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Abstract. The solid-state effect of dynamic nuclear polarization (DNP) is operative also in viscous liquids where the dipolar

interaction between the electronic and nuclear spins is partially averaged. The proper way to quantify the degree of averaging,

and thus calculate the efficiency of the effect, should be based on the time-correlation function of the dipolar interaction. Here

we use the stochastic Liouville equation formalism to develop a general theoretical description of the solid effect in liquids.

The derived expressions can be used with different dipolar correlations functions depending on the assumed motional model.5

At high magnetic fields, the theory predicts DNP enhancements at small offsets, far from the classical solid-effect positions that

are displaced by one nuclear Larmor frequency from the electronic resonance. The predictions are in quantitative agreement

with such enhancement peaks observed at 9.4 T [Kuzhelev et al. JACS 144, 1164 (2022)]. These non-canonical peaks are not

due to thermal mixing or the cross effect but exactly follow the dispersive component of the EPR line.

1 Introduction10

The last two decades have witnessed an overarching development in nuclear hyperpolarization techniques across the entire

spectrum of mechanisms, from the classical Overhauser and solid-state effects to (photo)chemically-induced and parahydrogen-

based polarization (Eills et al., 2023). While the majority of the reported applications have relied on polarization transfer in

the solid state at cryogenic temperatures (Ni et al., 2013; Pinon et al., 2021), transfer in the liquid state at elevated (room or

physiological) temperatures has also been actively explored (Prisner et al., 2016; Denysenkov et al., 2022). In the liquid state,15

the mechanism of polarization has almost exclusively been the Overhauser effect (Jakdetchai et al., 2014). One notable excep-

tion is the work of Stapf and coworkers in which the solid effect of dynamic nuclear polarization (DNP) has been employed

in combination with field-cycling relaxometry to characterize the molecular dynamics in ionic liquids and polymer melts at

ambient temperatures (Neudert et al., 2017; Gizatullin et al., 2019, 2021b, a, 2022).

At X band (9.6 GHz/0.35 T), where the DNP measurements of Stapf and colleagues have been carried out, the nuclear Larmor20

frequencies of 1H and 19F (ωI ≈ 15 MHz) are less than the EPR spectral width of a nitroxide free radical, and even comparable

to the spectral width of the single-line radical BDPA (Gizatullin et al., 2021b). As a result, the negative and positive solid-effect

enhancements overlap and partly cancel each other, complicating the quantitative analysis of the effect. An additional difficulty

for quantification is that, in many instances, the Overhauser and solid effects coexist (Leblond et al., 1971b; Neudert et al.,

2017; Gizatullin et al., 2022). Although the contributions of these two effects can generally be distinguished on the basis of25
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their even (Overhauser effect) and odd (solid effect) parity with the offset from the electronic resonance, this identification

could be complicated when the EPR spectrum is broad and asymmetrical.

To quantify the field profile of the DNP enhancement (i.e., the DNP spectrum), Stapf and colleagues use a weighted sum of (i)

the EPR line shape (for the Overhauser effect) and (ii) the same line shape shifted by±ωI , with one of the shifted copies flipped

around the vertical axis (for the solid effect) (Neudert et al., 2017; Gizatullin et al., 2021b). The relative contribution of the two30

effects is then treated as a fitting parameter. In general, the resulting fits are in good overall agreement with the experimental

DNP spectra, but oftentimes there are quantitative deviations. Recently, the remaining discrepancy between the experimental

and calculated DNP spectra was interpreted as evidence for the simultaneous occurrence of a third DNP mechanism, in addition

to the Overhauser and solid effects (Gizatullin et al., 2022).

In the companion paper (Paper I) we showed that when the mw nutation frequency approaches the nuclear Larmor frequency,35

as could be the case at X band under the high mw powers used in the DNP experiments (Neudert et al., 2016), the forbidden

transitions of the solid effect are no longer shifted by ±ωI with respect to the electronic resonance but come closer together,

and may even coalesce (Sezer, 2023). In such cases, the theoretical justification for modeling the solid effect field profile by

shifting the EPR line shape by ±ωI becomes questionable. Unfortunately, the analytical expressions of Paper I, which remain

valid in this regime, are not applicable to liquids since they do not account for the modulation of the dipolar interaction by40

molecular diffusion. In the current paper, the time-domain description of the solid effect from Paper I is extended to liquids.

Recently, Kuzhelev et al. (2022) reported proton DNP enhancements in the liquid phase of lipid bilayers at 9.4 T (260 GHz)

using the free radical BDPA as a polarizing agent. The large nuclear Larmor frequency (400 MHz) enabled a clear spectral

separation of the acyl-chain protons and the polar protons of water. For the non-polar protons, maximal enhancements were

observed at the canonical resonance positions of the zero- and double-quantum forbidden transitions, characteristic of the45

solid effect, while enhancement due to the Overhauser effect was missing. The large spectral separation of the positive and

negative enhancements, and the narrow line of BDPA provided a uniquely “clean” access to the solid effect in a viscous liquid

environment (Kuzhelev et al., 2022).

In addition to the maximum enhancements at the canonical solid effect offsets, the DNP spectrum of Kuzhelev et al. (2022)

revealed additional enhancement peaks at much smaller offsets. These were postulated to arise due to the DNP mechanism50

known as thermal mixing. However, thermal mixing is commonly associated with a broad EPR spectrum (Wenckebach, 2021),

while the spectrum of BDPA was extremely narrow at the elevated DNP concentration used in the experiment, and the observed

spurious enhancement peaks lay outside this narrow spectrum (Kuzhelev et al., 2022, fig. 2). Here we explain the entire DNP

spectrum, including the puzzling features at low offsets, considering only one electronic and one nuclear spin.

The rest of the paper is organized as follows. To account for molecular diffusion, in Sec. 3 we transform the equations55

of motion of Paper I into stochastic Liouville equations (SLEs) (Kubo, 1969). After taking into account that all relevant

time scales are orders of magnitude shorter than the nuclear spin-lattice relaxation time, the SLE formalism yields the time-

correlation function of the dipolar interaction. In Sec. 4 we show that the solid-effect lines in the DNP spectrum (i.e., those

shifted by±ωI ) experience additional motional broadening compared to the homogeneous EPR line width. As a result, the tails

of these lines around the position of the electronic resonance increase substantially. Under favorable conditions, the product of60

2



these tails with the dispersive EPR component may become sufficiently large to be visible as separate enhancement peaks in

the DNP field profile. We attribute the non-canonical peaks in the DNP spectrum of Kuzhelev et al. (2022) to this phenomenon.

Our conclusions are presented in Sec. 5. The next section summarizes the needed background.

2 Motivation and background

2.1 Dynamic nuclear polarization in liquids65

The transfer of polarization in solids involves two mechanistically different steps (Hovav et al., 2010; Smith et al., 2012). The

first one is the direct polarization of the nuclear spins that are sufficiently close to the free radical and have appreciable dipole-

dipole interaction with the electronic spin. Being closest to the unpaired electron, the nuclei on the free radical itself benefit

most from this first step of direct polarization (Tan et al., 2019; Delage-Laurin et al., 2021). Polarizing the intramolecular

nuclei in this way, however, is not particularly useful unless the polarization can spread to the rest of the sample. This is where70

the second step comes in. In this step, the polarization spreads from the directly polarized nuclei to the distant nuclei by spin

diffusion. Because it relies on the relatively weak dipole-dipole interaction between the nuclear spins, spin diffusion is slow

and is often the bottleneck for efficient polarization transfer in the solid state (Hovav et al., 2010; Wiśniewski et al., 2016).

In liquids, spin diffusion is not efficient because the nuclei constantly change their positions due to random thermal motions.

However, since molecular diffusion moves the nuclei across nanometer distances in nanoseconds, and thus rapidly spreads75

the polarization of the directly polarized nuclei across the sample, spin diffusion is also not needed. Taking glycerol as an

example, with a self-diffusion coefficient of 6.6× 10−3 nm2/ns at 40◦C (Tomlinson, 1973), which is 500 times less than the

self-diffusion coefficient of water at the same temperature (Holz et al., 2000), it is a rather viscous liquid. Nevertheless, at the

relatively small radical concentration of 1 mM, a molecule of glycerol covers the average distance between two radicals in less

than 400 ns. This is at least five orders of magnitude less than the nuclear T1 of protons, even after accounting for paramagnetic80

relaxation. Any given solvent nucleus will thus encounter the electronic spins a million times during its T1 relaxation time.

Even in viscous liquids, therefore, molecular diffusion is expected to homogenize the nuclear polarization across the sample

during times that are orders of magnitude shorter than the nuclear T1. This advantage of liquids over solids, however, comes

at a price: the polarization of the nuclei on the free radical is no longer accessible to the solvent, and proximal solvent nuclei

have to be polarized directly in the first step of polarization transfer (fig. 1).85

Given that every solvent molecule gets directly polarized and also spreads the polarization, the distinction between the two

steps of polarization transfer in liquids (fig. 1) is conceptual and does not reflect fundamental differences in the mechanisms of

the two steps. In fact, both steps are enabled by molecular diffusion which sometimes brings a solvent molecule closer to the

radical and sometimes takes it further away. Since the analytical description of translational diffusion in simple liquids is well

developed (Ayant et al., 1975; Hwang and Freed, 1975), a unified theoretical treatment of the two steps of polarization transfer90

becomes possible, as we demonstrate in the present paper.
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1 2

Figure 1. Two conceptually different steps of the polarization transfer process in liquids. 1. Direct transfer from the electronic spin on the free

radical to the proximate nuclear spins on the solvent molecules due to dipolar interaction. 2. Diffusion of the proximate solvent molecules to

the bulk.

