rotational diffusion that we use corresponds to θ0 “ 90˝.)

From these studies we conclude that the MOMD model (with an axial diffusion tensor) will likely improve our fits to the

experimental cw-EPR spectra. Nevertheless, free rotation may still be a good first approximation to the orientational dynamics

of 10- and 16-Doxyl-PC in the liquid-crystalline phase of our lipid bilayers.

We should emphasize that our aim in the current paper is to show how to account for the rotational dynamics of the polarizing825

agent in the calculation of SE-DNP. In this context, we observe that while the cw-EPR spectra in derivative mode (figs. A4a

and A5a) are extremely sensitive to the details of the rotational motion of the radical, their integrals (figs. A4b and A5b) are

much more forgiving. When contributing to the DNP spectrum these integrated EPR line shapes are additionally broadened

by mw power (OE) and translational diffusion (SE) (figs. 5b and 7). All these factors are expected to reduce the sensitivity of

the DNP spectrum to the details of the radical tumbling (at least in comparison to the sensitivity of the cw-EPR line shape).830

We therefore think that, for the purposes of fitting the DNP spectrum, further improving the fit to the cw-EPR spectra at the

cost of introducing more fitting parameters is not really justified. That being said, we stress that the formalism of Sec. 4 can

be straightforwardly extended to anisotropic diffusion in an orienting potential (i.e., the MOMD model). This would lead to

larger matrices R1, R2 and ∆, whose matrix elements would be different than the expressions we gave in Sec. 4.2 for free,

isotropic rotational diffusion.5 Once correctly formed, these three matrices can be directly used in (92) and (94) to calculate835

the SE-DNP spectra in, respectively, ‘solids’ and liquids.

Moving on to the first deficiency mentioned above, we remind the reader that we describe the SE spin dynamics in terms

of two sets of Bloch equations that are connected in series (Sezer, 2023a). These are the classical Bloch equations with Bloch

5The orienting potential will mix coefficients with different values of L, which will result in non-diagonal R1 and R2. The anisotropic rotation will mix

coefficients whose M indices differ by ˘1, so odd values of M will also need to be included. Finally, since the potential is defined with respect to the director

axis, which may differ from the axes of both the laboratory frame and the molecular frame, it will be necessary to consider non-zero values of the index N of

the coefficients ~sLMN . Clearly, for a given Lmax, the resulting matrices R1, R2 and ∆ will be substantially larger. A detailed presentation can be found in

Schneider and Freed (1989) and Polimeno and Freed (1995).
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matrix B0 (Sec. 3.1) and the “new Bloch equations” (21) with matrix B“ B0` iωI (Sec. 3.2). Because our description of SE-

DNP is based on Bloch equations, in Secs. 4.1 and 4.2 we reformulated Freed’s treatment of slow tumbling as a generalization840

of the classical Bloch equations, such that the scalar elements of B0 became matrices in the space of the angular-momentum

indices LM . The result was the “expanded Bloch matrix” B0 in (63). For this reformulation to work, however, we had to

neglect the hyperfine interaction, which is in fact treated by Freed et al. (1971). As a result, our analysis is formally deficient

for nitroxide radicals. Nevertheless, we reasoned that it should be possible to illustrate the theoretical formalism in its current

form by focusing on nitroxides at high magnetic fields, where the hyperfine interaction is expected to be negligible compared845

to the anisotropy of the g tensor. From this perspective, it should be clear that the DNP experiments that we analyzed here had

been carefully selected.

Figures A4 and A5 show our attempt to assess the contribution of the neglected hyperfine interaction to the (integrated)

EPR spectra of 10- and 16-Doxyl-PC. A somewhat more detailed analysis is contained in our response to the reviewers, which

is freely accessible online. There we observe that the hyperfine interaction slightly broadens the EPR line of 16-Doxyl-PC850

(which is also visible in fig. A5a). Since the only mechanism of broadening in our case is the rotational tumbling, our choice of

