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Abstract. 

 A modified Anderson-Weiss approximation for describing double quantum (DQ) NMR experiments in systems with many 

I = 1/2 spins is proposed, taking inter-spin flip-flop processes into special consideration. In this way, an analytical result is 

derived for multi-spin systems for the first time. It is shown that in the initial stages of DQ intensity build-up, the probability 

of flip-flop processes in DQ experiments is half as large as in analogous Hahn-echo or free-induction-decay experiments. 15 

Their influence on the experimentally observed DQ NMR signal becomes dominant at times ( )1/ 2

2 29 / 2 2.12eff efft T T> ≈  , 

where 2

effT  is the effective spin-spin relaxation time measured by the Hahn echo. Calculations and a comparison with spin-

dynamics simulations of small spin systems up to 8 spins reveal a satisfactory agreement.  

1 Introduction. 

 The seminal papers by Baum and Pines (Baum et al., 1985; Baum and Pines, 1986) started the field of Double-Quantum 20 

(DQ), or more generally Multiple-Quantum (MQ). At the qualitative level, the idea of the method is quite simple. The 

system of spins under study is continuously irradiated by special sequences of radiofrequency (RF) pulses, which allows one 

to change the relative importance of different parts of the initial Hamiltonian of spin-lattice interactions, inducing different 

quantum transitions in the spin system. In other words, irradiation creates a new effective interaction Hamiltonian that 

induces more selective quantum transitions in the spin system than the original one. In the mentioned initial papers (Baum et 25 

al., 1985; Baum and Pines, 1986) the method was mathematically justified for solids, in which thermal motions of spins can 

be neglected in comparison with the initial spatial distances between them. An additional feature of solids is the large 

difference between the spin-spin and spin-lattice relaxation times 2 1

effT T .  This allows us, at times much shorter than the 
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spin-lattice relaxation time 1t T , to neglect the influence of the so-called non-secular part of the spin-lattice interaction 

Hamiltonian on the dynamics of the spins under study and to limit ourselves to considering only its secular part.  30 

                                                      

Subsequently (see, for example,  Graf , 1998; Dollase et al., 2001; Saalwächter , 2002a, 2002b, 2007; Saalwächter et al., 

2003, 2006; Fechete, et al., 2002; Mordvinkin and  Saalwächter, 2017; Mordvinkin et al., 2020; Vaca Chavez and  

Saalwächter, 2011; Shahsavan et al., 2022, and references therein), the method was phenomenologically generalized for the 

case when the relative spatial displacements of spins during the experiment cannot be considered small, but the situation is 35 

such that 2 1
effT T .  In recent work (Brekotkin et al., 2022) it has been proven by methods of statistical physics that in the 

limit 0∆ →  , where ∆   is the time interval between the nearest RF pulses, the phenomenological method of accounting for 

spatial displacements of spins during the experiment gives correct results and the general relation allowing for quantitative 

accounting of the corresponding corrections in case of necessity is obtained. .  Interesting analytical results related to DQ 

NMR have recently been obtained for model solid-state many-spin one-dimensional I=1/2 systems in which magnetic 40 

dipole-dipole interactions have been considered only between nearest neighbors (see Bochkin et al., 2022; Bochkin et al., 

2024; Fel’dman et al., 2022, and the literature cited therein).  

 

For the case of the spin system I = 1/2, the dominant interactions determining the spin relaxation are, as a rule, magnetic 

dipole-dipole interactions. The secular part of the Hamiltonian has the following form (see for example refs. Fatkullin et al., 45 

2012; Fatkullin et al., 2013):  

        ( ) ( )sec 1ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ2 2
2

z z x x y y z z

dd ij i j i j i j ij i j i j i j
i j i j

H I I I I I I I I I I I Iω ω + − − +

< <

= − − = − + 
 
 

∑ ∑  ,                                                                (1)                  

where ˆ ˆ ˆx y

k k kI I iI+ = + , ˆ ˆ ˆx y

k k kI I iI+ = + ˆ ˆ ˆx y

k k kI I iI− = − . The parameter ijω  describes in frequency units the effective strength of the 

dipole-dipole coupling of spins with numbers i  and j. It is given by the following expression:  

( ) ( )2

0

2 2

3

1 3cos 1 3cos1
8 2ij

ij ij

ij

ijD
r

µ γ θ θ
ω

π

− −
= =



,                                                (2)                                                     50 

where ijr  is the distance between interacting spins, ijθ  is the angle between direction Z , defined as the direction along 

which the external magnetic field is aligned, and the vector connecting the discussed spins, 𝐼𝐼𝑖𝑖
𝛼𝛼 is the operator of the 𝛼𝛼 

component of the spin with number i , ℏ is Planck’s constant divided by 2π , 0µ  the magnetic field constant and 𝛾𝛾 is the 

gyromagnetic ratio of the spins. ( )2 3

0
/ 4ij

ij
D rµ γ π=    is the dipole-dipole coupling constant. The Hamiltonian (1) in this 

paper plays the role of the original spin-lattice interaction Hamiltonian. In the lowest order of perturbation theory, it induces 55 

in a spin system 0-quantum transitions (dephasing processes or 0-quantum coherence) by terms  proportional to ˆ ˆz z

i jI I  , 1-
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quantum transitions (transitions with a flip of one of a pair of interacting spins or 1-quantum coherence) and 2-quantum 

transitions (coordinated transitions of two spins or 2-quntum coherence) by terms proportional ˆ ˆ ˆ ˆx x y y

i j i jI I I I+ .   

 

Under irradiation of the spin system by a special RF pulse sequence referred to as Baum-Pines (BP) sequence (see details in 60 

Baum et al., 1985; Baum and Pines, 1986), the dynamics of the spin system at times 1t T  is determined not only by the 

Hamiltonian (1), but also by the effects associated with the irradiation. In fact, there are two conceptually different 

experiments, each consisting of two stages of equal time duration DQτ . The first half of both experiments is called the 

excitation stage, and the second half is called the reconversion stage. At the moment of time 2 DQτ  the signal of the studied 

spin system is measured. Normally, a 4-step phase cycle is applied to the relative overall phase of the reconversion stage in 65 

combination with the receiver phase to filter for either (4n+2)-quantum coherences (“DQ signal”) or 4n-quantum coherences 

(“reference signal”). In the following, we use a simplified yet equivalent description of these two experiments (Saalwächter, 

2014). They essentially differ  from each other by the fact that in the first case during both periods of the experiment the 

phase of RF exposure does not change, and in the second experiment during the period of reconversion the phase of RF 

exposure changes by 90°, which changes a sign of the of the resulting effective spin Hamiltonian, i.e. performs the time-70 

reversal operation with respect to the spin variables.  We will denote the measured signal in the first experiment by 

( )0 2 DQA τ , and in the second experiment by ( )1 2 DQA τ . 

