Supplement

Solid-state ¹³C-NMR spectroscopic determination of sidechain mobilities in zirconium-based metal-organic frameworks

Günter Hempel,¹ Ricardo Kurz,¹ Silvia Paasch,² Kay Saalwächter,¹ and Eike Brunner²

 ¹Martin-Luther-Universität Halle-Wittenberg, Institut für Physik – NMR, Betty-Heimann-Str. 7, 06120 Halle, Germany
²Technische Universität Dresden, Fakultät für Chemie und Lebensmittelchemie, Bioanalytische Chemie, 01062 Dresden, Germany

S1. LINE DECOMPOSITIONS

See Figs. 1, 2, and 3.

S2. DIPSHIFT DIAGRAMS

In the diagrams in this section, at the left-hand side the data are shown together with the fitted model functions. The right-hand sides show plots of the mean-square deviation χ^2 versus damping constant r and residual dipolar coupling $D_{\rm res}$. In the latter, the cross marks the position of minimum mean-square deviation $\chi^2_{\rm min}$; the closed line connects all points where $\chi^2 = 2\chi^2_{\rm min}$. The evaluation was not executed for all spinning frequencies; it was omitted for such frequencies where the line under consideration had a distance of an integer multiple of spinning frequency to another line.

Figure 1. Decomposition of overlapping middle-ring lines of both protonated carbons and those carbons bound to $C \equiv C$ in PIZOF-10 (right) and in PIZOF-11 (left).)

Figure 2. Decomposition of overlapping lines in the region 120 \dots 140 ppm in PIZOF-2.)

Figure 3. Decomposition of overlapping lines in the region 120 ... 140 ppm in PIZOF-10 and in PIZOF-11.)

Figure 4. PIZOF-2, -15°C, CH of side ring, model function 1

Figure 5. PIZOF-10, -15°C, CH_2 , left component, model function 3

Figure 6. PIZOF-10, -15°C, CH₂, middle component, model function 3

Figure 7. PIZOF-10, -15°C, CH₂, right component, model function 3

Figure 8. PIZOF-10, -15°C, CH of side ring, model function 1 $\,$

Figure 9. PIZOF-10, 25°C, CH₂ right component, model function 3

Figure 10. PIZOF-10, 25°C, CH_2 2nd component from right, model function 3

Figure 11. PIZOF-10, 25° C, CH₂ middle component, model function 3

Figure 12. PIZOF-10, 25°C, CH_2 2nd component from right, model function 3

Figure 13. PIZOF-10, 25°C, CH of middle ring, model function 1

Figure 14. PIZOF-10, 25°C, CH of middle ring, model function 2 $\,$

Figure 15. PIZOF-10, 25°C, CH of side ring, model function 1

Figure 16. PIZOF-10, 25°C, CH of side ring, model function 2 $\,$

Figure 17. PIZOF-11, -15°C, δ -CH₂ left component, model function 3

Figure 18. PIZOF-11, -15°C, $\varepsilon\text{-}\mathrm{CH}_2,$ model function 3

Figure 19. PIZOF-11, 30°C, γ -CH₂, model function 3

Figure 20. PIZOF-11, 30°C, $\delta\text{-CH}_2,$ model function 3

Figure 21. PIZOF-11, 30°C, $\varepsilon\text{-}\mathrm{CH}_2,$ model function 3

Figure 22. PIZOF-11, 30°C, ω -CH₂, model function 3

Figure 23. PIZOF-11, 25°C, middle ring, model function 1

Figure 24. PIZOF-11, 25°C, side ring, model function 1