
Analytical expressions for time evolution of spin systems affected by
two or more interactions
Günter Hempel1

1Martin-Luther-Universität Halle-Wittenberg, Institut für Physik – NMR, Betty-Heimann-Str. 7, 06120 Halle, Germany

Correspondence: Günter Hempel (guenter.hempel@physik.uni-halle.de)

Abstract. Analytical expressions for the description of the time evolution of spin systems beyond the product-operator formal-

ism (POF) can be obtained if a low-dimensional subspace of the Liouville space has been found in which the time evolution

of the spin system takes place completely. This can be achieved by a procedure that consists of a repeated application of the

commutator of the Hamiltonian with the density operator. This iteration continues as long as the result of such a commutator

operation contains a term that is linearly independent of all the operators appearing in the previous commutator operations. The5

coefficients of the resulting system of commutator relations can be immediately inserted into the generic propagation formulae

given in this article if the system contains two, three or four equations. In cases where the validity conditions of any of these

propagation formulae are not met, the coefficients are used as intermediate steps to obtain both the Liouvillian and propagator

matrices of the system. Several application examples are given where an analytical equation can be obtained for the description

of the time evolution of small spin systems under the influence of two or more interactions. This procedure for finding the10

Liouvillian matrix is not limited to time-independent interactions. Some examples illustrate the treatment of time-dependent

problems using this method.

1 Introduction

Considerable progress has been made in predicting the time evolution of spin systems. Numerical calculations or simulations

are possible in large systems of coupled spins (Kuprov et al., 2007), and the evolution during an arbitrarily long sequence of15

pulses can be simulated with the help of software (Veshtort and Griffin, 2006; Bak et al., 2000; Hogben et al., 2011), including

the effect of thermal motion.

However, there may be situations where the analytical representation of the time evolution is advantageous, providing more

physical intuition than a numerical procedure which can seem like a black box. The desire or need to take a look inside

this black box could be a motivation to deal with analytical contexts. In many cases, the product-operator formalism (POF)20

(Slichter, 1987; Sorensen et al., 1983; Packer and Wright, 1983; Wang, 1986) has been used for this purpose. This is a rather

intuitive scheme, where the states of the spin system are represented by spin operators. Such a tool can be very useful for doing

short calculations without access to fundamental quantum mechanics or without a simulation program. For demonstrations in

discussions and lectures, e.g. on the effects of pulse sequences like INEPT, HSQC (vandeVen and Hilbers, 1983), an illustrative

explanation can be given here.25
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As an example, consider the POF description of the propagation of transversal magnetization of spin I = 1/2 which is scalarly

coupled to another spin S = 1/2 (coupling constant J):

Îx
2πJÎzŜz · t−−−−−−−−−−→ Îx cosπJt + 2ÎyŜz sinπJt (1)

This means that the spin system oscillates between two states characterized by the operators Îz and 2ÎzŜz . Thus, the evo-

lution takes place in a two-dimensional subspace of the total operator space. In contrast, to describe a system with two spins30

1/2, we need a 4× 4 density matrix. This means that the Liouville-von Neumann equation is a system of 16 scalar differential

equations for each of the matrix elements. But obviously it is possible in this example to reduce the 16D problem to the 2D

one described by equation (1).

The question arises: Are there other situations where dimensionality reduction is possible? For example: Evolution of a spin

system under dipole-dipole interaction and rf irradiation, or cross polarization regarding the finiteness of rf power, i.e.35

Îz
dipole-dipole interaction + rf irradiation−−−−−−−−−−−−−−−−−−−−−−−−→ ?

Îx
cross polarization under finite rf power−−−−−−−−−−−−−−−−−−−−−−−→ ?

or others? For numerical calculations, any reduction in dimensionality leads to a reduction in computational time, but for

enabling analytical calculations, which is the goal here, it may be essential. The aims of this paper are (i) to introduce a

procedure for reducing the dimension of the problem, (ii) to show examples of the application of this procedure to obtain

analytical equations, and (iii) to show the resulting generic propagation rules as templates for the cases that the problem40

could be reduced to a 2D, 3D, or 4D problem. The latter can be seen as an extension of the product-operator formalism

to somewhat more complex situations. (i) and (ii) can be useful for simplifying some calculations by dimension reduction

without any approximation. Even for numerical calculations this can be useful if it helps to work on low-dimensional systems.

As an example, an IS spin system is mentioned here, which is subject to the di-polar interaction, but which is decoupled

by rf irradiation, and at the same time fast sample rotation (MAS) modulating the dipolar oscillation takes place. Its time45

evolution can be described by a system of 3 differential equations using the method presented here. The application of the

Shirley-Floquet method will be greatly simplified here. After all, the application of the Liouville-vonNeumann equa-tion in the

four-dimensional wavefunction space leads to a system of 16 differential equations even if some of its coefficients can be zero.

In section 2, the mathematical background is investigated, which makes it possible to reduce the dimension to the value 2

in cases where the POF is applicable. The results of this consideration are applied to more complex structures in section 3.50

Finally, in section 4, some template formulae are given together with examples for cases where a reduction to 3D, 4D, 5D and

6D problems is possible.