From the six terms of the dipolar alphabet, the part that contributes to the solid effect is A1SzI+ +A∗1SzI− (Wenckebach,

2016) where

A1 =Ddip
−3cosθ sinθe−iφ

r3
. (1)

Here Ddip = (µ0/4π)~γSγI is the dipolar constant and (r,θ,φ) are the spherical polar coordinates of the vector pointing from95

the electronic spin to the nuclear spin. (γS and γI are the gyromagnetic ratios of the electronic and nuclear spins.) The angular

dependence of A1 is that of a second-degree spherical harmonic of order m= 1, as implied by the subscript. The need for

direct polarization of the solvent nuclei in liquids increases the shortest possible distance r in (1) and thus reduces the largest

achievable dipolar coupling. This requirement for interaction across a larger distance, however, does not explain why the solid

effect works in solids but is compromised in liquids.100

To understand the difference between solids and liquids one should consider the time-correlation function of the dipolar

interaction:

C11(t) = 〈〈A∗1(t′+ t)A1(t′)〉t′〉. (2)

Here the inner angular brackets with the subscript t′ denote averaging with respect to the time point t′ along the random

trajectory of a single nuclear spin. Because every nucleus encounters the electronic spins millions of times during its T1105

relaxation time, this average should be the same for all nuclei in the liquid. Thus, in addition to the time averaging, in (2) we

also average over the ensemble of identical nuclear spins in the sample (outer angular brackets).

Now, if the dipolar correlation function (2) decays on time scales that are much longer than some relevant characteristic time,

then the experiment essentially detects the initial valueC11(0) = 〈〈A∗1(t′)A1(t′)〉t′〉= 〈A∗1A1〉. The last ensemble average over

all electron-nucleus pairs requires integration over the spatial variables (r,θ,φ) and multiplication by the concentration N of110
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the unpaired electrons:

〈A∗1A1〉=ND2
dip

24π

5

∞∫
b

dr
r4

=D2
dip

24π

5

N

3b3
. (3)

(The factor 24π/5 comes from the normalization of the spherical harmonic Y 1
2 .) This slow-motional limit corresponds to the

situation in solids under the (unrealistic) assumption of fast and efficient spin diffusion. If, on the other hand, the decay time

of the correlation function is much shorter than the relevant characteristic time scale, then the experiment detects the long-time115

limit C11(∞) = 〈〈A∗1(∞)A1(t′)〉t′〉= 〈A∗1〉〈A1〉. The solid effect vanishes because the average of the spherical harmonic Y 1
2

over the angles gives 〈A1〉= 0. This fast-motional limit corresponds to low-viscosity liquids in which the dipolar interaction is

averaged out. To the extent that they exhibit the solid effect, viscous liquids must lie somewhere between these two extremes.

The interpolation between these two limiting cases on the basis of the dipolar correlation function is formally developed

in Sec. 3. This task requires a time-domain description of the solid effect, similar to the treatment of relaxation by random120

motion where the correlation function arises from second-order, time-dependent perturbation theory. In principle, there are two

such time-domain descriptions that we can utilize for the treatment of the solid effect in liquids. The first is the rate-equation

formalism, which models the dynamics of the electronic and nuclear polarizations, and the second is the description that we

developed in Paper I, which additionally accounts for the dynamics of the coherences. Both of these options will be explored in

Sec. 3. When modeling the stochastic dynamics of the dipolar interaction, we resort to the stochastic Liouville equation (SLE)125

of Kubo (1954) and Anderson (1954), rather than to second-order perturbation theory. In agreement with previous work (Papon

et al., 1968; Leblond et al., 1971a), our analysis shows that the characteristic time scale against which the dipolar correlation

time should be compared is the electronic T2 relaxation time.

In the next two subsections we summarize the time-domain analysis of Paper I.

2.2 Rate equations130

The dynamics of the electronic polarization, PS , is justifiably taken to be independent of the dipolar interaction with the nuclear

spins, as other mechanisms relax the electrons more efficiently. With R1S denoting the rate of electronic T1 relaxation, and v1

the rate constant of the mw excitation of the (allowed) EPR transition, the rate equation of the electronic polarization is

ṖS =−R1S(PS −P eq
S )− 2v1PS . (4)

Here P eq
S is the equilibrium (Boltzmann) electronic polarization and the dot over the symbol denotes differentiation with135

respect to time. Solving this equation for P ss
S at steady state, we arrive at the ratio

p=
P ss
S

P eq
S

=
R1S

R1S + 2v1
= 1− s, (5)

where s is the familiar electronic saturation factor. We refer to p as the electronic polarization factor, since p= 0 indicates that

the steady-state polarization has vanished and p= 1 indicates that it is identical to the Boltzmann polarization (i.e., maximally

polarized).140
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The rate equation of the nuclear polarization, PI , is

ṖI =−R1I(PI −P eq
I )− v+PI − v−PS , (6)

where R1I is the nuclear T1 relaxation rate, and the phenomenological rate constants v± quantify the mw excitation of the

forbidden transitions. The steady state of (6) is

R1I(P
ss
I −P

eq
I ) =−v+P

ss
I − pv−P

eq
S , (7)145

where P ss
S = pP eq

S was used in the last term.

As the derivations in Sec. 3 consider only the effect of mw excitation, we have written (7) such that the relaxation contribution

is on the left and the mw contribution on the right of the equality. Subsequently, to identify the phenomenological rate constants

v±, we will match the terms on the right-hand side with the predictions of the proper analysis in liquids.

From (7) we find the DNP enhancement150

ε= P ss
I /P

eq
I − 1 = εSE− (1− pX), (8)

where the first equality is the definition of ε and

εSE =
pv−

R1I + v+

|γS |
γI

, pX =
R1I

R1I + v+
. (9)

From εSE it is clear that the solid effect benefits from large pv− and small R1I + v+. The ratio pX in (9) is analogous to the

electronic polarization factor (5), and we call it nuclear cross-polarization factor. In liquids, v+ is typically negligible compared155

to the nuclear spin-lattice relaxation rate, and pX ≈ 1. Then,

εSE ≈ (pv−)T1I |γS |/γI (pX ≈ 1). (10)

2.3 Spin dynamics

The dynamics of the quantum-mechanical expectation values sn of the electronic spin operators Sn (n= x,y,z) is described

by the classical Bloch equations160 
ṡx

ṡy

ṡz

=−


R2S Ω 0

−Ω R2S ω1

0 −ω1 R1S



sx

sy

sz

+R1S


0

0

seq
z

 . (11)

The matrix in (11) contains the electronic transverse relaxation rate R2S , the mw nutation frequency ω1, and the offset Ω =

ωS −ω between the electronic Larmor frequency ωS and the mw frequency ω.

In Paper I we visualized such coupled differential equations diagrammatically. In our visual depiction, the time derivative of

a dynamical variable, like sn, is represented by an oval node. The contributions to this time derivative, which are on the right-165

hand side of the differential equation, are represented by arrows that flow into that node (fig. 2a). The contribution of a given
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Classical
Bloch eqns

New Bloch
equations

Input

Output

(a)

(b) (c)

iz

szi+sxi+ syi+

sy sxszseqz
R1S

-
R1S

−Re iA∗
1

-
R1S + iωI

ω1

−i1
4
A1

-

R2S + iωI

−1
4
A1

−Ω

-

R2S + iωI

−ω1

Ω
1
4
A1

-
R2S

-
R2S−ω1

ω1

−Ω

Ω

seqz sz

izieqz
R1I

-

R1I

- 2v1
R1S

-
R1S

−v−

- v+

seqz sssx

issz

p ω1fx

−δ2Tx

- δ2Ti

Dispersive
EPR line

Figure 2. Diagrammatic representation of (a) the equations of motion of the spin dynamics relevant to the solid effect and (b) the rate

equations of the polarizations. (c) Steady-state relationships between the variables.

arrow is obtained by multiplying the weight of the arrow with the variable from which the arrow originates. The self-arrows

that exit from an oval node and enter the same node correspond to the relaxation terms along the diagonal of the Bloch matrix.

The negative sign of the weight of a self-arrow is written separately inside the loop formed by the arrow. The constant variable

seq
z in the inhomogeneous term of the Bloch equations (11) is represented by a gray rectangular node. With this notation, the170

Bloch equations (11) are depicted by the four nodes in the top row of fig. 2a and by the black arrows connecting these nodes.

The lower half of fig. 2a shows the dynamics of the electron-nuclear coherences that are relevant for the solid effect. In

particular, the quantum-mechanical expectation values of the operators SnI+ (n= x,y,z), which we denote interchangeably

by gn and sni+, evolve according to the following coupled differential equations (Sezer, 2023):
ġx

ġy

ġz

=−B


gx

gy

gz

− i
1

4
A1


−isy

isx

iz

 (12)175

where

B =


R2S + iωI Ω 0

−Ω R2S + iωI ω1

0 −ω1 R1S + iωI

 . (13)

The matrix B is essentially the Bloch matrix but with the nuclear Larmor frequency ωI added as an imaginary part to its

main diagonal. The time-derivatives of gn in (12) are represented by the three oval nodes enclosed in the cyan rectangle in fig.
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2a. The arrows between these nodes are seen to exactly replicate the classical Bloch equations in the rectangle above them.180

The inhomogeneous term in (12) couples the dynamics of the variables gn to the transverse components of the electronic

magnetization, on the one hand, and to the longitudinal component of the nuclear magnetization, on the other. All these

couplings scale with the dipolar interaction A1. They play an essential role in the solid effect, as they connect the Boltzmann

electronic polarization to the nuclear polarization (labeled ‘Input’ and ‘Output’ in fig. 2a).

Lastly, the mw contribution to the dynamics of the operator Iz , whose expectation value is denoted by iz , is185

i̇z|coh =−Re{iA∗1gz}, (14)

where Re takes the real part of a complex number. In fig. 2a this equation is represented by the oval node iz (labeled ‘Output’)

and the red arrow flowing into it.