 

In solids, the joint effect of mentioned factors, in the limit 0∆ → , where ∆ is time interval between the nearest RF pulses, it 

is possible to describe the spin system’s time evolution in terms of an effective DQ Hamiltonian having the following 75 

structure: 

( ) ( ) ( ) ( ) ( ) ( )1 1
2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ DQ DQn t n tn ij

DQ ij

y y x x

i j i j i j i j
i j i j

I I I I I I I IH θ t θ t ω
ω− − + + − −

< <

− = − += −∑ ∑



,                                                            (3)                 

where ( )xθ is the Heaviside step function, 0,1n = . Note, that 0n =  corresponds to the first mentioned version of DQ 

experiment no phase change and 1n =  to the second version 90° phase shift.  

 80 

The Hamiltonian (3), in contrast to (1), induces in the lowest order of perturbation theory, or times *

flt T , where *

flT is the 

characteristic time of flip-flop processes created by Hamiltonian (1), only DQ transitions (or creates DQ coherences) of 

interacting spins. At longer times, of course more complex quantum transitions involving coherent behavior of even spins 

become essential. At time moment DQt t= the operator (3) changes time for the case, when 1n = .     
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For situations where spins are moving, expression (3) was heuristically generalized by considering the coupling constant as a 85 

function of time.    The validity of such a generalization is shown in ref. (Brekotkin et. al., 2022) by a sequential quantum-

statistical calculation showing that the terms added to the relation vanish in the limit 0∆ → ; in addition, a general relation 

is obtained that allows one to quantify the corresponding contributions to the experimentally measured signal, if necessary. 

In this paper we will ignore the mentioned effect and work with an effective Hamiltonian of mutual action of the form: 

 90 

( ) ( ) ( ) ( )( )( )1 ˆ ˆ ˆ ˆˆ DQn tn n

DQ ij

y y x x

i j i j
i j

t t I I I IH θ t ω−

<

−= −∑  ,                                                                                      (4)                          

where 

 ( ) ( ) ( ) ( )( ) 1 DQn tn

ij ij
t t

θ t
ω ω−

= −   .                                                                                                                                        (5) 

Here, ( )ij tω  can be obtained from ijω of (1) and (3) by transition to the ordinary quantum mechanical interaction (Dirac) 

representation, where the role of the zero Hamiltonian is sum of the lattice Hamiltonian and the Hamiltonian of Zeeman 95 

interaction of investigated spins with an external magnetic field. Recall that the properties of the Heaviside step  function 

used in eq. (5) are such that it ( ) 0xθ =   at 0x <   and ( ) 1xθ =   at 0x ≥ ,  which allows us to account analytically for the 

inverted sign of the DQ Hamiltonian during the reconversion period in experiments when n=1. 

 

 The Hamiltonian (4) itself is already quite complex and does not allow for accurate calculations in nontrivial cases. The 100 

standard approximation that allows one to obtain closed analytic relations is the Anderson-Weiss approximation, the second 

cumulant approximation in common parlance, which completely ignores the effects of flip-flop processes.  Meanwhile, the 

Hamiltonian (4) can be rewritten in the form: 

 

( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

ˆ ˆ ˆ ˆ ˆ ˆ ˆ2

1ˆ ˆ ˆ ˆ ˆ ˆ2
2

n n y y n y y x x

DQ ij i j ij i j i j
i j i j

n y y n

ij i j ij i j i j
i j i j

H t t I I t I I I I

t I I t I I I I

ω ω

ω ω

< <

+ − − +

< <

= − +

= − +

∑ ∑

∑ ∑

 

 

.                                                                                                  (6)   

By direct calculation one can see that: 105 

        ( ) ( )( ) ( ) ( )1ˆ ˆ ˆ ˆ ˆ ˆ; ; 0
2

ˆ ˆ ˆ ˆz n n

ij ij z i j i j
i j i j

y y x x
i j i jI t t I I I I II I I Iω ω + − − +

< <

+ = + =
      

∑ ∑  ,                                                                      (7)                              

where ˆ ˆz z

k
k

I I= ∑ is z-component of the total spin system. 
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This exact result allows us to modify the usual Anderson-Weiss approximation so that the effects of flip-flop processes will 

be accounted for on the experimentally observed signals at least in the mean-field approximation.  A detailed study of this 110 

circumstance is the main purpose of this article.   

 

 

  

      115 

2 Theoretical part.   

        2.1 General consideration. 

 An inevitable and important initial element of all quantum-statistical calculations of experimentally measured dynamical 

quantities is the transition to the interaction representation or, which is synonymous, to the Dirac representation. This 

transition is performed by dividing the full initial Hamiltonian of the system Ĥ  into a sum of the "zero" Hamiltonian 0Ĥ  120 

and the "interaction" Hamiltonian intĤ : 

0 int
ˆ ˆ ˆH H H= + .                                                                                                                                                                         (8)           

 In problems of NMR spectroscopy, the lattice Hamiltonian ˆ
LH  and the Hamiltonian of the Zeeman interaction of the spins 

under study ( 0
ˆ ˆ

Z zH Iω= Z , 0ω being the resonance frequency), are usually included in 0
ˆ ˆ ˆ

L ZH H H= + ; all other interactions 

are assumed to be included in intĤ  .  In the DQ experiments discussed in this paper, the measured quantity is the z-125 

component of the total system spin ˆ ˆz z

k
k

I I= ∑ .   The existence of the identity (7) allows one to include the DQ part of the 

Hamiltonian  
( ) ( )( )ˆ ˆ ˆ ˆ ˆfl n y y x x

DQ ij i j i j
i j

H t I I I Iω
<

≡ − +∑                                                                                                                                        (9) 

in the zero part of the Hamiltonian, thereby reformulating the transition into the Dirac representation.  Only such a procedure 

should be accurately described, since the initial Hamiltonian itself (3) is an effective Hamiltonian generated by the joint 130 

action on the spin system of the secular part of the Hamiltonian of magnetic dipole-dipole interactions (1) and the irradiation 

of the RF spin system by the Pines-Baum sequence.  

 

In the laboratory coordinate system and Schrödinger representation in the DQ resonance experiments due to the irradiation 

of the spin system of the BP sequence, or its equivalent modifications, we have an initially time-dependent Hamiltonian:  135 
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( ) ( ) ( ) ( )secˆ ˆ ˆ ˆ ˆn n

L Z dd BPH t H H H H t= + + + ,                                                                                                                   (10)                     

where ( ) ( )ˆ n

BPH t is the Hamiltonian of the interaction of the studied spin system with the irradiation field of BP pulse 

sequence of type 0,1n = .  Consequently, the evolution operator is initially a Dyson chronological, time- ordered, exponent: 

( ) ( ) ( ) ( ),

1 1

0

ˆ ˆ ˆexp
t

DQ n ni
U t T H t dt= −

 
 
 

∫


.                                                                                                                               (11) 

The transition to the interaction representation will be carried out in two steps. At the first stage the role of the zero 140 

Hamiltonian is played as usual the following Hamiltonian: 

( )0
ˆ ˆ ˆ

L ZH t H H= + .                                                                                                                                                         (12)              

After that the relation (11) can be rewritten as follows: 
( ) ( ) ( ) ( ) ( ), ,

0 1
ˆ ˆ ˆDQ n DQ nU t U t U t= ,                                                                                                                               (13)                      

where 145 

( ) { }
( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )

0 0 1 0

0

, sec

1 2 2 2

0

1sec , sec ,

2 2 0 2 2 0 2

ˆ ˆ ˆ ˆexp exp ,

ˆˆ ˆ ˆexp ,

ˆˆ ˆ ˆ ˆ ˆ

t

t
DQ n n n

dd BP

n n DQ n n DQ n

dd BP dd BP

i i
U t T H dt H t

i
U t T H t H t dt

H t H t U t H H t U t
−

= − = −

= − +

+ = +

 
 
 

 
 
 

∫

∫

 







.                                                                             (14)    

In the limit 0∆ → , according to ref. (Brekotkin et. al., 2022)  , we have    

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )0sec 0

2 2 2 2

ˆˆ ˆ ˆ ˆ ˆ ˆn n n

dd BP DQ ij

y y x x
i j i j

i j

H t H t H t t I I I IωD→

<

+ = −→ ∑

 .                                                                      (15)   

Now we can return to the relation (6) and introduce the following notations to shorten the formulas: 
( ) ( ) ( ) ( ) ( ) ( )` , ,

ˆ ˆ ˆn n n

DQ DQ yy DQ flH t H t H t= + ,                                                                                                                 (16)                                   150 

where     
( ) ( ) ( ) ( ),

ˆ ˆ ˆ2n n y y

DQ yy ij i j
i j

H t t I Iω
<

= ∑                                                                                          (17)                                                                                           

and  
( ) ( ) ( ) ( )( ),

ˆ ˆ ˆ ˆ ˆn n y y x x

DQ fl ij i j i j
i j

H t t I I I Iω
<

= − +∑   .                                                                                                                             (18)  

 155 
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In DQ experiments, the measured quantity is the z-component of the total magnetic moment of the resonant spins, which in 

turn is proportional to the z-component of the total spin ˆ ˆz z

k
k

I I= ∑ .  The measurement, as already noted, is carried out for a 

time 2
DQ

t t=  . In the high-temperature approximation by spin variables, the signal with 0,1n =  for a given spin system is 

( )
( )

( ) ( ) ( ) ( )( ), * ,0 ˆ ˆ ˆ ˆ2 2 2
2 1 s

z DQ n z DQ n

n DQ s DQ DQN eq
A Tr I U I U

I

β ω
τ τ τ=

+



,                                                                        (19)          

where sN  is the total number of spins in the system with the resonance frequency 0ω , β  is the inverse temperature, and the 160 

trace operation ( )...sTr  is performed over the spin variables, and due to the unitarity of the propagator one has 

( ) ( ) ( ) ( )( ) 1* , ,ˆ ˆDQ n DQ nU t U t
−

= and bracket ...
eq

 denotes equilibrium averaging over all lattice variables. 

  

 Note once again that [ ]0
ˆ ˆ; 0zI H =  , which allows to rewrite the expression (19) as follows:  

( )
( )

( ) ( ) ( )( ), *( . )0
1 1

ˆ ˆ ˆ ˆ2 2 2
2 1 s

z DQ n z DQ n

n DQ s DQ DQN eq
A Tr I U I U

I

β ω
τ τ τ=

+



.                                                                                     (20)     165 

Next, we represent the propagator ( ) ( ),

1
ˆ DQ nU t  as: 

( ) ( ) ( ) ( ) ( ) ( ),

1 , 1 1 , 1 1

0 0

ˆˆ ˆ ˆ ˆexp exp
t t

DQ n n n

DQ fl DQ yy

i i
U t T H t dt T H t dt= − −

    
    
    

∫ ∫ 
 

,                                                         (21)                      

where 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1

, , 1 1 , , 1 1

0 0

ˆ ˆ ˆ ˆ ˆ ˆexp exp
t t

n n n n

DQ yy DQ fl DQ yy DQ fl

i i
H t T H t dt H t T H t dt

−

= − −
     
     
     

∫ ∫

 

.                                                    (22)        

It is worth noting that the transition reflected in expressions (21) and (22) is analogous to the transition in (13) and (14), and 170 

represents the second step in transitioning to the representation of interaction that interests us.                                               

Substituting the relation (22) into (20), taking into account the identity (7), we obtain:                       

( )
( )

( ) ( ) ( )( ), *( . )0
2 2

ˆ ˆ ˆ ˆ2 2 2
2 1 s

z DQ n z DQ n

n DQ s DQ DQN eq
A Tr I U I U

I

β ω
τ τ τ=

+



,                                                                     (23)                       

where   

 ( ) ( ) ( ) ( ),

2 , 1 1

0

ˆˆ ˆ exp
t

DQ n n

DQ yy

i
U t T H t dt= −

 
 
 

∫ 


                                                                                                                             (24)       175 

Note that in deriving relations (22) and (23), only a single asymptotically exact approximation (15) is made.  
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2.2 The simplest approximation.  

If we neglect the influence of flip-flop processes, i.e., put ( ) ( ),
ˆ 0n

DQ flH t =   in the relations (21) and (22), then with respect to 

the spin variables, the relation (23) can be counted exactly, if dynamics of the lattice variables can be treated classically.  180 

Indeed, in this case ( ) ( ) ( ) ( ), 2 , 1
ˆ ˆ; 0n n

DQ yy DQ yyH t H t =     and the propagator ( ) ( ),

2
ˆ DQ nU t   with respect to spin variables take a 

relatively simple form: 

        ( ) ( ) ( ) ( ) ( ) ( ),

2 , 1 1

0

ˆˆ ˆ ˆexp exp 2
t

DQ n n n y y

DQ yy ij i j
i j

i
U t H t dt i t I Ij

<

− = −
   

     
∑∫ 



 ,                                                         (25)                          

where 

 ( ) ( ) ( ) ( )1 1

0

t
n n

ij ijt t dtj ω= ∫    .                                                                                                                                                       (26)  185 

Substituting relations (25) and (26) into formula (20), using the algebraic properties of spin operators for I=1/2, see details in 

(Fatkullin et al., 2012; Fatkullin et al., 2013), we obtain the following simplest approximation for experimentally observed 

DQ signals: 

( ) ( )

( ) ( ) ( )
( )

( )

( )

1 0

1

0

2 21

2 2

cos
1

1
2 cos

2 cos ( 1)
4

sim

n

eq

sim DQ DQ

nDQ

DQ

ex rec

ij ij

i j eq

ex rec

ij ij

i j eq

DQ

ex n rec
DQ ik ik

k i

A A

A
I

A

τ τ

τ

j j

j j

τ

β ω
τ j j

−
≡

+

−

−

=

= + −

 
 
 

 
 
 
  
 

∑ ∏

∑ ∏

∑ ∏

,                                                                                                      (27) 

with       190 

( ) ( )
2

1 1 1 1
0

,
DQ DQ

DQ

ik ik

ex rec
ik ikt dt t dt

tt

t

ϕ ω ϕ ω= =∫ ∫    .                                                                                                           (28)  

It is important to note that the derivation of relation (27) proposed in this paper, in contrast to the previous work (Fatkullin et 

al., 2013) that does not use the Anderson-Weiss approximation directly. For a system of spin pairs, when , 1, 2i k = , our 

expression (27) exactly recovers the known result: 

( ) ( )( )0
12 121cos

2
2 n

eq

pair ex rec
n DQA ϕϕ β ωτ + −= 

.                                                                                                      (29)  195 

                                                                   

  2.3 Flip-flop transitions effect.  
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 Flip-flop transitions, as already noted, are induced by the partial Hamiltonian ( ) ( ),
ˆ n

DQ flH t  determined by the expression (18).   