As usual, in this manuscript operators are denoted by a hat (Â) and superoperators by a double hat ( ˆ̂B), while the vector or the

matrix associated with this operator is denoted by the same symbol but in bold style and without hat (A, B). Scalar variables

are written in italics.55
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2 Dimension reduction through POF

2.1 Condition for validity: Commutator relations

As shown in the references cited above, the generic scheme of the POF is as follows: The time evolution can be predicted by

the propagation rules

Â
Ĥ t−−−−−−→ Âcosλt+ B̂ sinλt ;

B̂
Ĥ t−−−−−−→ B̂ cosλt− Âsinλt (2)60

if and only if[
Ĥ, Â

]
= iλB̂ and[

Ĥ, B̂
]
=−iλÂ (3)

where
[
Â, B̂

]
≡ ÂB̂−B̂Â denotes the commutator between the operators Â and B̂. That is, Eq. (2) describes the motion of the

density operator in a two-dimensional subspace of the total Liouville space of the current spin system although the Liouville

space has a much larger dimension.65

However, condition (3) is often not satisfied when more than one interaction must be considered. This applies, for example,

to an rf irradiation with strength ω1 on an ensemble of spins I = 1/2 which are coupled to another spin S = 1/2 (coupling

frequency DIS). This situation can be described by the Hamiltonian Ĥ =−2DIS ÎzŜz−ω1Îx and an initial state ρ0 = Îz . The

double calculation of the commutator of the Hamiltonian with Îz does not only result in Îz , but an additional term appears. In

this case, after the third application of this commutator operation, the result will contain only the operators already used:70 [
Ĥ, Îz

]
= iω1 Îy[

Ĥ, Îy

]
=−iDIS · 2ÎxŜz − iω1 Îz[

Ĥ,2ÎxŜz

]
= iDIS · Îy (4)

The connection between the commutator equations (3) and the propagation formulae (2) becomes much clearer if we reformu-

late both sets of equations in matrix form:Â

B̂

 Ĥ · t−−−−−−→

 cosλt sinλt

−sinλt cosλt

Â

B̂

 (5)

if and only if75 [Ĥ, Â
][

Ĥ, B̂
]=

 0 iλ

−iλ 0

Â

B̂

 (6)
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For this analysis, it is important to note that the 2×2 matrix in Eq. (5) is the exponential of the 2×2 matrix in Eq. (6) multiplied

by −it (see SI, section 2): cosλt sinλt

−sinλt cosλt

= exp

 0 λt

−λt 0

 (7)

Obviuosly, for this case, it is possible to take a particular parameter (λ) of a system of commutator equations and insert it into80

the template equation (2), which is formulated as a set of two propagation formulae. Then the following questions arise:

1. Is it possible to apply this procedure to more complex cases, such as that of Eq. (4)?

2. To what dimension can we reduce a given problem?

3. Are there any template propagation formulae for the case that a reduction to a 3D or a 4D case is possible?

As a final remark in this subsection, we note that we have performed these considerations in the operator space (Liouville85

space). This seems advantageous because it is the natural way to treat this topic. We describe states in terms of operators

rather than by wave functions, see above. Some properties of the Liouville space that are important for this work are listed in

subsection 2.2.

2.2 Properties of the Liouville space that are important in this article

In some papers, the space of the wave functions is denoted as Hilbert space in order to have a contrast to the Liouville space.90

However, this does not seem appropriate since the space of linear operators also satisfies the conditions to be a Hilbert space

(Jordan, 2005).

– Definition of the scalar product of two operators Â und B̂: (Â, B̂) := Tr
(

A† ·B
)

where A and B are the matrix represen-

tations of Â and B̂ in the wave-function space, and the superscript † means the Hermitian conjugated of the corresponding

matrix.95

– Two operators Â and B̂ are said to be orthogonal if their scalar product is zero: Â⊥ B̂ ⇔
(
Â, B̂

)
= 0.

– The Euclidean norm of an operator is defined as the square root of the scalar product of the operator with itself:

∥Â∥=
√(

Â, Â
)
=
√

Tr(A† ·A). For the sake of brevity, the term "norm" is used throughout this paper to refer to

the Euclidean norm. Rules for calculating the norm values for some of the operators used in this article are given in the

Appendix. The norm of an operator is invariant with respect to an unitary transformation, but it depends on the relevant100

space, which is different for different number of spins. Therefore, the table in the appendix contains different norm

equations for the same operator but in different spaces;

– Each operator of this space can be expanded into a series of basis operators. In particular, for the density operator ρ we

have

ρ̂= ρ1û1 + ...+ ρdûd = uT · ρ (8)105
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where d is the dimension of the particular Liouville space, ρ is a column matrix which contains the expansion coefficients

ρi (i ∈ {1..d}) of the density operator, u is a column matrix the elements of which are the basis operators, and AT is the

transpose of the matrix A. If all basis operators are pairwise orthogonal, the ρi can be calculated as follows

ρi = (ρ̂, ûi)/∥ûi∥ (i ∈ {1..d}) (9)

– Mappings between operators are described by superoperators; examples:110

• Liouville superoperator (or simply “Liouvillian”) for forming the commutator with the Hamiltonian: ˆ̂
L : Â 7→[

Ĥ, Â
]
, written also as ˆ̂

LÂ=
[
Ĥ, Â

]
;

• propagation superoperator (or simply “superpropagator”) for describing the time evolution: ˆ̂
U : ρ̂(0) 7→ ρ̂(t), writ-

ten also as

ρ̂(t) =
ˆ̂
Uρ̂(0) (10)115

– The time evolution of the density operator is governed by the Liouville-von Neumann equation. It is formulated in the

Liouville space as:

d

dt
ρ̂=−i

ˆ̂
Lρ̂ (11)

If ˆ̂
L does not depend on time, the formal solution is

ρ̂(t) =
ˆ̂
U(t)ρ̂(0) with ˆ̂

U(t) = exp
(
−i

ˆ̂
Lt
)

(12)120

Here we find a similarity to the matrix formulation of the POF (Eqs. (5) to (7)). In fact, the coefficient matrix of the

system of commutator equations is the transposition of the Liouvillian matrix, and the coefficient matrix of the POF

(Eqn. (5)) is the transposition of the superpropagator. This is proved in the SI.