In liquids, the weights A1 fluctuate randomly due to molecular diffusion. When extending the formalism to liquids (Sec.

3.3), we will transform the system of differential equations (12) to an SLE (Kubo, 1969) that describes the spin dynamics under190

random modulation of A1.

For comparison, fig. 2b shows the dynamics of the longitudinal components implied by the rate-equations (4) and (6).

Visual inspection of fig. 2a and fig. 2b makes clear that the rate constant v− provides a reduced description of the complicated

network connecting sz to iz . Similarly, the rate constant v+ accounts for the self-influence of iz mediated by the coherences in

the second set of Bloch equations. In Paper I we identified the rates v± and v1 by requiring that the dynamics in fig. 2a and fig.195

2b reached identical steady states (Sezer, 2023).

At steady state, the three dynamical variables of the classical Bloch equations (11) were related to each other and to the

electronic Boltzmann polarization as follows:

sss
x = (ω1fx)sss

z , sss
y =−(ω1fy)sss

z , sss
z = (R1Sfz)s

eq
z (15)

where200

fy =
R2S

R2
2S + Ω2

, fx =
Ω

R2S
fy, fz =

1

R1S +ω2
1fy

. (16)

(Comparing the last equality in (15) with (5) we found that p=R1Sfz , and that the rate constant of the allowed EPR transition

was v1 = ω2
1fy/2.)

Solving the second set of Bloch equations (eq. (12)) at steady state, and substituting gss
z in (14), we obtain

i̇z|sscoh =−δ2Re{
[
0 0 1

]
B−1


−isss

y

isss
x

issz

} (17)205

where the dipolar interaction is isolated in

δ2 = (A∗1A1)/4. (18)

8



Since the transverse components sss
x,y are related to the Boltzmann polarization (eqs. (15)), the right-hand side of (17) is of the

form

i̇z|sscoh =−δ2(Tii
ss
z +Tss

eq
z ), (19)210

where

Ti =
[
0 0 1

]
Re{B−1}

[
0 0 1

]T
= Re{B−1

33 }

Ts =
[
0 0 1

]
Re{iB−1}

[
pω1fy pω1fx 0

]T
. (20)

(The superscript T indicates transpose.) Because B has units of inverse time, Ti and Ts have units of time.

We note that Ts receives contributions from both sss
y and sss

x . As was shown in Paper I, it is possible to rewrite the contribution

of the former as if it also came from sss
x . In other words, the entire contribution of seq

z to the derivative of iz at steady state can215

be expressed as if it is mediated only through the dispersive component sss
x , as depicted in fig. 2c. (Dashed arrows represent

mathematical relationships between the variables that hold at steady state. Differently from the solid arrows, which correspond

to causal dependencies governing the dynamics at all times, the dashed arrows need not reflect direct causal dependence. A

rectangular node indicates that the inflowing arrows contribute directly to the value of the variable, and not to its time derivative.

The gray shade of the nodes signals that the variables remain constant in time, as they should at steady state.)220

In addition to B−1
33 , where B−1

ij is the ijth element of the inverse matrix B−1, in (20) we also need B−1
31 and B−1

32 . These

are B−1
31 = (ω1Fx)Fz , B−1

32 = (ω1Fy)Fz , and B−1
33 = Fz , where the functions

Fy =
R2S + iωI

(R2S + iωI)2 + Ω2
, Fx =

Ω

R2S + iωI
Fy

Fz =
1

R1S + iωI +ω2
1Fy

(21)

play an analogous role in the steady-state analysis of the second set of Bloch equations as the functions fy , fx and fz (eq. (16))

in the classical Bloch equations. In terms of these,225

Ti = Re{Fz}, Ts = (pω1fx)Tx, (22)

where

Tx = Re{iFz(ω1F
′
y)}, F ′y =

2R2S + iωI
R2S + iωI

Fy. (23)

(The functions in (23) emerge from lumping the contribution of sss
y to that of sss

x , as mentioned above.)

With Ti and Ts determined, the forbidden-transition rates on the right-hand side of (7) become230

v+ = δ2(Ti−T 0
i ), pv− = δ2Ts = (pω1fx)δ2Tx, (24)

where the mw-independent part of Ti, namely

T 0
i = Re{Fz(ω1 = 0)}= (R1S + iωI)−1, (25)

is subtracted in the first equality of (24) because it contributes to the the nuclear T1 relaxation rate. (In fig. 2a this mw-

independent part corresponds to the loop formed by the green arrow from iz to gz and the red arrow in the opposite direction.)235
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2.4 The solid effect

Using the rates (24) we rewrite the solid-effect DNP enhancement (eq. (9)) as

εSE =
(pω1fx)Tx

R1I/δ2 + (Ti−T 0
i )

|γS |
γI

. (26)

The functions pω1fx, Tx and (Ti−T 0
i ) in this expression are visualized in, respectively, the first, second and third rows of fig.

3. The product of the first two rows, which appears in the numerator of (26), is shown in the fourth row of the figure. In the right240

margin of the figure, we have included the flow diagram from fig. 2c, which has been straightened here so that the weights of

the arrows correspond to the respective rows. Note that the dipolar interaction strength, δ, and the nuclear spin-lattice relaxation

rate were not needed to calculate the properties in the first four rows of the figure. (They will be needed for the last two rows.)

While different magnetic fields B0 yield different relaxation times, for illustrative purposes we used the same electronic T1

and T2 times for X, Q, W and J bands. We additionally used the same mw field (B1 = 6 G) at all bands. Hence, the steady245

state of the classical Bloch equations (fig. 3, first row) is identical across the four columns of the figure. The solid blue lines,

which correspond to the dispersive component of the power-broadened EPR line, are identical but appear different due to the

different resolution of the horizontal axes. The absorptive component is much smaller under the power-broadening conditions

considered here and is not shown. However, its contribution is exactly accounted for in the analysis. (This was the reason for

introducing the functions in (23).) Anticipating the liquid state, we observe that the classical Bloch equations are independent250

of the dipolar couplingA1 (fig. 2a). Hence, the first row of fig. 3 will not change when going to liquids because we use identical

relaxation rates.

The transfer functions Tx and (Ti−T 0
i ) encapsulate all relevant steady-state properties of the second set of Bloch equations,

as well as their coupling to the classical Bloch equations and to iz through the dipolar interaction (fig. 2a). These functions

are visualized in the second and third rows of fig. 3 (orange and red lines). The colored solid lines are calculated using the255

equations given above and correspond to solids, subject to the (unrealistic) assumption of very fast spin diffusion. The black

dashed lines are calculated as described in the next section and correspond to liquids. Clearly, the time-dependent modulation

of the dipolar interaction in liquids has a dramatic effect on these functions.

The fourth row in fig. 3 shows the product of the blue lines in the first row and the orange lines in the second row, and

corresponds to the total transfer function from the primary input, seq
z , to the ultimate output, iz (fig. 2a). With the exception260

of X band, going from solids to liquids substantially reduces the peaks of pv−. (We used identical relaxation parameters for

liquids and solids to highlight the role of the dipolar correlation time.)

The transfer functions in the first four rows of fig. 3 depend only on the electronic relaxation times (assuming T2I �
T1S ,T2S). To calculate the enhancement εSE and the nuclear cross-polarization factor, pX , which are shown in the last two

rows of fig. 3, we had to select specific values for R1I and δ2. For the latter, we used the ensemble-averaged static value from265

(3),

〈δ2〉=
1

4
〈A∗1A1〉=D2

dip

6π

5

N

3b3
, (27)
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Figure 3. Comparison between solids (with fast spin diffusion) and liquids. 1st row: Dispersive component of the power-broadened EPR

line. 2nd and 3rd rows: Relevant transfer functions of the new Bloch equations in fig. 2a. 4th row: The product of the first and second rows,

which relates the input seqz to the output issz . 5th row: DNP enhancement calculated from the third and fourth rows using R1I/〈δ2〉. 6th row:

Nuclear cross-polarization factor calculated from the third row usingR1I/〈δ2〉. Simulation parameters: T2S = 60 ns, T1S = 9T2S ,B1 = 6 G

(converted to ω1 assuming g = 2), contact distance b= 1 nm, radical concentrationN = 0.1 M, and T1I of 4.7 ms (X band), 27.4 ms (Q band)

and 50 ms (W and J bands). The dipolar correlation time of the liquid simulation (black dashed lines) is τ = T2S/5 = 12 ns.

which applies to solids with fast and efficient spin diffusion. The numerical calculations in fig. 3 are for contact distance

bref = 1 nm and radical concentration Nref = 0.1 M. These are realistic but otherwise arbitrary values.

For the purposes of illustration we wanted to use the sameR1I for all four mw bands in the figure. In this way, by comparing270

the four columns with each other, one would be able to assess the effect of changing only B0. This strategy worked for solids,

at least for the numerical values that were used, but failed for liquids due to the very different contributions of Ti to the nuclear

relaxation rate (denoted by T 0
i in (25)). This part of Ti is shown in the third row of fig. 3 with horizontal dotted lines. The red

dotted lines for solids are very close to zero. The more visible black dotted lines for liquids change dramatically with the mw

band. Since the total relaxation rate R1I must be larger than the contribution of T 0
i , the nuclear T1 had to be only a few ms at275

X band. Using such small T1 at J band, however, gave tiny liquid-state DNP enhancements.
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Even if, admittedly, our calculated enhancements are only illustrative, in an effort to have somewhat realistic nuclear T1

relaxation times, we used T1I = 50 ms when the corresponding rate R1I was larger than 〈δ2〉T 0
i , and used R1I/〈δ2〉= 2T 0

i

otherwise. This resulted in the following nuclear T1 relaxation times: 4.7 ms (X band), 27.4 ms (Q band), and 50 ms (W and J

bands). These were used for both liquids and solids. Naturally, the choice of different nuclear T1 times has a direct influence280

on the calculated enhancements. For example, the peak DNP enhancements at X and W bands differ by about one order of

magnitude (purple lines in the fifth row of fig. 3) mostly because the nuclear T1 times at these two bands also differ by one

order of magnitude.