τrot “ 1.9 ns (Table 1) likely compensates for some of the “missing” hyperfine broadening. Such compensation does not appear

to be happening in the case of 10-Doxyl-PC, where the hyperfine interaction changes the shape but not the width of the EPR

line (fig. A4a). Ultimately, for the theory to be applicable to SE-DNP with nitroxide polarizing agents at lower magnetic fields,

like X band (Gizatullin et al., 2021a, b), the description of the spin dynamics will need to include the nuclear spin of 14N. Since855

the dimension of the resulting Liouville space would need to increase by a factor of nine, it should be possible to preserve the

two sets of connected Bloch equations after replacing each of their scalar matrix elements by a 9ˆ 9 matrix. Alternatively, the

two sets of Bloch equations should be replaced by the corresponding equations of motion for the density matrix in Liouville

space. However, considering the inherent experimental uncertainty of the DNP enhancements that we compare with (figs. 1c

and 1d) and the achieved agreement between simulation and experiment (figs. 5b and 7), we believe that such more complex860

modeling is presently not justified.

6 Conclusion

Once the spin dynamics of the solid effect has been formulated in time domain (Sezer, 2023a), it becomes possible to interface

this quantum dynamics with various types of classical dynamics. The classical dynamics in Sezer (2023b) was the translational

diffusion of the spins in a liquid; here we additionally included the rotational diffusion of the polarizing agent. To illustrate the865

practical utility of the resulting formalism, we analyzed either previously published (Sezer, 2023b) or previously unpublished

(current paper) experimental DNP data on lipid bilayers. In our analysis, the treatment of molecular translation and rotation

was limited to the simplest possible models of free, isotropic diffusion. Surprisingly, in spite of the spatial anisotropy that one

expects for hydrated lipid bilayers, previously we found that isotropic translation, as described by the FFHS model, worked

well for the free radical BDPA in DMPC bilayers (Sezer, 2023b; Kuzhelev et al., 2022). Similarly, in the current paper we870
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found that the simplest treatment of free, isotropic rotation (together with FFHS translation) reproduced well the DNP field

profiles of nitroxide-labeled lipids in DOPC bilayers.

DNP experiments with nitroxide free radicals in viscous liquids invariably manifest a mixture of SE and OE (Leblond et al.,

1971b; Neudert et al., 2017). As these two DNP mechanisms are sensitive to molecular motions on vastly different time scales,

it should be possible to obtain rich dynamical information by analyzing their contributions to the overall DNP enhancement.875

Disentangling the SE and OE contributions, however, has proven to be challenging (Leblond et al., 1971a). Here we fitted

liquid-state DNP spectra by calculating enhancements that were affected by both the translational diffusion of the spins and the

rotational diffusion of the free radical. Since different motions modify the amplitude and the shape of the DNP spectrum in a

highly concerted manner, by fitting the entire line shape of the enhancement we also gained access to the absolute magnitudes

of the SE and OE contributions.880

Our current treatment of SE-DNP in liquids uses only the correlation function of the dipolar interaction to describe the

translational motion of the spins (Sezer, 2023b). This is formally correct only when the diffusion is much faster than the

nuclear T1 relaxation. It should be possible to relax this condition and model slower spin diffusion, as relevant for SE in the

solid state.

Code and data availability. The analyzed experimental data and the code used to generate the figures in the manuscript are available at885

https://github.com/dzsezer/solidDNPliquids_g-tensor.
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Appendix A: Additional figures
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Figure A1. Same as fig. 3 but with T1 “ 500 ns (i.e., five-fold longer), which leads to larger saturation of the allowed electronic transition.

Only the first and last rows are affected.
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Figure A2. Same as fig. 4 but with T1 “ 500 ns, which leads to larger electronic saturation. As in the case of ‘solids’, only the first and last

rows are affected.
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Figure A3. Same as fig. 4 but with (a) τffhs “ 3 ns, i.e., two-fold faster translational motion which broadens the SE lines to a larger extent,

and (b) τffhs “ 12 ns, i.e., more solid-like behavior. Observe how the predicted SE-DNP line shape (green line in the last row) responds

sensitively to the time scale of the translational motion that is responsible for averaging the dipolar interaction.
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Figure A4. Effect of hyperfine tensor on the calculated EPR spectrum of 10-Doxyl-PC. Various derivative cw-EPR spectra (a) and their

numerical integrals (b) are compared with each other. Our calculation (solid black line) agrees perfectly with the Easyspin (Stoll and