– The norm of the density matrix is time invariant. This can be proven by multiplying the Liouville-vonNeumann equation

(11) scalarly with ρ̂:125 (
ρ̂ .

d

dt
ρ̂

)
=

1

2

d

dt
(ρ̂ . ρ̂) =−i

(
ρ̂ .

ˆ̂
Lρ̂
)
= 0 (13)

because the scalar product of a hermitian operator (ρ̂) with its commutator to another hermitian operator (Ĥ) is zero, see

SI.

The Liouville-space formulation of the objective of this article is: Find a subspace of the total Liouville space that contains

all possible states occurring in the current problem and that has the smallest possible dimension. An analogous procedure will130

not be possible in the wavefunction space, where the time evolution has to be calculated by Û(t)ρ̂(0)Û−1(t). In the following

section, commutator equations representing the action of the Liouvillian are established. Their coefficients are needed for

further calculation of propagation formulae.
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2.3 Two forms and two bases for the symbolic descrition of the time evolution

For practical calculations, Eq. (10) is usually transformed into a matrix equation. In the literature this is usually done in two135

different forms, both of which can be found for example in Ernst et al. (1987), subsection 2.1.4:

Form 1:

ρ(t) =U(t) ·ρ(0) (14)

The time evolution is described here in the space of N -dimensional column matrices; ρ(t) is the density matrix according to Eq.

(8), i.e. a column containing the coefficients of the expansion of the density operator ρ̂(t) into basis operators. That is, we follow140

the propagation in the space CN , the space of N -row column matrices with the basis {(1,0, ...,0)T,(0,1, ...,0)T, ...,(0,0, ...,1)T}.

The superpropagator ˆ̂
U is an isomorphism on this space and can be represented by the N ×N matrix U.

Form 2, denoted here as ´propagation formula’:

Â1
Ĥt−−−−−→ V11Â1 +V12Â2 + ...+V1N ÂN

Â2
Ĥt−−−−−→ V21Â1 +V22Â2 + ...+V2N ÂN

............

ÂN
Ĥt−−−−−→ VN1Â1 +VN2Â2 + ...+VNN ÂN (15)

This means that the density operator, which is Â1 at t= 0, evolves under the influence of the Hamiltonian Ĥ during time t into145

a linear combination of linear independent operators Â1, Â2 , ..., ÂN . Unlike form 1, here we work in the operator space with

the basis {Â1, Â2, ..., ÂN}.

Connection between both forms: U=VT if the basis column matrices (form 1) are assigned to the corresponding basis oper-

ators of the second basis. For proof, see SI 1.1.

That means, we can rewrite Eq. (15) as150

Â1
Ĥt−−−−−→ U11Â1 +U21Â2 + ...+UN1ÂN

Â2
Ĥt−−−−−→ U12Â1 +U22Â2 + ...+UN2ÂN

............

ÂN
Ĥt−−−−−→ U1N Â1 +U2N Â2 + ...+UNN ÂN (16)

The set of all U is the dual space of the set of all V. Similarly, the coefficient matrix of the commutator equations is the

transposed Liouvillian matrix, see SI 1.1.
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3 Procedure for finding propagation formulae

3.1 Requirements for a suitable subspace155

To be sure that a given subspace S contains the whole evolution of a spin system, we have to check that the action of the

propagator ˆ̂
U on each operator Â of this subspace also results in an element of this subspace:

∀Â ∈ S :
ˆ̂
U Â ∈ S (17)

A subspace with this property is said to be propagator invariant (Jordan, 2005). This is equivalent to the Liouvillian invariance

of the subspace, i.e.160

∀Â ∈ S :
ˆ̂
L Â ∈ S (18)

because the propagator is the sum of repeated ˆ̂
L actions:

ˆ̂
UÂ= exp

(
−i

ˆ̂
Lt
)
Â=

∞∑
n=0

(−it)n

n!
ˆ̂
Ln Â ∈ S (19)

A sufficient condition for a subspace spanned by û1...ûN (Eq. (8)) to be Liouvillian invariant is the requirement that the

action of the Liouvillian on any of the ûi also results in an element of that subspace, i.e. ˆ̂Lûi ∈ S ∀i ∈ {1..N}. A Liouvillian165

invariant subspace which is of interest here should at least contain the initial density operator. Furthermore, all multiple actions

of the Liouvillian on the density operator must also result in elements of that subspace: ˆ̂Ln ρ̂(0) ∈ S ∀n ∈ N.

In principle we can construct such a subspace as the set of all linear combinations of ρ̂(0), ˆ̂Lρ̂(0), ˆ̂L2ρ̂(0), ...,
ˆ̂
LN ρ̂(0), where

N is the largest number for which this operator set is linearly independent. This means that ˆ̂LN+1ρ̂(0) can be represented as a

linear combination of all lower powers. Then all further applications of ˆ̂
L lead to operators which are also linearly dependent.170

This procedure is reminiscent of the formation of Krylov subspaces in matrix spaces (Watkins, 2007). For further considerations

in this article, in particular the calculation of matrices, it is convenient to have basis operators that are pairwise orthogonal.

This can be achieved by combining the Krylov-like procedure with the Gram-Schmidt orthogonalization, which is analogous

to the Arnoldi procedure for matrix spaces (Watkins, 2007). The details of the procedure are presented in the next subsection.