The theory behind the liquid calculations in fig. 3 is presented in the next section.

3 Liquids285

3.1 Molecular motion as a random process

Let us denote the components (r,θ,φ) of the inter-spin vector collectively by ζ. To describe the solid effect in liquids we

consider a random process that changes ζ and thus modulates the dipolar interaction between the two types of spins.

When the random dynamics of ζ is modeled as a discrete-state process, the probabilities of observing the different discrete

states are collected in the vector p(t). This probability vector evolves in time as ṗ(t) =−Kp(t), where the matrix K contains290

the rate constants of the random transitions between the states. All eigenvalues of such stochastic matrices are non-negative

and, for an ergodic chain of states, only one of the eigenvalues equals zero. In general, the stochastic matrix K is not symmetric,

which means that there are a right eigenvector and a left eigenvector associated with each eigenvalue. The right eigenvector of

the zero eigenvalue corresponds to the vector of equilibrium probabilities, peq, and the left eigenvector of the zero eigenvalue

corresponds to the vector 1, which contains ones in all of its entries. Note that 1Tpeq = 1.295

When the random dynamics of ζ is modeled as a continuous-state diffusion process, then the time-evolution of the probability

density p(ζ, t) is described by a Fokker-Planck equation of the form

∂p(ζ, t)

∂t
=−Kζp(ζ, t), (28)

where Kζ is a linear differential operator acting on the ζ dependence of p(ζ, t). As in the discrete case, the eigenvalues of

Kζ would be non-negative and one eigenvalue would equal zero. The corresponding right eigenfunction is the equilibrium300

probability density peq(ζ), and the left eigenfunction is constant in ζ.

For brevity, we will adopt the discrete notation also for the continuous case. In particular, we will use italic bold symbols to

indicate the dependence on ζ, and will denote operators that act on the ζ dependence with non-italicized capital bold symbols.

With this understanding

ṗ(t) =−Kp(t) (29)305

will apply to both the continuous and discrete cases. Similarly, 1Tf will imply integration over the ζ dependence of the

function f(ζ) in the continuous case, and summation over all different states in the discrete case.
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Note that in the probabilistic description of the random process by the Fokker-Planck equation (28), the probability density

p(ζ, t) characterizes an ensemble of nuclei, and ζ is treated as an independent variable which is not a function of t. In contrast,

when a single nucleus is followed in time (e.g., through molecular dynamics simulations), ζ is a random function of t. Although310

this second picture of random trajectories was invoked when writing the dipolar correlation function (2), in the following pages

we only work with the probabilistic description of an ensemble of identical nuclei.

Below, we will use the dynamical rule (29) when combining the stochastic dynamics of ζ with the spin dynamics from Sec.

2. The combined dynamics will be described by a stochastic Liouville equation (SLE) for a ζ-conditioned spin variable. In the

case of the nuclear polarization, for example, the SLE will describe the dynamics of P I(t), which stands for PI(ζ, t) in the315

continuous case. For a detailed explanation of SLE the reader is referred to the literature (Kubo, 1969; Gamliel and Levanon,

1995). A more recent discussion can be found in Kuprov (2016).

3.2 Rate equations in liquids

3.2.1 Electronic polarization

The electronic polarization was assumed to be insensitive to the dipolar coupling with the nuclear spins. Hence, the ζ-320

conditioned electronic polarization P S(t) is of the following separable form

P S(t) = peqPS(t), (30)

in which all ζ dependence is isolated in the equilibrium probability of the stochastic process. From P S(t) we obtain the

averaged (over ζ) electronic polarization by summing/integrating over the ζ dependence. This is done with the help of the

constant vector/function 1 as follows:325

1TP S(t) = 1TpeqPS(t) = PS(t). (31)

(In the last equality we used the normalization of the probability, 1Tpeq = 1, which reads
∫

dζ peq(ζ) = 1 in the continuous

case). Note that PS(t) in (30) is, in fact, the electronic polarization averaged over the stochastic variable (eq. (31)).

In this description, the experimentally accessible polarizations correspond to the averaged values, while the ζ-dependent

variables, like P S(t), serve only an intermediate, book-keeping role. In other words, at the end we will always average over ζ330

by using the constant vector/function 1.

Since (30) holds in general for the electronic polarization, it also holds at steady state and at equilibrium:

P ss
S = peqP ss

S , P eq
S = peqP eq

S . (32)

Here P ss
S and P eq

S are the averaged (over ζ) values which correspond to the macroscopic polarization.

Lastly, we point out that at equilibrium all joint spin-ζ properties are of the above separable form. In other words, the last335

equality in (32) is not limited to the electronic polarization but applies to all other equilibrium properties.
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3.2.2 Nuclear polarization

To illustrate the SLE formalism and to introduce further notation, we start by transforming the rate equation of the nuclear

polarization (6) to an SLE:

Ṗ I(t) =−KP I(t)−R1I(P I(t)−peqP eq
I )

−V+P I(t)−V−peqPS(t). (33)340

There are several different things going on here, so let us examine them one by one.

First, following the convention introduced above, P I(t) stands for PI(ζ, t) which is the nuclear polarization conditional on

the random state ζ. In this case the dot indicates partial derivative with respect to the time dependence, at fixed ζ. Second, the

term KP I drives the dynamics in the ζ-space by providing “off-diagonal” elements that mix the different random states. All

remaining terms on the right-hand side of the SLE are “diagonal” in the ζ-space and act only on the spin degree(s) of freedom345

(which are conditioned on ζ). Third, the mw excitation rates v± and the relaxation rate R1I have acquired ζ dependence,

turning into operators in ζ space that act on P I(t) or peq. In the discrete case, these would be matrices with different v±

and R1I values for each discrete state ζ along their main diagonals. We use hollow capital letters to denote such “diagonal”

operators in ζ-space, also in the continuous case. Fourth, as all equilibrium properties, the nuclear Boltzmann polarization is

separable, with the ζ dependence confined to the equilibrium probability of the random process.350

The steady state of the SLE (33) is

(K+R1I +V+)P ss
I = (P eq

I R1I −P eq
S pV−)peq, (34)

where we used P ss
S = pP eq

S (eq. (5)). Our aim is to solve (34) for P ss
I and then obtain the macroscopic nuclear polarization by

calculating the average P ss
I = 1TP ss

I .

Clearly, solving (34) consists of calculating the inverse of the operator (K+R1I +V+). This is a daunting task in general,355

and requires the matrix representation of K in some basis set. Here we will limit the discussion to random motions that are

orders of magnitude faster than the nuclear T1 relaxation rate, which we concluded to be the case even in viscous liquids

like glycerol. This assumption ensures that, at steady state, all nuclear spins in the sample are equivalent and have the same

polarization. Hence, we will look for a separable steady-state solution of the form

P ss
I = peqP ss

I (ansatz for liquids). (35)360

With this ansatz (34) becomes

(K+R1I +V+)peqP ss
I = (P eq

I R1I −P eq
S pV−)peq. (36)

While the difference between (34) and (36) appears to be minor, in fact we have achieved a tremendous simplification since

Kpeq = 0, and thus the dynamical aspect of the random process is gone; only its equilibrium (i.e., time-independent) properties

remain. Indeed, since in (36) all ζ-operators act on the equilibrium probability peq, integration over the ζ dependence brings365
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the average values:

〈R1I〉= 1TR1Ip
eq, 〈V±〉= 1TV±peq. (37)

(These are the average values of the ζ-dependent functions R1I(ζ) and v±(ζ), respectively.) After averaging (36) becomes

(〈R1I〉+ 〈V+〉)P ss
I = 〈R1I〉P eq

I − p〈V−〉P
eq
S . (38)

Comparison of (38) and (7) shows that the phenomenological rates R1I and v± in the rate equation should be identified370

with the macroscopic averages 〈R1I〉 and 〈V±〉 over the liquid sample. This is the familiar regime of fast motion, where one

observes the averaged values of the magnetic parameters. We have thus provided a formal justification of why the averaged δ2

in (27) corresponds to fast spin diffusion in the case of solids.

We observe that the static averages over 3D space, which are implied by (37), do not allow for the partial dynamical averaging

of the dipolar interaction. As discussed above, such averaging should be based on the time-correlation function ofA1. However375

the rate constants v± always contain the square of the dipolar interaction, and do not provide access to A1 itself. We thus

conclude that the partial averaging of the dipolar interaction in liquids is inaccessible to modeling by rate equations.

3.3 Spin dynamics in liquids

To gain access to the dipolar interaction before it is squared, we turn to the equations of motion of the coherences from Sec.