Their influence on the experimentally observed signals ( )2n DQA τ   is through the Hamiltonian ( ) ( ),

ˆ n

DQ yyH t  , see relations 

(20)-(22), which can be rewritten in the following way: 200 

( ) ( ) ( ) ( )( ),

ˆ ˆ ˆ2
fln n y y

DQ yy ij i j t
i j

H t t I Iω
<

= ∑

 ,                                                                                                                        (30)                      

where 

( ) ( ) ( ) ( ) ( )
1

, 1 1 , 1 1

0 0

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆexp exp
t t

fly y n y y n

i j DQ fl i j DQ flt

i i
I I T H t dt I I T H t dt

−

≡ − −
     
     
     

∫ ∫
 

.                                                                (31) 

    

The approximation considered earlier in Section 2.b is equivalent to neglecting the dependence of operators ( )ˆ ˆ fly y

i j t
I I  on 205 

time. In this section we will consider the approximation by its projection in Liouville spin space to the initial value: 

 

     { }
{ }( )

( ) ( )( )
{ },

2 2

ˆ ˆˆ ˆ
ˆ ˆ ˆ ˆ ˆ ˆ; 0

ˆ ˆ

fl
y y y y

s i j i jfl ty y y y n fl y y

i j i j ij i jt y y

s i j

Tr I I I I
I I I I P t I I

Tr I I
≡

 



 .                                                                                                (32) 

 

The quantity  { }, ; 0n fl

ijP t does not depend on spin variables, but it is a complex function of time dependent lattice variables. 210 

Later we will see that after averaging over the lattice variables, it can be for the case of 0n =   viewed as the probability that 

during the time interval t  none of the spins in question with numbers i and j participated in the flip-flop process with another 

spins.  

 

 Consider the expansion of the value { },

2 1;n fl

ijP t t  in a perturbation theory series with respect to  ( ) ( ), 1
ˆ n

DQ flH t : 215 

     

{ } ( ) ( )
[ ]( )
( ) ( )( )

( ) ( ) ( ) ( )
[ ][ ]( )

( ) ( )( )

2

1

2 2

1 1

,

2 1 1 1 2 2
,

2 1 2 1 2 2
, ; ,

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ;
; 1

ˆ ˆ2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ; ;1
...

ˆ ˆ4

y y x x y y y yt

s i j k l k l i jn fl n

ij kl
y y

k lt
s i j

y y x x y y x x y y y yt

s i j k l k l s t s t i jn n

kl st
y y

k l s tt t
s i j

Tr I I I I I I I Ii
t t d

Tr I I

Tr I I I I I I I I I I I I
d d

Tr I I

P

t

t ω t

tt  ω t ω t

+
= − −

+ +
− +

∑∫

∑∫ ∫



.                                                                (33) 
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 The first-order contribution by ( ) ( )1

n

klω τ  in the relation (33) turns out to be exactly 0: 

( ) ( )
( )
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ; ;

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ; ; 0

y y x x y y y y y y y y x x y y

s i j k l k l i j s i j i j k l k l

y y y y x x y y

s i j i j k l k l

Tr I I I I I I I I Tr I I I I I I I I

Tr I I I I I I I I

+ = − + =

= + =

      
  

.                                                                                    (34) 220 

Then relation is thus simplified:  

( ) ( ) ( ) ( ) ( ) ( )
( )

( ) ( )( )
2 2

1 1

2 1 2 1 2 1 2 2
, ; ,

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ; ;1
; 1 ...

ˆ ˆ4

y y x x x x y yt
s i j k l s t i jn fl n n

ij kl st y y
k l s tt t s i j

Tr I I I I I I I I
P t t d d

Tr I I

t

tt  ω t ω t= − +
      ∑∫ ∫ .                                                 (35) 

The standard commutator and trace calculations on the right-hand side lead to the following result: 

( ) ( ) ( ) ( )
( )

( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ){ } ( ) ( ) ( ) ( )

2 1 2 2
, ; ,

'

2 1 2 1 2 1

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ; ;

ˆ ˆ

4 8 3
1 1

3 5 4

y y x x x x y y

s i j k l s t i jn n

kl st y y
k l s t

s i j

n n n n n n

ik ik jk jk ij ij
k

Tr I I I I I I I I

Tr I I

I I I I

ω t ω t

ω t ω t ω t ω t ω t ω t= + + + + −

      ∑

∑
,                                       (36)                         

where ' ...
k

∑  means, that summation is performed  with restrictions ,k i j≠ .     225 

   

 For the case of spins I = 1/2, the last term in the right-hand side of relation (36) is exactly 0.  This is expected because the 

mutual flip-flop transitions between spins with numbers i and j do not change the value of the product ˆ ˆy y

i jI I  in the case under 

consideration.  At the same time, flip-flop transitions with other system spins accounted for in the terms of the proportional 

to ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 1 2 1

n n n n

ik ik jk jkω τ ω τ ω τ ω τ+   change the value of  ˆ ˆy y

i jI I .  230 

Hereafter, we will assume that the motion of the lattice variables is correctly described by classical dynamics, which allows 

us to neglect the time ordering of the corresponding variables; the relation (35) takes the following form:  

  

  

{ } ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( )( ) ( ) ( )( )( )

2 2

1 1

, '

2 1 2 1 2 1 2 1

2 2'

2 1 2 1

1
; 1 ...

3

1
1 1 ; ; ...

6

t
n fl n n n n

ij ik ik jk jk
kt t

n n

ik jk
k

I I
P t t d d

I I t t t t

t

tt  ω t ω t ω t ω t

j j

+
= − + +

= − + + +

∑∫ ∫

∑



   ,                                    (37)                      

where ( ) ( ) ( ) ( )
2

1

2 1;
t

n n

st st

t

t t dϕ ω tt = ∫ . 235 
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  Note that in the right-hand side of (32) we have taken into account only  projections of the operator ( )ˆ ˆ fly y

i j t
I I  on the initial 

spin operator ˆ ˆy y

i jI I  and neglected by its projections on the spin operators like ˆ ˆy y

k lI I  for the cases when ,k i j≠ or ,l i j≠ . By 

direct and lengthy calculations analogous to (33)-(36) one can see that in the second order of perturbation theory by ( ) ( )n

klω τ

, the contributions from them into the expression (37) are exactly zero.   