3.2 First step: Creating a closed system of commutator equations175

According to the result of the previous subsection, the application of the Liouvillian to the initial density operator is repeated as

long as the result contains a component that is linearly independent of all previous results. The action of the Liouvillian consists

in forming the commutator of the Hamiltonian with the considered operator. Consequently, the search for this Liouvillian-

invariant minimum subspace is performed by repeatedly calculating the commutator of the Hamiltonian with the operator

representing the initial state of the spin system, as shown in detail below.180

Let us assume that the system under consideration is characterized by the Hamiltonian Ĥ and the initial state density operator

by Â1.
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Evaluation of the first commutator:
[
Ĥ, Â1

]
If the result is zero, the state of the spin system is constant in time; see SI, examples 0D-1 and 0D-2. In the case that this

commutator does not vanish, it can be decomposed into a term which is proportional to Â1 and another term Â12 which is185

orthogonal to the first one:[
Ĥ, Â1

]
= λ11Â1 + Â12 with Â12 ⊥ Â1 (20)

The commutator of two Hermitian operators is always orthogonal to both, as proved in the SI. This means that for a Hermitian

Â1,
[
Ĥ, Â1

]
cannot have a component that contains Â1 itself. This is different for non-Hermitian operators, see subsection

4.1.190

We replace Â12 → λ12Â2, choosing the scalar λ12 so that Â2 has the same norm as Â1. The corresponding table in the appendix

can be used to determine the norms of the operators.

Evaluation of the second commutator:
[
Ĥ, Â2

]
It will be decomposed as[
Ĥ, Â2

]
= λ21Â1 +λ22Â2 +λ23Â3 (21)195

with the condition that Â3 is orthogonal to both Â1 and Â2. The coefficient λ23 is chosen so that Â3 has the same norm as Â1

and Â2.

If Â3 = 0, i.e.
[
Ĥ, Â2

]
is a linear combination of Â1, the procedure is finished. Then we have a system of commutator equations

like Eq. (3), i.e. the usual POF.

Evaluation of the n-th commutator:
[
Ĥ, Ân

]
200

Similarly, it will be expanded into a series of operators known from the previous commutator evaluations and a remainder:[
Ĥ, Ân

]
= λn1Â1 + ...+λn,nÂn +λn,n+1Ân+1 (22)

with the condition that Ân+1 is orthogonal to all of the Âk with k ∈ 1..n. Again, the coefficient λn,n+1 is chosen so that Ân+1

has the same norm as the other operators of this set.

End of the procedure: If for a certain n=N the commutator is a linear combination of the previously determined Âk without205

any remainder, the iteration is finished. The set of pairwise orthogonal operators {Â1..ÂN} spans a Liouvillian-invariant

subspace of the entire Liouville space. Its dimension is N .

Possible modification of the procedure: The remainder of any commutator evaluation can be written as the sum of two or more

operators, all of which must be orthogonal to the other operators. In some cases, this can simplify the coefficient matrix.
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3.3 Second step: Liouvillian matrix210

The result of the whole procedure is a system of equations like the following:

[
Ĥ, Â1

][
Ĥ, Â2

][
Ĥ, Â3

]
...[

Ĥ, ÂN−2

][
Ĥ, ÂN−1

][
Ĥ, ÂN

]


=



λ11 λ12 0 ... 0 0 0

λ21 λ22 λ23 ... 0 0 0

0 λ32 λ33 ... 0 0 0

... ... ... ... ... ... ...

0 0 0 ... λN−2,N−2 λN−2,N−1 0

0 0 0 ... λN−1,N−2 λN−1,N−1 λN−1,N

0 0 0 ... 0 λN,N−1 λN,N





Â1

Â2

Â3

...

ÂN−2

ÂN−1

ÂN


(23)

As shown in SI 1.1, the coefficient matrix is the transposition of the Liouvillian matrix. This system of equations implies that the

action of the Liouvillian on any Âi (i ∈ {1..N}) leads to a linear combination of the Âi: In other words, the subspace spanned

by the operators Â1 ... Ân is both Liouvillian invariant and propagator invariant. The density operator, once being located in215

this subspace, will not leave it as long as the interaction does not vary. This explains why the POF can be successfully applied

as a 2D problem, even if the complete Liouville space has a much higher dimension.

The zeros in the upper triangle of the coefficient matrix result from the above: If the remainder of the n-th commutator is

identified with only one new operator, then λn,n+1 and Ân+1 are determined. λn,n+2, ... and Ân+2, ... are still unknown at this

step; the matrix elements to the right of them remain zero. In the case of the modified procedure mentioned above, the matrix220

structure in Eq. (23) changes. Then λn,n+2... can also be nonzero. Due to the Hermiticity of the Liouvillian, i.e. Lij = L∗
ji,

the lower triangle matrix has the same pattern of zeros as the upper one. The coefficient matrix has a band structure for the

unmodified version of the procedure.

When the basis operators are Hermitian, all elements are purely imaginary. This means that all elements of the main diagonal

must be zero. However, if the basis contains non-Hermitian operators, the main diagonal will contain non-zero elements, but225

they must be real numbers.

3.4 Third step: Estimation of propagator matrix and propagation rules

In principle, the propagator matrix can be obtained by evaluating the matrix exponential according to Eq. (12):

U = exp(−iLt) =


U11 U12 ... U1N

U21 U22 ... U2N

... ... ... ...