Schweiger, 2006) simulation without a hyperfine tensor (dashed blue line). Including a hyperfine tensor with components p14,14,90qMHz

in the Easyspin calculation (dotted-dashed orange line) leads to visible changes in the derivative cw-EPR spectrum. However, the difference

of the integrated EPR lines with and without a hyperfine tensor in (b) should be negligible as far as the simulation of the DNP spectrum is

concerned.
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Figure A5. Same as fig. A4 but for 16-Doxyl-PC. Because the cw-EPR spectrum is narrower to begin with, the relative contribution of the

hyperfine tensor with components p14,14,90qMHz is larger than in the case of 10-Doxyl-PC. Considering that the EPR line will experience

additional power-broadening and motional-broadening in DNP, it should still be possible to safely neglect the extra width that the hyperfine

tensor brings to the integrated EPR line in (b).

40



Author contributions. TFP envisioned the presented high-field DNP experiments in lipid bilayers and acquired funding for their execution.

DD carried out these EPR and NMR experiments, deconvoluted the measured NMR signals to calculate the presented DNP spectra for the

lipid chain protons, and performed the reported Easyspin simulations. DS conceived of the presented analysis of the experimental data,890

developed the reported theoretical and numerical framework, analyzed the data, and wrote the manuscript with feedback from all coauthors.

Competing interests. TFP is an associate editor of Magnetic Resonance.

Acknowledgements. We are grateful to Vasyl Denysenkov, without whom the analyzed high-field DNP experiments would have not been

possible. Andrey Kuzhelev was the first to realize that the DNP spectra presented here manifest not only the Overhauser effect but also the

solid effect. This work was funded by grant 405972957 of the German Research Foundation (DFG).895

41



References

Abragam, A.: The Principles of Nuclear Magnetism, Oxford University Press, New York, 1961.

Abragam, A. and Goldman, M.: Principles of dynamic nuclear polarisation, Reports on Progress in Physics, 41, 395,

https://doi.org/10.1088/0034-4885/41/3/002, 1978.

Abragam, A. and Proctor, W. G.: Une nouvelle méthode de polarisation dynamique des noyaux atomiques dans les solides, Compt. rend.,900

246, 2253–2256, 1958.

Anderson, P. W.: A Mathematical Model for the Narrowing of Spectral Lines by Exchange or Motion, Journal of the Physical Society of

Japan, 9, 316–339, https://doi.org/10.1143/JPSJ.9.316, 1954.

Atsarkin, V. A.: Dynamic nuclear polarization: Yesterday, today, and tomorrow, Journal of Physics: Conference Series, 324, 012 003,

https://doi.org/10.1088/1742-6596/324/1/012003, 2011.905

Ayant, Y., Belorizky, E., Alizon, J., and Gallice, J.: Calcul des densités spectrales résultant d’un mouvement aléatoire de translation en

relaxation par interaction dipolaire magnétique dans les liquides, J. Phys. (Paris), 36, 991–1004, 1975.

Carver, T. R. and Slichter, C. P.: Experimental Verification of the Overhauser Nuclear Polarization Effect, Physical Review, 102, 975–980,

https://doi.org/10.1103/PhysRev.102.975, 1956.

Costa-Filho, A. J., Shimoyama, Y., and Freed, J. H.: A 2D-ELDOR Study of the Liquid Ordered Phase in Multilamellar Vesicle Membranes,910

Biophysical Journal, 84, 2619–2633, https://doi.org/https://doi.org/10.1016/S0006-3495(03)75067-X, 2003.

Denysenkov, V., Dai, D., and Prisner, T. F.: A triple resonance (e, 1H, 13C) probehead for liquid-state DNP experiments at 9.4 Tesla, Journal

of Magnetic Resonance, 337, 107 185, https://doi.org/https://doi.org/10.1016/j.jmr.2022.107185, 2022.