2.3. We first transform the equation of iz (eq. (14)) to an SLE:380

i̇z(t)|coh =−Kiz(t)−Re{iA∗1gz(t)}. (39)

As before, iz(t) and gz(t) stand for iz(ζ, t) and gz(ζ, t) in the continuous case, K acts on the ζ dependence of iz , and A∗1 has

become a “diagonal” operator in ζ-space. Averaging (39) over ζ we obtain the macroscopic equation

1T i̇z(t)|coh =−Re{i1TA∗1gz(t)}. (40)

At steady state, using the ansatz (35) in the form issz = peqissz , we have385

i̇z|sscoh =−Re{i1TA∗1gss
z }. (41)

Since we accounted only for the coherent contribution to the time derivative of iz , the right-hand side of (41) corresponds to the

right-hand side of (7). Our aim is to identify the phenomenological rate constants v± that should be used in (7) by analyzing

Re{i1TA∗1gss
z }. However, because the random modulation of A1 additionally contributes to the nuclear T1 relaxation, we have

the equality390

Re{i1TA∗1gss
z }=RA1I i

ss
z + v+i

ss
z + pv−s

eq
z (42)

from which we will read out the desired rates.
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3.3.1 Contribution to T1 relaxation

The contribution of Re{i1TA∗1gss
z } to the nuclear spin-lattice relaxation can be identified by its value in the absence of mw

irradiation. From (12) and (13) we see that for ω1 = 0 the dynamics of gz completely decouples from gx and gy . The SLE of395

gz in this case becomes

ġz(t) =−Kgz(t)− (R1S + iωI)gz(t)− i
1

4
A1iz(t). (43)

Technically,R1S and ωI should be operators that act on the ζ dependence of gz . However we take the electronic T1 relaxation

rate and the nuclear Larmor frequency to be independent of the dipolar coupling, which is parametrized by ζ. The corresponding

operators are thenR1SI and ωII, where I is the identity operator in ζ-space. This identity operator will not be written explicitly.400

The steady-state solution of (43) is

gss
z =−i

1

4
(K+R1S + iωI)−1A1p

eqissz , (44)

where we again used the ansatz for liquids. Substituting this gss
z on the left-hand side of (42) we find that the nuclear relaxation

rate due to A1 is

RA1I =
1

4
Re{1TA∗1(K+R1S + iωI)−1A1p

eq}. (45)405

To express this relaxation rate in a more intelligible manner, we observe that the inverse of a matrix M whose eigenvalues

have strictly positive real parts can be written as

M−1 =

∞∫
0

e−Mt dt. (46)

Applying this identity to the matrix (K+R1S + iωI) in (45) we find

RA1I =
1

4
Re{

∞∫
0

dte−(R1S+iωI)tC11(t)}, (47)410

where

C11(t) = 1TA∗1e−KtA1p
eq

=

∫
dζ A∗1(ζ)e−KζtA1(ζ)peq(ζ) (48)

is the time-correlation function of the dipolar interaction (eq. (2)). Since the integral in (47) corresponds to the Laplace trans-

form

J11(s) =

∞∫
0

dte−stC11(t), (49)415
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we have

RA1I =
1

4
Re{J11(R1S + iωI)}. (50)

The real part of the Laplace transform is known as spectral density. Here the spectral density is evaluated at a the complex

argument R1S + iωI , which contains both the nuclear Larmor frequency and the electronic T1 relaxation rate.

Let us examine (50) in the solid-state limit where A1 does not change with time. Then C11 = 〈A∗1A1〉 and420

RA1I,solid = 〈δ2〉 T1S

1 +T 2
1Sω

2
I

. (51)

In Abragam’s nomenclature (Abragam, 1961) this is relaxation of the second kind, meaning that it is due to the relaxation of

the electronic spins and not due to the modulation of the dipolar interaction by motion. This RA1I,solid/〈δ2〉 was shown with

horizontal, red dotted lines in the third row of fig. 3.

In the case of liquids, we expect C11(t) to decay with time. Assuming a mono-exponential decay with correlation time τ ,425

RA1I,exp = 〈δ2〉Re{
∞∫

0

dte−(R1S+iωI+τ−1)t}

= 〈δ2〉Re{(R1S + τ−1 + iωI)−1}. (52)

This RA1I,exp/〈δ2〉 was shown with horizontal, black dotted lines in the third row of fig. 3. To understand why it increases with

decreasing ωI , let us examine the case of motion that is faster than the electronic T1 time, i.e., τ−1�R1S . The result,

RA1I,exp ≈ 〈δ2〉 τ

1 + τ2ω2
I

, (53)

is relaxation of the first kind with Lorentzian spectral density. Clearly, smaller ωI implies larger dipolar contribution to the430

nuclear T1 relaxation rate.

Having identified the relaxation rate RA1I on the right-hand side of (42), we now proceed with the analysis of the rates v±

characterizing the forbidden transitions.

3.3.2 Contribution to forbidden transitions

Combining the dynamics of the coherences (eq. (12)) with the stochastic dynamics (eq. (29)), we arrive at the following SLE:435 
ġx

ġy

ġz

=−(K+ B)


gx

gy

gz

− i
1

4
A1


−isypeq

isxpeq

iz

 . (54)

Note that the matrix B does not depend on time as the electronic relaxation properties were taken to be insensitive to the

dipolar interaction between the electronic and nuclear spins. Recall that the operators written as upright bold letters (including

the hollow ones) act on the ζ dependence of the variables, which is encoded by the italic bold symbols. The script uppercase

letters denote 3× 3 matrices, which act on the column vectors that are shown explicitly.440
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Although not shown explicitly in (54), we imply the tensor products of the operators K, B and A1 with the identity operators

in the spaces on which K, B and A1 do not act (i.e., K and A1 are in fact I ⊗K and I ⊗A1 where I is the 3× 3 identity

matrix, and B is B⊗ I where I is the identity operator in the ζ-space).

Before solving (54) at steady state, let us introduce the eigenvalue problem of B,

BV = V D, (55)445

where the diagonal matrix

D = diag(λ1,λ2,λ3) (56)

contains the eigenvalues of B along its main diagonal, and the columns of the 3× 3 matrix V contain the corresponding right

eigenvectors. Then, the steady state of (54) is

V (K+D)V −1


gss
x

gss
y

gss
z

=−i
1

4
A1p

eq


−isss

y

isss
x

issz

 , (57)450

which, after inverting the matrices, yields
gss
x

gss
y

gss
z

=−i
1

4
V (K+D)−1A1p

eqV −1


−isss

y

isss
x

issz

 . (58)

Plugging this solution for gss
z into the left-hand side of (42), and defining the matrix

L= 1TA∗1(K+D)−1A1p
eq, (59)

we find455

Re{i1TA∗1gss
z }=

1

4
Re{

[
0 0 1

]
V LV −1


−isss

y

isss
x

issz

}. (60)

Comparison with the right-hand side of (42) yields

RA1I + v+ =
1

4

[
0 0 1

]
Re{V LV −1}

[
0 0 1

]T
v− =

1

4

[
0 0 1

]
Re{iV LV −1}

[
ω1fy ω1fx 0

]T
, (61)

where we used the relationships between sss
x,y and seq

z (eq. (15)) to arrive at v−.

We observe that L is a 3× 3 diagonal matrix without any ζ dependence since the right-hand side of (59) is averaged over ζ.460

With L= diag(L1,L2,L3), we have

Ln = 1TA∗1(K+λn)−1A1p
eq (n= 1,2,3). (62)
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Using (46) these diagonal elements can be written as

Ln = 1TA∗1

∞∫
0

e−(K+λn)t dtA1p
eq

=

∞∫
0

e−λnt (1TA∗1e−KtA1p
eq)dt

=

∞∫
0

e−λntC11(t)dt= J11(λn), (63)

where we used (48) in the third equality, and (49) in the last one. Hence, eachLn is the Laplace transform of the time-correlation465

function C11(t) evaluated at the eigenvalue λn of B. The matrix L to be used in (61) is thus

L= diag(J11(λ1),J11(λ2),J11(λ3)). (64)

In summary, for any given set of parameters, we form the 3×3 matrix B (eq. (13)) and numerically calculate its eigenvalues

and eigenvectors. The former are used in (64) to calculate L. Sandwiching L by the eigenvectors, as required in (61), we arrive

at the desired rates v±. This prescription applies to any motional model describing the stochastic dynamics of the inter-spin470

vector. Different models will differ only in their spectral densities J11.

From a mathematical point of view, the simplest case is a model with exponential dipolar correlation function, Cexp
11 (t) =

〈δ2〉e−t/τ , where τ is the correlation time. Then

Jexp
11 (s) = 〈δ2〉 1

s+ 1
τ

= 〈δ2〉τ 1

sτ + 1
(65)

and (64) becomes475

Lexp = 〈δ2〉diag
(

1

λ1 + 1
τ

,
1

λ2 + 1
τ

,
1

λ3 + 1
τ

)
. (66)

All black dashed lines labeled ‘liquid’ in fig. 3 were calculated using (66) with τ = 12 ns.

Comparing v+ and pv− (fig. 3, third and fourth rows) between the solid and liquid cases, we see that at Q, W and J bands

the fluctuations of the dipolar interaction have substantially broadened the lines centered at the canonical solid-effect offsets

Ω≈±ωI , and have reduced the peak enhancements in liquids compared to solids (fifth row). At X band, where the two lines480

had already merged in the solid case, the effect of fluctuations is qualitatively different, although line broadening is also visible.

Most strikingly, the rate v+ is seen to become negative at offsets larger than ωI , which leads to nuclear polarization factor (eq.

(9)) that exceeds one (fig. 3, bottom row).
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4 Closer look at liquids

4.1 Translational diffusion of hard spheres485

A mono-exponential dipolar correlation function is a poor model of translational diffusion in liquids. The so-called force-free

hard sphere (FFHS) model, which assumes spherical molecules that contain the spins at their centers, is a more realistic yet

analytically tractable model (Ayant et al., 1975; Hwang and Freed, 1975). It is universally employed in the analysis of diverse

magnetic-resonance measurements, including nuclear relaxation by paramagnetic impurities (Okuno et al., 2022) and DNP via

the Overhauser effect (Franck et al., 2013).490

Because the spins are taken to be at the centers of the spherical molecules, the FFHS model has only two parameters: the

coefficient of translational diffusion, D, and the distance of the spins upon contact of the spherical molecules, b. These two

parameters form the characteristic motional time scale of the model (Ayant et al., 1975):

τ = b2/D. (67)

The Laplace transform of the dipolar correlation function of this model is (Ayant et al., 1975, eqs. (51) and (55))495

Jffhs
11 (s) = 〈δ2〉τ (sτ)

1
2 + 4

(sτ)
3
2 + 4(sτ) + 9(sτ)

1
2 + 9

. (68)

Using Jffhs
11 in (64) we calculated numerically the same properties as in fig. 3 but for the FFHS model. The results are shown

with colored solid lines in fig. 4. For comparison, the model with mono-exponential correlation function from fig. 3 is also

reproduced in fig. 4 with black dashed lines.