UN1 UN2 ... UNN

 (24)
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L is a pure imaginary matrix for an hermitian operator basis. In this case, U contains only real elements and is orthogonal. This230

means that the norms of all rows and all columns of this matrix are unity:

N∑
i=1

U2
ij =

N∑
j=1

U2
ij = 1 (25)

The propagation rules can be obtained from the elements of the transposed propagator matrix (proof see SI 1.1):

Â1
Ĥt−−−−−→ Â1 U11 + Â2 U21 + ...+ ÂN UN1

Â2
Ĥt−−−−−→ Â1 U12 + Â2 U22 + ...+ ÂN UN2

... (26)

However, it is not necessary to recompute the matrix exponential for each new situation. Instead, for low-dimensional sub-235

spaces, the generic propagation formulae shown in the next section can be used as a template. Here the elements of the

Liouvillian matrix have to be inserted directly, without the need to perform the matrix exponentialization. This was done above

for the POF example, where the constant λ resulting from the commutator equations could be used directly as the oscillation

frequency.

4 Special cases240

The situations in the examples shown below are characterized by different initial states and different Hamiltonians. The Hamil-

tonians are listed in Appendix B.

A detailed analytical consideration for each example can be found in the SI.

4.1 Reduction to a one-dimensional subspace

In this case, the commutator of the Hamiltonian with the density operator at t= 0, i.e. Â1, is proportional to Â1 itself:245 [
Ĥ, Â1

]
= λÂ1 (27)

and occurs only if Â1 is non-Hermitian, e.g. Â1 = Î+ ≡ Îx + iÎy as used for the characterization of the complex FID, see

Abragam (1961). Then the coefficient matrix consists of only one scalar λ. The propagator is also scalar:

U1D = e−iλt (28)

and the corresponding propagation rule is250

Â1
Ĥ t−−−−−−→ Â1e

−iλt (29)

Example: Rotating frame, resonance offset ∆ω, complex transversal magnetization represented by Î+:

Î+
−∆ωÎz t−−−−−−−−−→ Î+e

−i∆ωt (30)
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4.2 Case of reduction to a 2D subspace

The corresponding equations are like Eqns. (3) and (6) and belong to the POF. The Liouvillian matrix and the propagator255

matrix are the transpositions of the matrices appearing in Eqs. (5) and (6):

L2D =

 0 −iλ

iλ 0

 ; U2D = exp(−iL2Dt) =

cosλt −sinλt

sinλt cosλt

 (31)

The propagation formulae are given by Eqn. (2). It describes an oscillatory behavior between the initial state and another state

described by the commutator of the Hamiltonian with the operator corresponding to the density operator at the beginning.

In addition to the cases known from numerous POF applications, there are other situations that can be described as time260

evolution in a 2D subspace. All of them are well known; they are listed here for sake of completeness:

– FID of an ensemble of isolated pairs of equal spins (I1, I2) after a π/2 pulse; homonuclear dipolar interaction within the

spin pairs; we observe the transversal magnetization represented by the operator sum Î1x + Î2x:

Î1x + Î2x
ĤII t−−−−−−→

(
Î1x + Î2x

)
cos

3

2
DIIt− 2

(
Î1z Î2y + Î1y Î2z

)
sin

3

2
DIIt (32)

– FID of an ensemble of isolated pairs of unlike spins (I, S) after a π/2 pulse in the I channel; heteronuclear dipolar265

interaction within the spin pairs; we observe the transversal I magnetization represented by the operator Îx:

Îx
ĤIS t−−−−−−→ Îx cosDISt− 2ÎyŜz sinDISt (33)

– FID of an ensemble of spins I = 1 (e.g., 2H or 14N ) under quadrupolar interaction; we follow again the transversal

magnetization:

Îx
ĤQ t−−−−−−→ Îx cosωQt+

(
Îz Îy + Îy Îz

)
sinωQt (34)270

– Ensemble of pairs of homonuclearly coupled equal spins (I1, I2) with spin quantum number 1/2, where initially the spin

1 is oriented parallel to B0 and the spin 2 antiparallel to that. We follow the difference z magnetization which will be

represented by Î1z − Î2z:

Î1z − Î2z
ĤII t−−−−−−→

(
Î1z − Î2z

)
cosDIIt+2

(
Î1xÎ2y − Î1y Î2x

)
sinDIIt (35)

– Cross polarization within pairs of antiparallel unlike spins (I, S): Both spins are locked in resonant rf fields with equal275

nutation frequencies ω1I = ω1S ≫DIS (Hartmann-Hahn condition). The Hamiltonian and the state operators are given

in the doubly-rotating frame following Hartmann and Hahn (1962) where the z direction is along the rf iradiation. If

initially the S spins are oriented parallel to the locking field and the I spins are antiparallel to that, the time evolution

can be described by following Ŝz − Îz:

Ŝz − Îz
ĤHH t−−−−−−−→

(
Ŝz − Îz

)
cosDISt+2

(
ÎxŜy − ÎyŜx

)
sinDISt (36)280
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The last equation describes the behavior of the difference of I and S polarization, not the individual polarizations

themselves. The time evolution of the latter requires at least a 3D approach, see below.

The oscillation takes place in the first three examples between observable transversal magnetization and antiphase states, in the

last two examples between longitudinal difference magnetization and zero and double quantum coherences. These examples

show an effect of the dimension reduction: To obtain a 2D problem, the operators characterizing the states of the spin system285

have a more complicated structure than in the simple cases above. For example, it would be possible, to consider the right side

of Eq. (32) as a linear combination of the four states Î1x, Î2x,2Î1z Î2y , and 2Î1y Î2z if a more illustrative notation is desired.