Erb, E., Motchane, J.-L., and Uebersfeld, J.: Effet de polarisation nucléaire dans les liquides et les gaz adsorbés sur les charbons, Compt.

rend., 246, 2121–2123, 1958a.915

Erb, E., Motchane, J.-L., and Uebersfeld, J.: Sur une nouvelle méthode de polarisation nucléaire dans les fluides adsorbés sur les charbons.

extension aux solides et en particulier aux substances organiques irradiées., Compt. rend., 246, 3050–3052, 1958b.

Filippov, A., Orädd, G., and Lindblom, G.: The Effect of Cholesterol on the Lateral Diffusion of Phospholipids in Oriented Bilayers, Bio-

physical Journal, 84, 3079–3086, https://doi.org/https://doi.org/10.1016/S0006-3495(03)70033-2, 2003.

Freed, J. H.: Theory of Slow Tumbling ESR Spectra for Nitroxides, in: Spin Labeling: Theory and Applications, edited by Berliner, L. J., pp.920

53–132, Academic Press, Inc., https://doi.org/?, 1976.

Freed, J. H., Bruno, G. V., and Polnaszek, C. F.: Electron spin resonance line shapes and saturation in the slow motional region, The Journal

of Physical Chemistry, 75, 3385–3399, https://doi.org/10.1021/j100691a001, 1971.

Gizatullin, B., Mattea, C., and Stapf, S.: Field-cycling NMR and DNP –A friendship with benefits, Journal of Magnetic Resonance, 322,

106 851, https://doi.org/https://doi.org/10.1016/j.jmr.2020.106851, 2021a.925

Gizatullin, B., Mattea, C., and Stapf, S.: Molecular Dynamics in Ionic Liquid/Radical Systems, The Journal of Physical Chemistry B, 125,

4850–4862, https://doi.org/10.1021/acs.jpcb.1c02118, 2021b.

Gizatullin, B., Mattea, C., and Stapf, S.: Three mechanisms of room temperature dynamic nuclear polarization occur simultaneously in an

ionic liquid, Physical Chemistry Chemical Physics, 24, 27 004–27 008, https://doi.org/10.1039/D2CP03437A, 2022.

Greenwood, A. I., Tristram-Nagle, S., and Nagle, J. F.: Partial molecular volumes of lipids and cholesterol, Chemistry and Physics of Lipids,930

143, 1–10, https://doi.org/https://doi.org/10.1016/j.chemphyslip.2006.04.002, 2006.

42

https://doi.org/10.1088/0034-4885/41/3/002
https://doi.org/10.1143/JPSJ.9.316
https://doi.org/10.1088/1742-6596/324/1/012003
https://doi.org/10.1103/PhysRev.102.975
https://doi.org/https://doi.org/10.1016/S0006-3495(03)75067-X
https://doi.org/https://doi.org/10.1016/j.jmr.2022.107185
https://doi.org/https://doi.org/10.1016/S0006-3495(03)70033-2
https://doi.org/?
https://doi.org/10.1021/j100691a001
https://doi.org/https://doi.org/10.1016/j.jmr.2020.106851
https://doi.org/10.1021/acs.jpcb.1c02118
https://doi.org/10.1039/D2CP03437A
https://doi.org/https://doi.org/10.1016/j.chemphyslip.2006.04.002


Hausser, K. H., Stehlik, D., and Waugh, J. S.: Dynamic Nuclear Polarization in Liquids, vol. 3, pp. 79–139, Academic Press,

https://doi.org/https://doi.org/10.1016/B978-1-4832-3116-7.50010-2, 1968.

Hwang, L.-P. and Freed, J. H.: Dynamic effects of pair correlation functions on spin relaxation by translational diffusion in liquids, J. Chem.

Phys., 63, 4017–4025, 1975.935

Kubo, R.: Note on the Stochastic Theory of Resonance Absorption, Journal of the Physical Society of Japan, 9, 935–944,

https://doi.org/10.1143/JPSJ.9.935, 1954.

Kubo, R.: A Stochastic Theory of Line Shape, vol. XV, chap. 6, pp. 101–127, John Wiley & Sons. Inc.,

https://doi.org/https://doi.org/10.1002/9780470143605.ch6, 1969.
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