         240 

 In further calculations, we will apply the Anderson-Weiss approximation with respect to the magnitude { },

2 1;n fl

ijP t t  : 

{ } ( ) ( ) ( )( ) ( ) ( )( )( ){ }2 2, '

2 1 2 1 2 1

1
; exp 1 ; ;

6
n fl n n

ij ik jk
k

P t t I I t t t tj j= − + +∑ .                                                                               (38)      

It seems appropriate to note that the approximation (32) reconstructs the formal mathematical structure of the previously 

studied Hamiltonian (16) by modifying in it only the time-dependent spin-lattice interaction constant:  

 ( ) ( ) ( ) ( ),
ˆ ˆ ˆ2n n y y

DQ yy ij i j
i j

H t t I Iω
<
∑



   ,                                                                                                                  (39)                          245 

with  

    ( ) ( ) ( ) ( ) ( ), ; 0n nn fl
ij ij ijt P t tω ω=  .                                                                                                                                           (40)  

Effects associated with the Hamiltonian (18) are now considered by the presence of a multiplier ( ); 0fl

ijP t . Therefore, by 

analogy with relation (27), we can immediately write down the relations for experimentally observed signals: 

 ( ) ( )( )0 12 cos
4

n

n

eq

ex rec
DQ ik ik

k i

A β ωτ ϕϕ + −= ∑ ∏

  ,                                                                                               (41) 250 

with       

1 1

2

1 1
0

( ) ( ),
DQ DQ

DQ

ik ik

ex rec
ik ikt tdt dt

tt

t

ϕ ω ϕ ω= =∫ ∫       .                                                                                                                 (42)   

From the experimentally measured quantities  ( )0 2 DQA τ  and ( )1 2 DQA τ  one can construct the so-called normalized DQ 

build up function: 

( ) ( ) ( )
( )

1 0

1

2 21

2 2
DQ DQ

nDQ DQ

DQ

A A
I

A

τ τ
τ

τ

−
= .                                                                                                                                (43)  255 

Using the expression (41) we get: 
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( )
( ) ( )( )

( ) ( )( )

0 , 0 ,

1 , 1 ,

cos
1

1
2

cos

ex rec

ij ij
i j eq

ex rec

ij ij
i j eq

nDQ DQI
j j

j j

τ

+

−

−

=

 
 
 
 
 
 

∑ ∏

∑ ∏

 

 

.                                                                                                         (44)  

 

 

   260 

 

3 Discussion. 

     

Relations (41)-(44) are the main general results of this paper.  They have a formal mathematical structure with a more 

simplified approach, see relation (27), completely neglecting flip-flops during DC experiments. The difference is hidden in 265 

the values ( ) ( ) ( )
2

1 1

0

DQ

n n

ij ij t dt
t

j ω= ∫  in expression (27)   and ( ) ( ) ( )
2

1 1

0

DQ

n n

ij ij t dt
t

j ω= ∫  , with  ( ) ( ) ( ) ( ) ( ), ; 0n n fl n

ij ij ijt P t tω ω=  , in the 

expressions (41)-(44).  As we can see, the influence of flip-flop processes was taken into account by multiplying the 

frequencies ( ) ( )1

n

ij tω  by the values ( ), ; 0n fl

ijP t , defined by the approximation (32). From this definition, it is natural to 

expect that the quantities discussed ( ),n fl

ijP t  should be closely related to the probabilities of spins with numbers i and j 

during the time interval t not to participate in flip-flop processes with any other spin of the system. Let's start with a more 270 

detailed discussion of this connection.  

 

 3.1 Interpretation of  { },

2 1;n fl

ijP t t .  

 

The quantity under consideration is defined by relation (32), expression (37) is its initial Taylor series expansion in 275 
( ) ( ),

ˆ n

DQ flH t , and (38) is similarity of its Anderson-Weiss approximation.  Averaging in all the indicated relations was carried 

out only over spin variables. Therefore, according to formula (31) { },

2 1;n fl

ijP t t   remains a function of lattice variables, i.e., it 

depends, in general, on the spatial coordinates of spins at all previous time moments.  It is not in itself experimentally 

measurable.  Experimentally measured quantities that depend on { },

2 1;n fl

ijP t t  , as follows from formulas (19), (43), (44), 

contain an additional averaging over the equilibrium distribution of lattice variables.    In mathematical terms, the quantity  280 

{ },

2 1;n fl

ijP t t is a multidimensional random process, microscopically defined by the Hamiltonian of lattice variables ˆ
LH . 
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   If we average the expression (37) over the lattice variables, we obtain: 

{ } { }

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( )( ) ( ) ( )( )( )

2 2

1 1

, ,

2 1 2 1

'

2 1 2 1 2 1

2 2'

2 1 2 1

; ;

1
1 ...

3

1
1 1 ; ; ...

6

n fl n fl

ij ij eq

t
n n n n

ik ik jk jk eq
kt t

n n

ik jk
eq eqk

P t t P t t

I I
d d

I I t t t t

t

tt  ω t ω t ω t ω t

j j

≡

+
= − + +

= − + + +

∑∫ ∫

∑



.                                                                   (45) 

Using the Anderson-Weiss approximation for this relation, we obtain: 285 

{ } ( ) ( ) ( )( ) ( ) ( )( )( ){ }2 2, '

2 1 2 1 2 1

1
; exp 1 ; ;

6
n fl n n

ij ik jk
eq eqk

P t t I I t t t tj j= − + +∑ .                                                                   (46) 

An expression similar to eqs. (45,46) with numerical multiplier accuracy was obtained in ref. (Fatkullin et al., 2012), which 

discussed the modified Anderson-Weiss approximation with respect to the Free Induction Decay signal of the proton spin 

system: 

( ) ( ) ( ) ( ) ( ) ( ) ( )( ), '

2
0

1
exp 0 0

6

t
FID fl

kl km km lm lmeq eq
m

I I
t d t A t A A t AP tt

+
= − − +

 
 
 

∑∫    



,           (47)                                    290 

where ( ) ( ) ( )2kl klkl t A t J tA = − , klJ  is the constant of exchange interaction, J-coupling,   between spins with numbers k

and l ,(misprint with numerical coefficient before exchange constant in (Fatkullin et al., 2012) is corrected) and 

( )
( )

( )( )( )
2 2

2

3
1 3coskl kl

kl

A t t
r t

γ
θ= −



 with variables identical to the expression (2) of this paper.  The value ( ),FID fl

kl tP   can 

be viewed as the probability that a given pair of numbered k and l spins will not participate in flip-flop processes over time t 

with any third spin of the system. 295 

In terms of present paper, 0klJ = , ( ) ( )2kl klA t tω= , if to consider motions of the lattice variables as classical, the 

expression (47) can be rewritten in the following way: 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( )( ) ( ) ( )( )( ){ }
, '

2
0

2 2' 0 0

2 1
exp 0 0

3

1
exp 1 ; 0 ; 0

3

t
FID fl

kl km km lm lmeq eq
m

km lm
eq eqm

I I
t d t

I I t t

P tt  ω t ω ω t ω

ϕϕ

+
= − − +

= − + +

 
 
 

∑∫

∑



.                                         (48)          

The difference in the ratios (46) and (48) in the numerical coefficients 1/6 and 1/3, respectively, is noticeable. It is related to 

the fact that in the first case the flip-flop processes are induced by the modified RF irradiated Hamiltonian (4) and in the 300 

second case by the secular part of the Hamiltonian of magnetic dipole-dipole interactions (1).  The indicated difference in the 

numerical coefficients indicates that in the case of DQ experiments, the influence of flip-flop processes is weaker than for 
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FID or Hahn echo and will appear at later times.  To complete the picture, it seems appropriate to quote an expression from 

ref. (Fatkullin et al., 2012) for the probability that spin number k will not participate in flip-flop processes at intervals t:    

( ) ( ) ( ) ( ) ( ){ }
( ) ( )( ){ }

, '

2

0

2'

1
exp 0

6

1
exp ; 0

3

t

FID fl

k km km eq
m

ex

km
eq

m

I I
t d t A A

I I
t

P ttt 

ϕ

+
= − −

+
= −

∑∫

∑

 



,                                                                   (49)                                   305 

where the second line on the right-hand side is rewritten in terms of the variables of this paper. 