4.3 Case of reduction to a 3D subspace

4.3.1 Generic notation

Here we are dealing with those cases where the procedure described above reaches the cancellation condition after three290

commutator equations of the kind[
Ĥ, Â

]
= iaB̂[

Ĥ, B̂
]
=−iaÂ+ ibĈ[

Ĥ, Ĉ
]
=−ibB̂ (37)

where a,b ∈ R. In step 2, we determine the Liouvillian matrix as transposed coefficient matrix of Eq. (37):

L3D =


0 −ia 0

ia 0 −ib

0 ib 0

 (38)

and from that the matrix of the superpropagator as matrix exponential corresponding to Eq. (24):295

U3D = exp(−iL3Dt) =
1

q2


b2 + a2 cosqt −aq sinqt ab(1− cosqt)

aq sinqt q2 cosqt −bq sinqt

ab(1− cosqt) bq sinqt a2 + b2 cosqt

 (39)

with q2 : = a2 + b2. The orthogonality of U3D, i.e. the validity of Eqn. (25), can be verified immediately.

In step 3, according to Eq. (26), the following propagation rules are obtained from the columns of U3D:

Â
Ĥ t−−−−−−→ Â · b

2 + a2 cosqt

q2
+ B̂ · a

q
sinqt + Ĉ · ab

q2
(1− cosqt) (40)

B̂
Ĥ t−−−−−−→ B̂ · cosqt + Ĉ · b

q
sinqt − Â · a

q
sinqt (41)300

Ĉ
Ĥ t−−−−−−→ Ĉ · a

2 + b2 cosqt

q2
+ Â · ab

q2
(1− cosqt) − B̂ · b

q
sinqt (42)
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Figure 1. Time evolution of the prefactor of Â in Eqn. (40) for different ratios b/a. The particular case b= 0 leads to the 2D case; therefore,

the corresponding curve is a pure oscillation around zero. With increasing b, the average levels of the related oscillations (dashed horizontal

lines) increase whereas the corresponding amplitudes decrease.

This can be seen as an extension of the POF to three-dimensional problems.

If all basis operators are Hermitian, one of the eigenvalues of L3D is zero because of detL3D = 0. Therefore, the solution of

the Liouville-von Neumann equation may contain a non-zero constant beyond the oscillating terms. The propagator-matrix

element (U3D)11 contains the time evolution of the initial state Â. The constant term b2/(a2 + b2) shows that the oscillations305

do not take place around zero as in the 2D case, but around another level. Moreover, its amplitude is reduced to a2/(a2 + b2),

while the frequency increases the smaller the amplitude is, see Fig. 1.

There is one important special case: a= b. Here the propagation formulae are simplified to:

Â
Ĥ t−−−−−−→ Â · cos2 qt

2
+ B̂ · 1√

2
sinqt + Ĉ · sin2 qt

2
(43)

B̂
Ĥ t−−−−−−→ B̂ · cosqt + Ĉ · 1√

2
sinqt − Â · 1√

2
sinqt (44)310

Ĉ
Ĥ t−−−−−−→ Ĉ · cos2 qt

2
+ Â · sin2 qt

2
− B̂ · 1√

2
sinqt (45)

This is applied in the description of cross polarization and polarization transfer, see the corresponding examples below.

4.3.2 Group 1 of experiments leading to 3D subspaces: Magnetization initially aligned parallel to B0

– Off-resonance nutation: rf irradiation with strength ω1 on an ensemble of isolated spins under resonance offset ∆ω:

Îz
(ĤIx+Ĥ∆) t

−−−−−−−−−−−→ Îz · ∆ω2 +ω2
1 cosqt

q2
+ Îy · ω1

q
sinqt+ Îx · ω1∆ω

q2
(1− cosqt) (46)315

with q2 = ω2
1 +∆ω2.
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– Nutation and dipolar interaction: The observed spin I , which is heteronuclearly coupled to the spin S, is additionally

irradiated with rf of the strength ω1I:

Îz
(ĤIx+ĤIS) t

−−−−−−−−−−−→ Îz · D
2 +ω2

1I cosqt

q2
+ Îy · ω1I

q
sinqt+2ÎxŜz · ω1ID

q2
(1− cosqt) (47)

with q2 = ω2
1I +D2.320

(The case of homonuclear interaction under rf irradiation leads to a 4D problem, see below.)

The similarity of the two equations (46) and (47) is obvious. For ∆ω −→ 0 and DIS −→ 0, respectively, they merge into

an equation describing a rotation in the yz plane. Both equations reflect the well-known fact that a total inversion of the

magnetization with a single rectangular pulse is only possible if the offset or the coupling is zero. In addition, coupling and

resonance offset change both the pulse duration τπ/2 required to reach maximum y magnetization and the pulse duration τπ325

required to reach zero y magnetization to shorter times:

τπ/2 =
π

2
√
ω2

1I +C2
; τπ =

π√
ω2

1I +C2
(48)

with C =∆ω for the off-resonance nutation (Eqn. (46)) and C =DIS for the nutation under heteronuclear dipolar interaction.

4.3.3 Group 2 of experiments leading to 3D subspaces: FID under both rf irradiation and dipolar interaction

– Decoupling experiment: Ensemble of spin pairs {IS}; heteronuclear dipolar interaction between I and S, rf irradiation330

on S channel with finite rf power of strength ω1S; spins I are observed:

Îx
(ĤSx+ĤIS) t

−−−−−−−−−−−→ Îx · ω
2
1S +D2

IS cosqt

q2
− 2ÎyŜz · DIS

q
sinqt− 2ÎxŜz · ω1SDIS

q2
(1− cosqt) (49)

with q2 = ω2
1S+D2

IS. For obtaining the corresponding equation for the J coupling, replace DIS with −πJ . This equation

describes a partial exchange of polarization between x magnetization and two antiphase states.