The general observation from fig. 3 that the fluctuation of the dipolar interaction broadens the solid-effect lines at Ω≈±ωI500

is even more relevant for the FFHS model. Indeed, for the same dipolar time scale τ , the FFHS lines are much broader and,

correspondingly, much smaller in peak amplitude than the lines of the exponential model. Hence, the FFHS model predicts

significantly smaller DNP enhancements (fig. 4, second last row) compared to the exponential model with the same time

scale τ . At X band, the negative values of v+ are still present but their magnitude is substantially reduced (third row). The

corresponding offsets where the nuclear polarization factor, pX , is larger than one are similar in the two models but again the505

deviation from one is much smaller in the FFHS model (last row).

Overall, pX in liquids is very close to one (last row of fig. 4, FFHS model), which indicates that v+ is very small com-

pared to R1I . In such cases, the solid-effect DNP enhancement (eq. (9)) is well approximated by (10). This explains why the

enhancement in the fifth row of fig. 4 is essentially a rescaled version of the row directly above it.

The substantial reduction of the peak intensities at the solid-effect offsets Ω≈±ωI is accompanied by a smaller but still510

appreciable increase of the intensities at small offsets (Ω≈ 0). This trend is visible both in the transition from the solid case

to a mono-exponential correlation function (fig. 3, second row) and in the further transition to the FFHS model (fig. 4). The

significance of this observation will become clear in Sec. 4.4 where we compare our calculations with the experiments of

Kuzhelev et al. (2022).
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Figure 4. Same as fig. 3 for the model with exponential time-correlation function (black dashed lines) and the FFHS model (colored solid

lines) both with τ = T2S/5 = 12 ns.

4.2 Approximate matrix inversion515

Since B is a 3× 3 matrix, its eigenvalues and eigenvectors are easily determined numerically, as we did when calculating the

exponential and FFHS models in fig. 4. Nevertheless, to gain insight into the eigenvalue problem that is being solved, here we

analyze (55) using perturbation theory. The analysis reveals that the eigenvalue problem is related to the effective magnetic

field and the associated “tilted” coordinate frame (Wenckebach, 2016).

Let us introduce the matrix520

B0 =


R2S + iωI Ω 0

−Ω R2S + iωI ω1

0 −ω1 R2S + iωI

 , (69)

where R1S in the lower right corner of B (eq. (13)) has been replaced by R2S . The three eigenvalues of B0 are

λ0,0 =R2S + iωI , λ0,∓ =R2S + i(ωI ∓ωeff), (70)
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where the frequency

ωeff =
√

Ω2 +ω2
1 (71)525

corresponds to the effective magnetic field in the rotating frame. This field is tilted away from the z axis by an angle α such

that

cosα= Ω/ωeff = c, sinα= ω1/ωeff = s. (72)

With the sine and cosine of α abbreviated as s and c, the eigenvectors of B0 are

V0 =


s −c/

√
2 −c/

√
2

0 i/
√

2 −i/
√

2

c s/
√

2 s/
√

2

 (73)530

where the first column corresponds to λ0,0, the second to λ0,−, and the third to λ0,+. By inspection, V −1
0 = V H

0 , where the

superscript H denotes Hermitian conjugation.

We treat the difference B−B0 as a perturbation to B0. To first order in the perturbation the eigenvalues of the original

matrix B are λ̃n = λ0,n + vH0,n(B−B0)v0,n where v0,n is the nth column of V0. Using this expression we find the corrected

eigenvalues535

λ̃0 = R̃1 + iωI , λ̃∓ = R̃2 + i(ωI ∓ωeff), (74)

with

R̃1 =R1S(cosα)2 +R2S(sinα)2

R̃2 =R2S [1− (sinα)2/2] +R1S(sinα)2/2. (75)

Collecting the eigenvalues (74) in the diagonal matrix D̃ = diag(λ̃0, λ̃−, λ̃+), we have B−1 ≈ V0D̃−1V H
0 . As an example,

the element in the lower right corner of the inverse matrix is540

B−1
33 = Fz ≈ (cosα)2λ̃−1

0 +
1

2
(sinα)2(λ̃−1

− + λ̃−1
+ ). (76)

(This approximation of Fz was used in Paper I without proof.)

From (76), and using the first equality in (22), we immediately find

Ti ≈ Re{c2λ̃−1
0 + s2(λ̃−1

− + λ̃−1
+ )/2}. (77)

To obtain v+, we need to subtract T 0
i from Ti (eq. (24)). Since ω1 = 0 implies s= 0 and c= 1,545

T 0
i = Re{(R1S + iωI)−1}, (78)
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which is identical to the exact result in (25). Hence,

v+/δ
2 ≈ Re{s2(λ̃−1

− + λ̃−1
+ )/2 + c2λ̃−1

0 − (R1S + iωI)−1}. (79)

One can similarly obtain the rate constant v− as a linear combination of the reciprocals of the approximate eigenvalues λ̃0 and

λ̃∓. The result is550

Tx =
ω1

ω2
eff

Re{iX} (80)

with

X =R2S λ̃
−1
0 −

1

2
(R2S + iωeff)λ̃−1

− −
1

2
(R2S − iωeff)λ̃−1

+ . (81)

Recall that v−/δ2 = (ω1fx)Tx (eq. (24)).

The first eigenvalue in (74) does not depend on the offset Ω. The other two eigenvalues depend on the offset through ωeff . Let555

us consider sufficiently large offsets such that |Ω| � ω1, and so ωeff ≈ |Ω|. This condition is satisfied at the solid-effect offset

positions Ω≈±ωI at W and J bands, but may be entirely inapplicable to X band at large mw powers, as discussed in Paper

I. When the condition holds, s≈ 0 and c≈ 1, and the eigenvalues (74) become λ̃0 ≈R1S + iωI and λ̃∓ ≈R2S + i(ωI ∓ |Ω|).

Thus λ̃−1
∓ correspond to complex-valued Lorentzians centered at Ω =±ωI and with widths equal to the homogeneous EPR

line width (without power-broadening). These are the Lorentzians that we see as narrow lines at W and J bands in the second560

and third rows of fig. 3 (orange and red solid lines).

In the case of motion, assuming mono-exponential correlation function for simplicity, each eigenvalue is replaced by λ̃n +

1/τ . This amounts to increasing the widths of the solid-effect Lorentzians from R2S to R2S + 1/τ . The resulting motional

broadening is the reason for the differences between the ‘solid’ and ‘liquid’ lines in the second and third rows of fig. 3.

For a general motional model, we have the approximate L̃= diag(J11(λ̃0),J11(λ̃−),J11(λ̃+)), which yields the approxi-565

mation V LV −1 ≈ V0L̃V H
0 to be used in (61). For the spectral density of the FFHS model, the perturbative expressions are

compared with the exact numerical calculation in fig. 5. The former are plotted with black dashed-dotted lines and the latter

with colored solid lines like in fig. 4. We see that the perturbative analysis is satisfactory in general, at least for the specific

choice of parameters that were used. It gives excellent predictions for v− (fig. 5, fourth row) and, because the two are related

by a global scaling factor (eq. (10)), also for the DNP enhancement (fifth row). At the same time, it is seen to consistently fail570

for the rate v+ at small offsets in the vicinity of the origin (third row).

We should mention that the perturbative approximation becomes progressively better when R2S approaches R1S (not

shown), as it is exact for R2S =R1S .

Leaving the approximation quality of the perturbative analysis aside, we observe that the enhancement profiles in the fifth

row of fig. 5 reveal the emergence of a novel feature at small offsets. At W band, this feature appears as a shoulder in the575

broadened lines, and at J band it is already separated from the canonical solid-effect peaks. Comparison with the lines in the

first row of fig. 5 makes clear that this new feature in the DNP spectrum coincides with the extrema of the dispersive component

of the power-broadened EPR line. For saturating mw powers, where ω1�R1SR2S , these extrema occur at

Ω1/2 = ω1

√
T1S/T2S . (82)
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Figure 5. Comparison between the exact (solid colored lines) and perturbative (black dashed lines) calculations of the FFHS model. All

parameters as in fig. 4. The eigenvalue problem of the generalized Bloch matrix B has a simple closed-form solution when T1S = T2S . The

perturbative approximation uses these analytical eigenvectors and corrects the eigenvalues to first order in the difference 1/T1S − 1/T2S .

(The subscript 1/2 was selected because these are also the offset positions where the electronic saturation factor equals one580

half.) The factor pv− in the fourth row of fig. 5 is obtained as the product of the first and second rows, as elaborated in Paper I.

When the solid-effect lines at Ω≈±ωI (second row) become sufficiently broad, their amplitude at Ω1/2 gets large enough for

the peak of the dispersive EPR line (first row) to be visible in the DNP spectrum.

4.3 Motional suppression and broadening

Let us examine more closely the suppression of the lines at the solid-effect offsets and the concurrent increase of their intensity585

at Ω1/2. We will limit the discussion to J band where the condition ωI � ω1 holds, and the solid-effect offsets are Ω =±ωI .

