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Monte-Carlo Analysis of Asymmetry in Three-Site
Relaxation Exchange: Probing Detailed Balance

The authors present Monte Carlo simulations of a lattice gas using a dy-
namic model that breaks detailed balance. They determine a quantity called
asymmetry parameter, which measures the breaking of detailed balance, and
show that it is nonzero. They also present results for an off-lattice gas model
which seems to behave in a similar manner. These findings are related to recent
NMR experiments.

I strongly disagree with the main statements in the paper. In my opinion the
work suffers from serious conceptual deficiencies regarding both the design of
the model and the interpretation of the results, which is why I would absolutely
not recommend it for publication in a regular journal. However, I understand
that in this journal, the referee reports will be published alongside with the
paper. Therefore, a publication might be acceptable as long as some additional
technical issues have been fixed.

Let me start with the technical issues first

• The central quantity, the asymmetry parameter, is never properly defined.
The only definition is found in Equation (5) which refers to the special
case of a three-site exchange. The authors must add an equation defining
the quantity which is actually measured in the simulations and shown in
Figures 4 and 6.

• Likewise, a so-called “active site” seems to be an important ingredient
either of the dynamical model or in the analysis (this does not become
clear), but it is never defined. It has “different relaxation properties” but
relaxation properties have not been introduced in the definition of the
model before. As an “explanation”, the caption of Figure 3 offers the fol-
lowing cryptic sentence: “If a particle cell contacts two different relaxation
sites, the higher number overrides the lower number when identifying its
relaxation environment.” What does this mean in practice? Does the
presence of an active site change the dynamics or is it just important for
the analysis? And how exactly is this implemented?

• Apart from the active site element, I think I roughly understand the dy-
namical model of the lattice simulations, but the off-lattice simulations
(Section 2.2) are not well explained at all. Simulations of hard parti-
cle models would typically be done using event-driven algorithms, where
the system is propagated from one elastic collision to the next. Appar-
ently, this was not done here, instead fixed time steps were used, which
reduces the accuracy of the simulations. How exactly were the collisions
implemented? For example, did the authors accurately account for the
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impact parameter of each collision when calculating the new momenta
of the participating particles, or did they pick them at random? What
was the length of the time step? How did they handle situations when
three particles collide within one time step? Such information is crucial if
you report on simulation results that supposedly break the second law of
thermodynamics.

• Error bars are missing throughout. They must be added in the graphs,
also the numbers in the text should be given with errors, especially those
for (nonzero) asymmetry parameters.

• Given the complexity of the model, the code should not just be “available
upon request”, it should be published together with the manuscript. This
holds especially for the off-lattice code.

These issues must be fixed before the paper can be published.

Next I will summarize the conceptual deficiencies in the presentation of the
paper.

Monte Carlo model :

Description of the model :

Helmholtz free energy: On page 7, it is claimed that “the particle motion
is governed by the Helmholtz free energy A”. However, the Helmholtz
free energy is a global thermodynamic quantity and does not govern
local microscopic dynamics. Probably, the authors to refer to some
kind of effective coarse-grained potential here.

Dynamics and Boltzmann distribution: Same page, the authors state
“The probability of a particle moving from one cell to another is
given by the Boltzmann distribution p = exp(−∆A/kBT )”. This
statement does not make sense, as already apparent from the fact that
the “probability” p can be larger than one, p > 1 for ∆A < 1. It is
also not consistent with the subsequent description of the algorithm,
where it becomes clear that the probability of moving to a certain
site also depends on the number of equivalent accessible sites etc.

Design of the model :

Internal energy: The internal energy change after moving one particle is
described as ∆U = F∆R (page 7), where F is the a force acting on a
particle that is constructed from the occupancy of neighboring sites.
First, there is an obvious sign error there, probably a typo, it should
really read ∆U = −F∆R: The energy decreases if the particle follows
the force. For example, in a gravitational field, if you roll downhill,
your potential energy decreases. Second, and more seriously, it is easy
to see that this specific force field, as it is formulated on a lattice, is
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not conservative. For example, consider a system where one particle
is fixed at the origin, and a second particle undergoes a cyclic motion
from (1, 0) → (2, 0) → (2, 1) → (1, 1) → (1, 0). Then the total
internal energy change after the cycle is not zero, even though the
final and initial configuration are exactly the same. Therefore, this
lattice force field cannot be derived from a potential.

Entropy: The probability of moving to a neighbor lattice site is associ-
ated with an entropy change, which is estimated by the sum of step
lengths to unoccupied neighbor cells. This specific form of entropy
is entirely heuristic and again, it cannot be derived from an effective
entropy potential. One should also note that it is not necessary to in-
clude translational entropy in a proper Monte Carlo algorithm: The
algorithm will automatically account for it.

Jump probability (page 8): From the previous two points, it is already
clear that the quantity ∆A in the expression for p cannot be associ-
ated with a well-defined effective potential A. However, even if such
a potential existed, the choice of jump probabilities seems rather ar-
bitrary. For example, page 8 says “If 0 < p < 1, the destination cell
is chosen at random from all those with the same largest jump prob-
ability p < 1”. This is not well motivated. Why not choose from all
cells with weighted probabilities according to their jump probability?