The decoupling effect is explained as follows: The observable part of the density operator - the prefactor of Îx - contains335

a constant part ω2
1S/
(
ω2

1S +D2
IS

)
and an oscillating part with the amplitude D2

1S/
(
ω2

1S +D2
IS

)
. Such oscillations were

observed for instance in DIPSHIFT experiments (Kurz et al., 2013). Powder averaging leads to a rather fast decay of the

oscillation which gives a broad line (Pake doublet) after Fourier transformation, while the former gives a δ line. With

increasing rf strength ω1S , the prefactor of the broad peak decreases to zero for infinite rf power, while that of the δ line

increases. The constant component is subject to relaxation damping and chemical-shift-caused oscillation on a longer340

time scale and produces a more or less narrow line.

– On-resonance spin locking and heteronuclear dipolar coupling:

Îx
(ĤIx+ĤIS) t

−−−−−−−−−−−→ Îx · ω
2
1I +D2

IS cosqt

q2
− 2ÎyŜz · DIS

q
sinqt+2ÎzŜz · ω1IDIS

q2
(1− cosqt) (50)

with q2 = ω2
1I +D2

IS. This oscillation frequency is indeed equal to that of the corresponding nutation experiment, see

equation (47).345
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– On-resonance spin locking and homonuclear dipolar coupling:

Î1x + Î2x
(ĤIx+ĤII) t

−−−−−−−−−−−→
(
Î1x + Î2x

)
·
4ω2

1I +
9
4D

2
II cosqt

q2
− 2
(
Î1yÎ2z + Î1zÎ2y

)
· 3DII

2q
sinqt

+2
(
Î1zÎ2z − Î1yÎ2y

)
· 3ω1IDII

q2
(1− cosqt) (51)

with q2 → 4ω2
1I +

9
4D

2
IS.

Comments on the spinlock examples (Eqns. (50) and (51)):

– Analogous to the other 3D examples, the oscillation takes place around a level that increases with ω1I. The latter cor-350

responds to the spin-locked part of the transversal magnetization. At the same time, the amplitude of the oscillation is

reduced.

– These oscillations are observed at the beginning of spin-lock experiments (Krushelnitsky et al., 2018, 2023) and have

been described theoretically by Garroway (1979) and Mcarthur et al. (1969). Due to their orientation dependence, they

decay quite rapidly in a powder sample, but can be refocused in MAS experiments.355

– The propagation formula (50) is related to the same Hamiltonian as formula (47). As a consequence, the oscillation

frequencies are the same. However, the different initial states lead to different subspaces and thus to different propagation

formulae.

4.3.4 Group 3 of experiments leading to 3D subspaces: Polarization transfer

The rf field strengths are assumed to be much larger than the corresponding coupling frequencies. This situation is very similar360

to the polarization transfer treated as 2D case. The difference lies in the initial states. Instead of the antiparallel orientation

above, here one spin of the pairs is polarized and the other is not. The initial states are now only described by Î1z and Ŝz , resp.

Since these operators are not elements of the 2D subspaces of the polarization difference examples above, the motion now

takes place in other subspaces, which turn out to be three-dimensional.

– Equal spins:365

Î1z
ĤII t−−−−−−→ Î1z · cos2

(
DIIt

2

)
+
(
Î1xÎ2y + Î1yÎ2x

)
· sinDIIt+ Î2z · sin2

(
DIIt

2

)
(52)

– Pair of unequal spins I, S under Hartmann-Hahn condition in the doubly-rotating frame:

Ŝz
ĤHH t−−−−−−−→ Ŝz · cos2

(
DISt

2

)
+
(
ÎxŜy + ÎyŜx

)
· sinDISt+ Îz · sin2

(
DISt

2

)
(53)

Muller et al. (1974) were the first to experimentally demonstrate this oscillatory exchange of polarisation during cross-

polarisation.370
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Figure 2. Time evolution of the three prefactors in the propagation rules Eqns. (52) and (53).

– Depolarization of I spins in an ensemble of spin triples {I,S1,S2} under Hartmann-Hahn condition in the doubly

rotating frame; coupling frequencies for the I−S1 and the I−S2 interactions: D1 and D2, respectively. The interaction

between S1 and S2 is assumed to be zero. This can be realized experimentally by irradiating the S spins with a resonance

offset which is 1/
√
2 times the rf strength, known as Lee-Goldburg condition, see Lee and Goldburg (1965).

Îz
ĤHH2 · t−−−−−−−−→ Îz · cos2

(√
D2

1 +D2
2

2
t

)

−
D1

(
ÎxŜ1y − ÎyŜ1x

)
+D2

(
ÎxŜ2y − ÎyŜ2x

)
√
D2

1 +D2
2

sin
√
D2

1 +D2
2t

+
D2

1Ŝ1z +D2
2Ŝ2z − 4D1D2 Îz

(
Ŝ1xŜ2x + Ŝ1yŜ2y

)
D2

1 +D2
2

sin2

(√
D2

1 +D2
2

2
t

)
(54)375

Comment on the third item: The oscillation frequency is the geometric sum of the individual frequencies. The oscillation

takes place between the initial state and a mixture of observable and unobservable states.