From these examples, it seems to us that the value { },

2 1;n fl

ijP t t   for the case, when 0n =  can be regarded as a conditional 

probability for spins with numbers i and j not to participate in flip-flop processes with other system spins during the time 

interval 1 2t t t≤ ≤  , provided that the lattice variables changed along the phase trajectory defined by a particular set of lattice 

coordinates during the specified time interval.   310 

 

3.2 The case of a (quasi-)rigid lattice and Anderson-Weiss approximation.  

 

In this case spins make only small oscillations in the vicinity of the equilibrium positions. Alternatively, the case also applies 

to anisotropic fast-limit motions (such as in polymer networks at high temperatures), where the dipolar couplings are 315 

replaced by quasi-static, possibly rather small residual dipolar couplings of order ( )/ 53 ij Nω , where N is the number of 

statistical segments between crosslinks. Also in this case, relevant oscillations around the mean value of ( )/ 53
ij

Nω  are 

rather small for relevant long timescales. In both cases, the time dependence of frequencies ( )ij tω  in the Hamiltonian (4) 

can be neglected and consequently ( ) ( ) ( )( ) 1 DQn tn

ij ijt θ tω ω−
= − . Then, the signal ( )1A t  is always fully recovered at time

2 DQt t=  . Our approximation (32) preserves this property.  This follows from the relations (37) and (38), since as is easy to 320 

see, we have for 0 DQt t≤ ≤ : 

{ } { }1, 1,; 0 ; 0fl fl

ij DQ ij DQP t P ttt + = −                                                                                                                                      (50)   

and therefore 

( ) ( ) { } { }( )1 , 1 , 1, 1,

1 1 1

0

; 0 ; 0 0
DQ

ex rec fl fl

ij ij ij ij DQ ij DQP t P t dt
t

j j ω tt − = + − − =∫  

   .                                                                                     (51)   

Note that this property is not trivial at all, since the flip-flop processes are elementary steps of spin diffusion, which is 325 

irreversible for the signal ( )0
2 DQA τ   and reversible in time for the signal ( )1

2 DQA τ .  This property allows us to rewrite the 

relation (44) for the rigid lattice as follows: 
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( ) ( )1 1
1 cos

2
rig ex rec

nDQ ij ij
i j eqs

DQ N
I j jτ − +=

 
 
 

∑ ∏   .                                                                                                           (52)   

Using expression (42) we can rewrite the expression (52) as follows: 

( ) ( )
2

0

1 1

0

1 1
1 cos ( )

2

DQ

rig

nDQ ij
i js eq

DQ t dt
N

I
t

ωt −=
  
     

∑ ∏ ∫  .                                                                                              (53) 330 

Let us now consider the following quantity: 

 ( ) ( )
2

0

1 1

0

2 cos ( )
DQ

i DQ ij
j

eq

t dt
t

t ω∏ ≡
 
 
 

∏ ∫  .                                                                                                                     (54)                                   

Decomposing the right part of it into a Taylor expansion, we obtain: 

( )
2 2

(0) (0)

2 1 2 1

0 0

1
2 1 ( ) ( ) ...

2!

DQ DQ

i DQ ij ij eq
j

dt dt t t
tt

t ω ω∏ = − +
 
 
 

∏ ∫ ∫ !!   .                                (55)                                                    

Considering the quantities ( )0

1( )ij tω  as stochastic stationary random processes whose correlation functions have symmetry 335 

with respect to time reversal, we obtain: 

 

( )

( ) ( ) ( )

2 2

(0) (0)

2 1 2 1

0 0

2

0, 0, (0 ) (0)

0

1
2 1 ( ) (0) ...

2!

1 2 ; 0 0; 0 ( ) (0) ...

DQ DQ

DQ

i DQ ij ij eq
j

fl fl

DQ ij ij ij ij eq
j

dt dt t t

d P P

tt

t

t ω ω

tttt    ω t ω

∏ = − − +

= − − +

 
 
 

 
 
 

∏ ∫ ∫

∏ ∫

!!

!!

  .                                                                      (56) 

Then we can make mean-field like approximation to the right part of the expression (57):  

 

( ) ( ) ( ) ( )

( ) ( ) ( )

2

0, 0, (0 ) (0)

0

2

0, 0, (0 ) (0)

0

2 1 2 ; 0 0; 0 ( ) (0) ...

1 2 ; 0 0; 0 ( ) (0) ...

DQ

DQ

fl fl

i DQ DQ ij ij ij ij eq
j

fl fl

DQ ij ij ij ijeq eq
j

d P P

d P P

τ

τ

τ τ τ τ τ ω τ ω

τ τ τ τ ω τ ω

∏ = − − +

− − +

 
 
 

 
 
 

∏ ∫

∏ ∫

 

 

.

  .                                                 (57)       

By definition, see expression (32), we have ( )0, 0; 0 1fl

ijP = , therefore we can rewrite the expression (57) as the following: 340 

( ) ( ) ( )

( ) ( )

2

0, (0) (0)

0

2

0, (0 ) (0)

0

2 1 2 ; 0 ( ) (0) ...

1 2 ; 0 ( ) (0) ...

DQ

DQ

fl

i DQ DQ ij ij ijeq eq
j

fl

DQ ij ij ij eq
j

d P

d P

τ

τ

τ τ τ τ τ ω τ ω

τ τ τ τ ω τ ω

∏ − − +

= − − +

 
 
 

 
 
 

∏ ∫

∏ ∫



.