The algorithm described here is not motivated by any microscopic
considerations. With the same right, assuming that ∆A could really
be derived from a global effective potential function A, one could also
use a standard Metropolis algorithm, which would satisfy detailed
balance by construction.

Summary: The presented Monte Carlo algorithm does not satisfy detailed
balance for two reasons: First, even though the notation suggests
otherwise, the underlying quantities p are not associated with a well-
defined effective energy function A. Second, the jump probabilities
are chosen heuristically according to some random rules which are
not well-motivated. It is not surprising that these rules do not satisfy
detailed balance, because imposing detailed balance usually requires
special efforts.

In fact, these rules would not even guarantee global balance if A were
well-defined. On the other hand, they do define some kind of stochas-
tic Markovian dynamics, and according to the central limit theorem
of finite Markov systems, the probability distribution will converge
against some stationary fixed point, which however differs from the
Boltzmann distribution N exp(−βA). Furthermore, this stationary
state would include persistent currents by default, because, as ex-
plained above, special efforts must be taken to remove them in such
a model.
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Interpretation of the results :

Thermodynamic equilibrium: The term “thermodynamic equilibrium”,
by definition, refers to a stationary state without currents. One of
the central postulates of thermodynamics is that every physical closed
dynamical system reaches thermodynamic equilibrium at some point.
This is a postulate and might be debated. However, a system with
persistent currents as described in the manuscript would not be con-
sidered to be at thermodynamic equilibrium.

Detailed balance and nonequilibrium thermodynamics: As correctly stated
in the manuscript, the lack of currents is associated with microscopic
detailed balance – or, putting it the other way round, breaking de-
tailed balance normally generates currents. However, this also implies
that entropy is constantly being produced, and dissipated, see, e.g.,
References [1-3].

Dynamical systems with broken detailed balance have been discussed
in nonequilibrium thermodynamics for many decades. Physically,
they are used to describe open dissipative systems, for example, liv-
ing systems or active systems [1,2], which are stabilized via a steady
input of energy. It is easily possible to design stochastic dynami-
cal systems that break detailed balance, as has been done, e.g., in
the present manuscript or in Refs. [3,4]. In Monte Carlo simula-
tions, implementing such dynamics can have the advantage that a
desired probability distribution function can be sampled much more
efficiently [4].

Detailed balance and Monte Carlo: The Monte Carlo method has been
introduced by Metropolis et al as a method to efficiently sample a
desired target probability distribution. The necessary ingredient for
this is to impose global balance. Detailed balance is not strictly
necessary. With the exception of kinetic Monte Carlo (which has not
been used here), Monte Carlo dynamics is typically not realistic.

Nevertheless, Monte Carlo is also used to study dynamical systems
in a coarse-grained sense. However, it is important to note that in
this type of model, you get out what you put in. If you implement
Monte Carlo moves that break detailed balance, then clearly, you will
find that detailed balance is broken in your system. Therefore, Monte
Carlo simulations designed to model dynamics at thermal equilibrium
must be set up such that the Monte Carlo moves satisfy detailed
balance.

Is detailed balance always fulfilled? As stated above, the claim that closed
physical dynamical systems reach thermodynamic equilibrium is a
postulate. It lies at the heart of the second law of thermodynamics,
but being a postulate, it could be violated in certain cases. In fact,
it is violated, e.g., for integrable systems such as linear harmonic
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chains. It has not been proved rigorously except for a few special
cases.

On the other hand, the opposite claim that detailed balance might
be broken in realistic (closed) physical system fundamentally chal-
lenges the foundations of thermodynamics. Such a claim cannot be
based on Monte Carlo simulations. This is because, as explained
above, Monte Carlo dynamics are inherently artificial, and it is much
easier to implement dynamical models that break detailed balance
than to implement models that satisfy detailed balance. The claim
would have to be based on experiments, or on molecular simulations
of a truly microscopic model, e.g., classical Hamiltonian dynamics
or Schrödinger dynamics. In fact, there have been several claims in
the past, based on atomistic simulations, that the second law might
be broken in nanoscale systems. For example, spontaneous unidirec-
tional currents through pores or the like were observed in simulations.
In all of these cases, it eventually turned out that the claimed effects
could be attributed to numerical artefacts of the simulations.

The central question is whether a system can thermalize, which is
a valid question especially for nanoscale systems and subject of ac-
tive research. Specifically, the gas diffusion case discussed in the
manuscript is related to the question whether a classical ideal gas
can thermalize. This is one of the few cases which has been studied
very intensely and for which rigorous results exist (the H-theorem,
see [5]). Ideal gases do thermalize! In the manuscript, nonideal
gases with excluded volume interactions are considered, which might
change the situation, but I would be very surprised if it did. This is
one of the reasons why it is so important that the authors describe
their simulations for the gas diffusion simulations in more detail. If
they maintain the claim that detailed balance is broken in these (off-
lattice) systems, they should prove it much more carefully, e.g., by
systematic variation of the time step, by studying the relaxation of
several quantities as a funciton of simulation time, and by a solid
assessment of error bars.
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