Using the perturbative eigenvalues (74), we see that only the real parts of λ̃∓ survive at these offsets. The peak amplitudes of

the solid-effect lines are then proportional to J11(R2S).
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The limits τ � T2S and τ � T2S correspond to, respectively, very fast and very slow diffusive motion relative to the elec-

tronic T2. In the slow limit τ � T2S , we have590

lim
R2Sτ→∞

J11(R2S)/〈δ2〉 → T2S (83)

for both the mono-exponential and FFHS motional models. This means that, in solids, the peaks increase with the electronic

T2. In the opposite limit of very fast motion, i.e., τ � T2S , we find

lim
R2Sτ→0

J11(R2S)

〈δ2〉
→


τ exponential

4

9
τ FFHS

(84)

which means that, in liquids, the peak amplitudes are proportional to the dipolar correlation time τ . In other words, faster fluid595

diffusion (i.e., smaller τ ) corresponds to smaller peaks, and thus smaller solid-effect enhancement at the canonical offsets. We

also see that for the same τ the peaks of the FFHS model are less than half of the peaks of the exponential model, which is in

agreement with fig. 4 (second and third rows).

To describe the transition between the fast and slow limits, we define the reduction factor

ρ(τ) =
1

T2S

J11(R2S ;τ)

〈δ2〉
(85)600

which equals one in the solid limit and approaches zero for small τ . Since it quantifies how much smaller the peaks are

compared to the solid case, ρ is a measure of how “solid-like” the liquid is.

The top panel of fig. 6 shows the reduction factors of the exponential and FFHS models against the relative motional time

scale τ/T2S . For the exponential model, the solid-effect peaks drop to half of their maximum values at τ = T2S . In the case of

the FFHS model, this happens already at τ ≈ 4T2S (see inset). In other words, appreciable reduction compared to the solid limit605

occurs even for exceedingly long diffusive time scales, several-fold the electronic T2. For identical τ ’s the exponential model

is seen to be more solid-like than the diffusive FFHS model across the entire motional range. Hence, realistic translational

diffusion suppresses the solid-effect peaks more effectively than mono-exponential decay.

As a quantitative measure of the motional broadening, let us consider the magnitude of Tx (fig. 5, second row) at the locations

of the extrema of the dispersive EPR line (first row). Since the intensity at these small offsets increases when going from the610

solid to the liquid case, we define the magnification factor

µ(τ) =
T liquid
x (Ω1/2;τ)

T solid
x (Ω1/2)

. (86)

This factor is shown in the bottom panel of fig. 6. For the FFHS model, the intensity at Ω1/2 is two to three orders of magnitude

larger than the solid case across a broad range of motional time scales, between τ = T2S and τ = 0.01T2S . Hence the peak of

the dispersive EPR line should be magnified 100 to 1000 fold in liquids compared to the solid limit. It is also magnified for the615

mono-exponential dipolar correlation function, although not to the same extent.

In the light of these observations, next we analyze the DNP field profile of recent experiments with the free radical BDPA in

DMPC lipid bilayers at 320 K (Kuzhelev et al., 2022).
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Figure 6. Multiplicative deviation of Tx(Ω) from the solid limit at (a) the solid-effect offsets Ω =±ωI and (b) the offsets Ω1/2 =

±ω1

√
T1S/T2S for the exponential and FFHS models.

4.4 Comparison with experiment

The DNP experiments of Kuzhelev et al. (2022) were carried out at J band (260 GHz/400 MHz). For the acyl chain protons620

of the DMPC lipids, the peak DNP enhancements at the canonical solid-effect offsets were ±12 (Kuzhelev et al., 2022). Two

additional enhancement peaks of ±8 were also observed at much smaller offsets. These were attributed to thermal mixing.

Here we argue that they correspond to the extrema of the dispersive component of the EPR line.

The enhancements in Kuzhelev et al. (2022) were for BDPA-to-lipid ratio of 1:10 at a temperature of about 320 K. The room-

temperature EPR spectrum of BDPA at J band for this relatively high radical concentration was very narrow (Kuzhelev et al.,625

2022, fig. 2). The transverse relaxation time implied by this narrow line is T2S = 215 ns. For the same radical concentration,

the nuclear spin-lattice relaxation time at J band was 50 ms at 298 K (Kuzhelev et al., 2022). Although the experimental T1I

and T2S are for 298 K, below we use these values to fit the DNP spectrum at 320 K. We also use B1 = 6 G, as estimated in

Kuzhelev et al. (2022).

In addition to these parameters with experimental support, three more parameters are needed for the calculation of the DNP630

enhancement: T1S , τ , and N/3b3. We will treat these as fitting parameters. Let us introduce the ratios

r1 =
T1S

T2S
, r2 =

T2S

τ
, r3 =

N/3b3

Nref/3b3ref

. (87)
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The ratio r1 expresses the unknown electronic T1 relaxation time in terms of the known electronic T2. From physical consid-

erations, r1 ≥ 1. The ratio r2 relates the diffusion time scale τ to the electronic T2. Since T2S is rather long, we expect τ to be

shorter and hence r2 ≥ 1. Finally, the ratio r3 expresses the actual factor N/3b3, which is unknown, as a multiple of this same635

factor for arbitrarily selected reference values Nref and bref . In principle, r3 can be any positive number.

The mean volume per particle at a concentration of 1 M is 1.66 nm3 and corresponds to a cube with side length of 1.18 nm.

From molecular modeling, the “radius” of a BDPA molecule is about 0.6 nm, so it barely fits in the above cube. The partial

molecular volume of a DMPC lipid in a lipid bilayer is 1.1 nm3 (Greenwood et al., 2006). Thus, the concentration of one BDPA

when surrounded by ten DMPC lipids cannot exceed Nref = 0.1 M, but is also likely close to this value. Additionally taking640

bref = 1 nm in the last equality of (87), we anticipate r3 > 1.

From (10), the expected dependence of the DNP enhancement on the three fitting parameters can be written as

εSE ≈ p(r1)v−(r1, r2)r3〈δ2
ref〉T1I |γS |/γI , (88)

where 〈δ2
ref〉 is calculated according to (27) using Nref and bref . The ratio r1, which determines Ω1/2 (eq. (82)), will influence

the electronic polarization factor (or, equivalently, saturation factor). Together with the ratio r2, it will also influence the645

forbidden transition rate v−, although the effect of r1 is expected to be small. From the previous discussion, we expect that

r2 will mostly be responsible for the width of the solid-effect lines that comprise v−. Finally, r3 will serve as a global scaling

factor that will adjust the amplitude of the overall enhancement. Since the three fitting parameters are responsible for different

features of the DNP spectrum, it should be possible to determine them uniquely.

The top plot in fig. 7 shows the experimental enhancements (red circles) together with the best fit obtained using the FFHS650

model with B1 = 6 G (solid black line). The solid green line in this plot is the difference between the experimental data and the

fit. The corresponding fitting parameters are shown in the first row of Table 1. Note that the fits were performed numerically

using the exact expressions of p, v±, and the DNP enhancement (eq. (9)), and were not restricted to the dependencies on the

fitting parameters ri (i= 1,2,3) that are indicated in (88). (For example, the general dependence of the electronic polarization

factor p on T1S and T2S is not limited to the ratio T1S/T2S .)655

After the fits converged, we used the final values of the fitting parameters to calculate the dispersive component of the EPR

line sss
x = pω1fx s

eq
z , and the factor Tx, such that (pω1fx)Tx = pv−. These are shown in the lower plot of fig. 7, where sss

x

(blue) and Tx (orange) are scaled independently along the vertical axis. Their product (black dotted-dashed line) is also scaled

independently along the y axis. Since pX ≈ 1 in our case, the product pv− is itself proportional to the solid-effect enhancement.

Hence the black lines in the upper and lower plots of fig. 7 are directly comparable. We can thus visually conclude that the660

unusual enhancement peaks at small offsets are a direct manifestation of the dispersive component of the power-broadened

EPR line.

Because the mw field in the experiment is not known precisely, we also attempted fits with smaller B1. The best fits were

practically identical to the one shown in fig. 7 but with different values of the fitting parameters (Table 1). (The fit forB1 = 2 G

is shown in fig. A1 as an example.)665
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Figure 7. Experimental DNP field profile at J band (red circles) and fit with the FFHS model using B1 = 6 G (solid black line). The central

peaks in the enhancement profile follow the dispersive component of the power-broadened EPR line (solid blue line).

Table 1. Fitting parameters ri (i= 1,2,3), and implied time scales (T1S and τ ) and contact distance (b). For different mw fields, r1 changes

such that B1
√
r1 remains constant.

B1/G r1 r2 r3 T1S/µs τ /ns b/nm1 B1
√
r1

6 7.2 30.4 8.9 1.5 7.07 0.482 16.088

5 10 30.4 13 2.2 7.08 0.427 16.065

4 16 30.3 20 3.5 7.09 0.368 16.047

3 29 30.3 36 6.1 7.10 0.304 16.034

2 64 30.3 80 14 7.10 0.232 16.025

1 257 30.3 321 55 7.11 0.146 16.022

1Assuming radical concentrationN = 0.1 M.