.                                                          (58) 
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Remembering that we started with the approximation of the product of cosines, see the relation (54) and remembering that 

for a rigid lattice ( )(0)
ij ijtω ω= , it is natural to use the following approximation for the original relation (53):  

( ) ( ) ( )
2

2 0 ,

0

1 1
1 cos 2 2 ; 0

2

DQ

rig fl

nDQ ij DQ ij

i js

DQ d P
N

I
τ

ω τ τ τ ττ − −=
  
    
  

∑∏ ∫ .                                                                         (59)  

Using the approximation (46) for the value ( )0 , ; 0fl

ij
P τ , after a number of calculations the expression (59) is transformed to 345 

the form: 

 ( ) ( )1 1
1 cos

2
rig

nDQ ij ij
i js

DQ T
N

I ωτ −=
 
 
 

∑∏ ,                                                               (60)                                                                                                                                                             

with  

  

( ) ( )

( ) ( )( )

2 ' 2 2

2 2

2

1

6

2 1
2 1 exp 4

ij ik jk
k

DQ

ij ij DQ ij DQ

ij ij

I I

T erf

ω ω

pτ
τ τ

+
Ω ≡ +

= Ω − − − Ω
Ω Ω

 
 
 
∑

.                                                                                  (61)                             

The expression (60) has the following asymptotic values:      350 

   ( )

2 2 1

2
,

1

2

1

21 1
1 cos

2

eff

ij DQ DQ ij
i js

rig

nDQ
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ij DQ ij
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N
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N

I

ω τ τ
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ω τ

τ

−

−

Ω ∝

− Ω ∝
Ω

=






         
   

∑

∑∏



2

.                                                         (62)              

    

For cases in which the spatial displacements of spins during DQ experiments cannot be neglected, the Anderson-Weiss 

approximation is usually used. With respect to our expression (44), it leads to the following formula: 

  ( )
( ) ( )( )

( ) ( )( )

20 , 0 ,

21 , 1 ,

1
exp

1 2
1

12
exp

2

ex rec

ij ij
eqi j

ex rec

ij ij
eqi j

nDQ DQI
j j

j j
τ

− +

−

− −

=

  
    
    

   

∑ ∑

∑ ∑

 

 

.                                                                                     (63) 355 

If all spins have an equivalent environment, then the expression is simplified: 

( ) ( ) ( ) ( ) ( )( )0 , 0 , 1 , 1 ,1
1 exp

2
ex rec ex rec

ij ij ij ijeq eq
j

nDQ DQI j j j jτ − − +
  

=   
  
∑     .                                                                       (64)    
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3.3 Estimation of characteristic flip-flop transition times in DQ experiments. 360 

 

As we noted at the beginning of this section, the new expressions for the DQ signals (41) differ significantly from the 

simplified one (27) only at sufficiently large times fl

DQt t≥ , where fl

DQτ  is the characteristic time of the flip-flop processes 

determined by the value { }, ; 0n fl

ijP t , see expression (38). Now we will try to express this time through the effective spin-spin 

relaxation time 2

effT  , defined by the relation ( ) 1

2

FID effg T e−=  , where ( )FIDg t   is the FID or Hahn echo signal governed by 365 

dipolar dephasing and an approximately Gaussian initial decay. To do this, let us begin by analyzing the modified Anderson-

Weiss approximation for ( )FIDg t
 obtained in ref. (Fatkullin et al., 2012)  and written in terms of the variables of this paper: 

   ( ) ( ) ( ) ( ) ( ) ( )' ,

, 0

3 4
exp 1 0

4
FID FID fl

kl kl kleq
k ls

t

g t I I t P
N

d t ω t ω tt= − + −
 
 
 

∑ ∫ .                                                               (65) 

Since we are interested in relatively short times in the relation (64) we can put ( ), 1FID fl

klP τ = , which, combined with the 

assumption that all spins have the same environment, allows us to convert it to the form: 370 

    ( ) ( ) ( ) ( )( )( ){ }2' 03
exp 1 ; 0

2
FID

kl
eql

g t I I tϕ= − + ∑ .                                                                                                  (66)   

If we apply the Anderson-Weiss approximation to expression (45), we obtain

{ } ( ) ( ) ( )( ) ( ) ( )( )( ){ }
( ) ( ) ( )( )( ){ }

2 2, '

2'

1
; 0 exp 1 ; 0 ; 0

6

1
exp 1 ; 0

3

n fl n n

ij ik jk
eq eq

k

n

ik
eq

k

P t I I t t

I I t

j j

j

= − + +

= − +

∑

∑
,                                            (67)                              

where we put, that ( ) ( )( ) ( ) ( )( )2 2' '; 0 ; 0n n

ik jk
eq eqk k

t tj j=∑ ∑ . Note that by virtue of the last approximation the values 

{ }0, ; 0fl

ijP t   and ( ),FID fl

k tP   are equal for n=0. 375 

Let us now consider the case of the DQ experiment, n=0, i.e., no time reversal operation with respect to spin variables is 

performed at time DQt t= . We see that the expressions for ( )FIDg t   and { }0, ; 0fl

ijP t   are similar. Now we can determine the 

corresponding characteristic times by means of the relations: 
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ij DQ fl
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g t
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t
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T

α
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= −
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   
  
   

,                                                                                                             (68)                               

where 1 2α≤ ≤  is the system dependent exponent. In solids  2α =  , in high molecular polymer melts, 1.25 1.75α≤ ≤ , 380 

(see, for example Kimmich and  Fatkullin, 2017; Rössler et al., 2013;  Fatkullin et al., 2015), for low molecular liquids  

1α = ( see, for example Mehring, 1983; Abragam 1961).  From the relations (66), (67) and (68) follows the following 

relation between the discussed characteristic times: 

( )1/

,

2

9

2
DQ fl eff

ij
T T

α

= .                                                                                                                                                                   (69)      

   We see that the numerical multiplier linking the two characteristic times is quite large, even with the largest possible value 385 

of the exponent  2α =  :  
1/ 2

,

2 2

9
2.12

2
DQ fl eff eff

ijT T T= ≈ 
 
 

 .                                                                                                    (70) 

The latter makes it natural to consider time 
1/ 2

2 2

9
2.12

2
eff effT T≈ 

 
 

  as a lower bound, starting from which the influence of 

flip-flop processes becomes dominant. The duration of the DQ experiment is equal to 2 DQτ , so the influence of 

intermolecular flip-flop processes on the experimentally measured signal can be neglected at times 
1/ 2

2 2

9
1.06

8
eff eff

DQ T Tτ < ≈ 
 
 

 . 390 

 

     3.4  Numerical results and comparison with spin dynamics simulations 

 

 We now turn to comparing the results of Section 3.2, specifically the quasi-static approximation, to results of spin dynamics 

simulations based upon solving the Liouville-von-Neumann equation in small time steps for finite few-spin systems for the 395 

explicit BP pulse sequence (as well as simple FIDs after a 90° pulse), always assuming δ pulses. For time efficiency, we did 

not simulate the two different BP experiments with variable reconversion phase, but using a fixed 90° phase shift and 

filtering the density matrix for DQ coherences after the excitation block, thus calculating directly the DQ build-up curve. We 

used an earlier home-written code ( Saalwächter and  Fischbach 2002) that is not optimized (no sparse-matrix algebra is 

implemented), which means that simulations are limited to 8 spins due to the large dimension (up to 28) of the density matrix 400 

and the operators/propagators. We implemented the analytical solution, expressions (60,61), on the basis of the very same 
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code, using the same core routines handling the dipolar interaction tensors and the same input files with spin system 

parameters.  

 As to spin systems, we aimed at mimicking a simple main-chain protonated polymer, where the chain motions provide a 

fast-limit average of all conformations between two crosslinks or entanglements. This provides uniaxial averaging of all 405 

intra-chain dipolar tensors, resulting in residual coupling tensors that are all colinear (being parallel to the end-to-end 

distance of the chain) and reduced in magnitude by a factor of about 100 compared to the static limit (Saalwächter , 2007).  

A physically realistic model would have to be based on a trajectory of a molecular dynamics simulation. For simplicity, we 

chose to simulate cut-outs of all-trans alkane structures (CH2)n using canonical CH and CC distances of 0.109 and 0.154 nm, 

respectively, assuming tetrahedral symmetry, see the inset of Figure 1a. This model provides rHH = 0.178 nm and thus an 410 

intra-CH2 static-limit coupling constant of DHH/2π = 24 Hz, see equation (2). We always detect (or calculate for) the central 

protons. Uniaxial averaging is implemented by symmetric three-site jumps mimicking fast rigid-body rotation (leading to a 

scaling of the HH dipolar couplings by -0.5 when the HH bond is perpendicular to the rotation axis), providing a situation 

with all-colinear dipolar tensors. To reach residual couplings corresponding to those of polymer melts, a scaling factor of 

0.01 was applied to all couplings, leading to a dominant intra-CH2 residual dipolar coupling constant Dres
HH/2π = 122 Hz. 415 

Another set of simulations considered a propyl fragment in g+g+ conformation (locating two outer protons in the CCC 

plane) with up to two additional protons located at van-der-Waals distance above either of the two central protons (with a 

remote coupling of DHH/2π ≈9 kHz). Powder averaging was performed over only 40 angles of β between the main axis of 

the averaged tensor and the magnetic field (as we simulate in the time domain, convergence was reached within the 

discussed limited time intervals).  420 

 

 
Figure 1. 1H DQ build-up curves of all-trans alkyl cut-outs rotating about the molecular long axis (z) or about an axis 

inclined by 20° (a) from spin-dynamics simulations and (b) analytically calculated from expressions (60,61).  

 425 
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Simulation results of DQ build-up curves are compared in Figure 1a for a CH2 group (for which simulation and analytical 

prediction are identical) and for rotating alkyl cut-outs starting with propyl (6 protons). For rotation around the all-trans (z) 

axis, the secondary couplings of the central CH2 protons to the ones on the side are very small after uniaxial z-averaging, due 430 

to angles between the HH vectors and the z axis being close to the magic angle. This is obvious from the very small 

difference of the CH2 and the “propyl z“ responses. To mimic a more complex spin system with a larger spread of couplings, 

we inclined the rotation axis by 20°, rending the couplings of the central CH2 group to the ones on the different sides 

different. As a result, the coherent oscillations are significantly damped. Adding more CH2 groups (with butyl being the 

largest feasible spin system for the simulations) damps the oscillations even more, leading to a build-up curve that reaches 435 

the expected plateau at IDQ = 0.5 from below.  

 

 

 
  Figure 2. 1H DQ build-up curves of alkyl cut-outs, comparing spin dynamics simulation results and analytical calculations, 440 

(a) in all-trans conformation rotating about an axis inclined by 20° (all couplings scaled by 0.01, see Figure 1) and (b) propyl 

(6 spins) in static g+g+ conformation (all couplings scaled by 0.005), with up to two additional remote protons located at van-

der-Waals distance above either of the two central CH2 protons (DHH/2π ≈ 9 kHz). Simulated FID signals are also shown to 

indicate T2
eff.  

 445 

The analytical results shown in Figure 1b, for the first time possible for systems beyond a spin pair, mimic these trends 

surprisingly well. Notably, the changes in the build-up curves upon adding more CH2 groups, which is easily possible in the 

analytical calculations, does not change the result significantly. For a more quantitative comparison, we directly compare in 

Figure 2a the simulations and analytical calculations for the propyl 20° and butyl 20° cases.                                                              
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While the agreement between the former pair is very satisfactory, large deviations are observed in the latter case. This may 450 

well be due to the finite spin system and specificities related to the all-colinear dipolar tensors. In Figure 2 we also plot 

simulated FIDs, which can be used to extract the T2
eff. Up to 2DQ

effTτ = , simulated and analytical results match within 15%. 

To explore the effect of the all-tensor colinearity in these calculations, we add in Figure 2b simulations and calculations for a 

static 3D spin system (with a dipolar scaling factor of 0.005 to arrive at a similar coupling magnitude as before), in this case 

of propyl fragment in g+g+ conformation, optionally adding two remote protons. It is observed that the agreement between 455 

simulations and analytical solutions within T2
eff is generally even better, confirming the hypothesis that a three-dimensional 

distribution of variable coupling tensors is maybe a better basis for the application of the AW approximation inherent to 

expression (67). 

 

Thus, for cases when we have a large scatter in the coupling constants for different spins, this result, in our opinion, can be 460 

considered as quite satisfactory. The improvement of the result requires a more detailed treatment of flip-flop processes 

between different spins than we have done in the transition from the relation (45) to the relation (46), which does not take 

into account the returns of spin polarization during spin diffusion to the initial spin, which will lead to a slower decay of the 

function (46) at times 2

eff

DQ Tτ ≥ . Also at the discussed times it becomes necessary to improve the approximation (32) due to 

the simultaneous exchange of two different pairs of spins by their mutual spin polarizations, see the remark after formula 465 

(37). It may also be important to further develop the ideas presented in refs ( Bochkin et al., 2022; Bochkin et al., 2024; 

Fel’dman et al., 2022) .  Besides, a more detailed assessment, using more realistic and much larger spin systems, requiring 

dedicated simulation software, was beyond the scope of the present work.  

       

4 Conclusions. 470 

       

The mathematical identity (7) allows us to reformulate the derivation of experimentally measured signals in DQ experiments 

in such a way that taking into account the effects of inter-spin flip-flop processes is natural and simple.  In this way, it was 

possible for the first time to derive an analytical calculation of DQ build-up curves in multi-spin systems. From a formal 

point of view, it all comes down to redefining the phases of mutual rotations of spins induced by the DQ Hamiltonian (4), 475 

compare the relations (27) and (41), (44). The influence of flip-flops leads to the fact that the phases turn out to be linearly 

dependent on the conditional probabilities ( ),n fl

ijP t   that the corresponding pair of spins did not participate in flip-flops with 

any other spin of the system during the time interval t, see expressions (40) and (42). The structure of the DQ Hamiltonian 

(4) itself is such that the probabilities of the flip-flop processes induced by it are 2 times smaller than those induced by the 

secular part of the Hamiltonian of magnetic dipole-dipole interactions (1). The latter allows us to neglect the effects of flip-480 

flop processes in DQ experiments and use the simplified description given by the relations (27) on sufficiently long time 
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intervals in units of effective spin-spin relaxation time 22.12 efft T< .  A comparison of the predictions with spin dynamics 

simulations of simple, small spin systems of different sizes provided a promising, near-quantitative agreement for 

21.06 eff

DQ Tτ ≤ , yet the origin of existing deviations for longer times requires further work.   

 485 
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