From Table 1 we see that all fits resulted in the same value of the parameter r2, implying τ = 7.1 ns for the motional time

scale of the FFHS model. This parameter is very robust because it directly reflects the width of the experimental solid-effect

lines at Ω =±ωI . Although, normally, their line width should depend on both T2S and τ , the exceptionally narrow EPR line

puts us in the regime τ � T2S where the influence of T2S is negligible. As a result, the motional broadening of the solid-effect

lines in the DNP spectrum reports directly on the diffusive time scale of BDPA in the lipid environment.670

The fitting parameter r1 adjusts the extrema of the dispersive EPR line (solid blue line in fig. 7), which are at Ω1/2 =±ω1
√
r1

(eq. (82)). By monitoring the product of
√
r1 and B1 in the last column of Table 1, we see that, each time B1 is modified, the

fitted r1 changes such that Ω1/2 remains unchanged, as required by the positions of the non-canonical enhancement peaks in
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Figure 8. Same as fig. 7 for the model with mono-exponential dipolar correlation function andB1 = 6 G (solid black line). The fit parameters

r1 = 3.6, r2 = 89, r3 = 7.7 correspond to T1S = 0.77µs, τ = 2.4 ns, b= 0.507 nm (assuming N = 0.1 M).

the experimental data. However, because r1 has to increase quadratically to compensate for the reduction of B1, the implied

electronic T1 times become exceedingly long (tens of microseconds) at the smaller values of B1 (1-2 G).675

When B1 is reduced, the fitting parameter r3 also increases quadratically to compensate for the dependence of the overall

enhancement on ω2
1 . Assuming Nref = 0.1 M is a good estimate of the actual concentration of BDPA in the lipid bilayer, it is

possible to calculate a contact distance, b, from the fitted value of r3. The deduced contact distances are given in the second

last column of Table 1. Only the values for largeB1 (5-6 G) are in qualitative agreement with the molecular structure of BDPA.

In fig. 8 we show a fit to the same experimental data using a mono-exponential dipolar correlation function. While the680

difference between the data and the fit (green line in top panel of fig. 8) is not much worse than what we had for the FFHS

model, it is apparent that the exponential model strives to find the right balance between the broadening of the solid-effect lines

and the tails of these lines at the lower offsets, ultimately producing too broad solid-effect lines and too narrow non-canonical

peaks. (An exponential fit with B1 = 4 G is shown in fig. A2.) We thus see that the J-band DNP spectrum clearly differentiates

between two alternative motional models, ruling out the less realistic one.685

The most certain outcome of the fits with the FFHS model is the deduced motional time scale τ , as it comes directly from

the width of the solid-effect lines (T2S is too long to contribute). The deduced value of T1S is somewhat less certain since

it is accessed relative to T2S and also depends on the mw field B1. Nevertheless, with reasonable choices of T2S and B1,

the fit to the non-canonical extrema in the DNP spectrum restricts T1S to a meaningful window between 1.5µs and 2.5µs

(Table 1). Least certain is the estimate of the contact distance b since, in addition to B1, it requires precise knowledge of the690

radical concentration and the nuclear spin-lattice relaxation time. Although the latter is accessible experimentally, its value was

measured at 298 K, while the DNP measurements are at 320 K.
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In spite of the uncertainty in the estimated value of the distance parameter b, let us use τ and b in (67) to calculate the

coefficient of relative translational diffusion. With b= 0.482 nm (Table 1, first row) and τ = 7.1 ns, we get D = b2/τ =

0.033nm2/ns = 33× 10−12 m2/s. Alternatively, with b= 0.427 nm (Table 1, second row) and τ = 7.1 ns, we find D = 26×695

10−12 m2/s. The first value corresponds to B1 = 6 G and the second to B1 = 5 G.

For comparison, the coefficient of lateral diffusion of phospholipids in oriented DMPC bilayers, as determined from pulsed

field gradient NMR, is about 11× 10−12 m2/s at 308 K, 20× 10−12 m2/s at 323 K, and 27× 10−12 m2/s at 333 K (Filippov

et al., 2003, fig. 5B, 0 mol% cholesterol). As the temperature of the DNP measurements is closer to the middle value, our two

estimates of D are seen to be larger by a factor of 1.65 and 1.3, respectively.700

However, the D of the FFHS model corresponds to the relative translational diffusion of the electronic and nuclear spins,

i.e., D =DS +DI , where DS and DI denote the coefficients of translational diffusion of the two spin types. Disregarding all

complicating factors, one could thus take DI = 20× 10−12 m2/s from the literature value, and rationalize the values that we

deduced from the width of the solid-effect DNP lines as implying either DS = 13× 10−12 m2/s or DS = 6× 10−12 m2/s for

the diffusion coefficients of the free radical BDPA in the lipid bilayer. As the obtained numerical values are rather plausible,705

we conclude that the quantitative analysis of the J-band DNP spectrum leads to meaningful molecular properties. Without

the theoretical framework developed in this paper, neither the molecular distance b nor the diffusion coefficient D would be

accessible from a solid-effect DNP spectrum in the liquid state.

5 Concluding discussion

Erb, Motchane and Uebersfeld had the hunch that the dispersive component of the EPR line is reflected in the solid-effect710

DNP enhancement (Erb et al., 1958a). A theoretical justification of their intuition was provided in Paper I (Sezer, 2023).

Here, the formalism was extended to the solid effect in liquids. Our theoretical predictions were compared with recent DNP

measurements at high field (Kuzhelev et al., 2022). The comparison demonstrated that, under appropriate conditions, the

dispersive component of the EPR line is literally visible in the field profile of the DNP enhancement. Provided that seeing is

believing, we have thus closed the circle.715

The DNP mechanism which became known as the solid-state effect due to Abragam (Abragam and Proctor, 1958) had been

observed in liquids from the very beginning (Erb et al., 1958a, b). Nevertheless, perhaps because it yielded comparatively

smaller absolute enhancements and often coexisted with the Overhauser effect (Leblond et al., 1971b), the solid effect has

remained less explored in liquids compared to solids. The recent use of this DNP mechanism as a new modality for probing the

molecular dynamics in ionic liquids (Neudert et al., 2017; Gizatullin et al., 2021b) and its first applications at high magnetic720

field (Kuzhelev et al., 2022), indicate that the potential of the solid effect in the liquid state is yet to be harvested. A theoretical

understanding of the mechanism in liquids is clearly going to be helpful in these endeavors. Developing the needed theory has

been the main aim of the companion and current papers.

Admittedly, a theoretical description of the solid effect in liquids was developed more than 50 years ago by Korringa and

colleagues (Papon et al., 1968; Leblond et al., 1971a). In fact, their analysis was much more ambitious than ours, as it aimed725
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to quantify the DNP spectrum during the transition from the Overhauser effect to the solid effect upon reduction of the experi-

mental temperature (Leblond et al., 1971b). Thus, in addition to the secular terms of the dipolar interaction that we considered

here and in Paper I, their Hamiltonian also contained the non-secular terms, which are important for the cross-relaxation rates

of the Overhauser effect, as well as the orientation dependent part of the electronic Zeeman interaction, which determines

the electronic relaxation rates and thus the degree of saturation. Following the prescription of second-order time-dependent730

perturbation theory, Korringa et al. derived equations for the deviations of both the electronic and nuclear polarizations from

their values at thermal equilibrium (Papon et al., 1968).

The analytical framework of Korringa and colleagues had two additional aspects. First, as is well known, the semi-classical

description of spin-lattice relaxation relaxes the system to infinite temperature. The usual way of correcting for this shortcoming

in magnetic resonance is to subtract the correct thermal equilibrium from the right-hand side of the dynamical equation of735

the density matrix (Abragam, 1961). Instead, Korringa (1964) imposed the correct temperature by writing the equation of

motion of the density matrix for complex-valued time, whose imaginary part was proportional to the inverse temperature. This

mathematical trick exploits the fact that a quantum-mechanical propagator with imaginary time becomes a Boltzmann factor.

The analytical continuation to complex time modified the familiar Liouville-von Neumann equation of the density matrix to a

form that is not common in magnetic resonance. Second, as an integral part of their formalism, Korringa et al. (1964) modeled740

the stochastic modulation of the spin Hamiltonian as rotational diffusion of one coordinate frame with respect to another, which

led to an exponential correlation function with single decay time τ . It is not straightforward to see how their final analytical

expressions should be modified if one were to use the FFHS model, for example.

In this context, it is worth mentioning that the mono-exponential model did not accurately fit the experimental data of

Leblond et al. (1971b) and the authors took a Gaussian distribution for lnτ (Leblond et al., 1971a). In fig. 8 we also observed745

that an exponential motional model did not fit the experimental DNP spectrum at J band (Kuzhelev et al., 2022), whereas the

FFHS model with a single motional parameter did (fig. 7). One should remember, however, that the analysis of Leblond et al.

(1971b) was performed four years before the spectral density of the FFHS model was solved analytically (Ayant et al., 1975;

Hwang and Freed, 1975).

In spite of the differences between the analytical framework of Korringa and colleagues (Papon et al., 1968; Leblond et al.,750

1971a) and our approach, which hamper a direct comparison of the results, we observe that the derivations in their first paper

(Papon et al., 1968) assumed isotropic electronic relaxation, i.e., T1S = T2S . As we saw in Sec. 4.2, in this case the matrix

B (eq. (13)) becomes equal to B0 (eq. (69)) and the eigenvalue problem of the latter has a simple closed-form solution. All

quantities of interest then become linear combinations of the reciprocals of the eigenvalues. Indeed, the final expressions of

Papon et al. (1968) are linear combinations of Lorentzian spectral densities, which contain the effective frequency ωeff (eq.755

(71)).

The assumption of equal longitudinal and transverse electronic relaxation rates was relaxed in the second paper (Leblond

et al., 1971a). Sadly, this second paper has been cited only five times, and although all of the citing papers report new exper-

iments, they do not use the theoretical expressions of Leblond et al. (1971a) to analyze the experimental data. One can only

hope that, by being less ambitious, the theory developed in the current paper fares differently.760
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Appendix A: Additional figures
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Figure A1. Same as fig. 7 (FFHS model) for B1 = 2 G (solid black line). The fit parameters are given in the second last row of Table 1.
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Figure A2. Same as fig. 8 (exponential model) for B1 = 4 G (solid black line). The fit parameters r1 = 8.1, r2 = 90, r3 = 17 correspond to

T1S = 1.7µs, τ = 2.4 ns, b= 0.387 nm (assuming N = 0.1 M).
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