Note the first two propagation rules of the third group: Additionally to the orthogonality relations (Eqn. (25)), the linear sum

of the prefactors of the first and the third terms is 1. Both terms represent z magnetization. This condition reflects that the sum

of the z polarizations is constant for CP as well as for PT. This is supported by the fact that Î1z + Î2z commutes with ĤII and380

Îz + Ŝz commutes with ĤHH. Fig. 2 shows the time evolution of the three prefactors in these propagation rules.
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4.3.5 Group 4 of 3D examples: Cross polarization, finite rf power, possible deviation from HH condition

– Considering the polarization difference in the rotating frame:

Ŝx − Îx
(ĤIx+ĤSx+ĤIS) t

−−−−−−−−−−−−−−→
(
Ŝx − Îx

)
· ω

2
∆ +D2

IS cosq∆t

q2∆

− 2
(
ÎzŜy − ÎyŜz

)
· DIS

q∆
sinq∆t

+2
(
ÎzŜz + ÎyŜy

)
· ω∆DIS

q2∆
sin2 q∆t (55)

with ω∆ = ω1S −ω1I and q2∆ = D2
IS +ω2

∆.385

Comments:

– The CP oscillation frequency is no longer DIS as calculated for infinite rf power (see above), but
√

D2
IS +(ω1I −ω1S)

2

which increases with the difference of the two rf field strengths.

– Moreover, only the relative part D2
IS/q

2
∆ of the total magnetization participates in the oscillation, i.e. the greater the

deviation from the Hartmann-Hahn condition, the lower the maximum transmitted polarization.390

– Considering the polarization sum:

Ŝx + Îx
(ĤIx+ĤSx+ĤIS) t

−−−−−−−−−−−−−−→
(
Ŝx + Îx

)
·
4ω2

ø +D2
IS cosqøt

q2ø

− 2
(
ÎzŜy + ÎyŜz

)
· DIS

qø
sinqøt

+2
(
ÎzŜz − ÎyŜy

)
· 2ωøDIS

q2ø
sin2 qøt (56)

with ωø = (ω1S +ω1I)/2 and q2ø = D2
IS +4ω2

ø .

Contrary to the relations obtained for infinite ω1, the sum of both polarizations oscillates. The amplitude decreases with395

increasing rf power. This phenomenon is analogous to what happens with spin-lock and decoupling, see the corresponding

examples above.
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4.4 Case of reduction to a 4D subspace

4.4.1 Generic notation

This group of situations can be described by commutator relations of the kind400 [
Ĥ, Â

]
= iaB̂[

Ĥ, B̂
]
=−iaÂ+ ibĈ[

Ĥ, Ĉ
]
=−ibB̂∓ iaD̂[

Ĥ,D̂
]
=±iaĈ

(57)

where Â, B̂, Ĉ and D̂ are pairwise orthogonal operators with equal norms. According to step 2, we obtain the Liouvillian

matrix from these rules as transposed coefficient matrix:

L3D =


0 −ia 0 0

ia 0 −ib 0

0 ib 0 ±ia

0 0 ∓ia 0

 (58)

and the superpropagator matrix as405

U4D =
1

2W


q2 cosq1t+ q1 cosq2t −a(sinq1t+sinq2t) a(cosq1t− cosq2t) ∓q2 sinq1t± q1 sinq2t

a(sinq1t+sinq2t) q1 cosq1t+ q2 cosq2t q2 sinq2t− q1 sinq1t ±a(cosq2t− cosq1t)

a(cosq2t− cosq1t) q1 sinq1t− q2 sinq2t q1 cosq1t+ q2 cosq2t ∓a(sinq1t+sinq2t)

±q2 sinq1t∓ q1 sinq2t ±a(cosq2t− cosq1t) ±a(sinq1t+sinq2t) q2 cosq1t+ q1 cosq2t

 (59)

with the abbreviations W 2 : = (a2 + b2)/4 and q1;2 : =W ∓ b/2.

The propagation rule for the case where Â was the initial state can be read from the first column of U4D in Eq. (59):

Â
Ĥ·t−−−−−−→ Â · q2 cosq1t+ q1 cosq2t

2W
+B̂ · a(sinq1t+sinq2t)

2W
+Ĉ · a(cosq2t− cosq1t)

2W
±D̂ · q2 sinq1t− q1 sinq2t

2W
(60)

In some cases, another form of this propagation formula may be appropriate for use, which is obtained from Eq. (60) by410

applying some trigonometric rules:

Â
Ĥ·t−−−−−−→ Â ·

(
cos(Wt) cos

bt

2
+

b

2W
sin(Wt) sin

bt

2

)
+ B̂ · a

W
sin(Wt) cos

bt

2
(61)

−Ĉ · a

W
sin(Wt) sin

bt

2
∓ D̂ ·

(
cos(Wt) sin

bt

2
+

b

2W
sin(Wt) cos

bt

2

)
(62)
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Figure 3. Connection between the two oscillation frequencies q1 and q2 in the 4D problem, example AB spin system with ∆ν = 3J .

4.4.2 Examples

– AB spinsystem, J coupling; distance of the two lines: ∆ν := ∆ω/(2π), the spectrometer frequency is assumed to be set415

at the midpoint between the two resonances:

Î1x + Î2x
2πJÎ1z Î2z t−−−−−−−−−−−→

(
Î1x + Î2x

)
· q2 cosq1t+ q1 cosq2t

W

+
(
Î1y − Î2y

)
· ∆ω

2

sinq1t+sinq2t

W

+2
(
Î1z Î2x − Î1xÎ2z

)
· ∆ω

2

cosq1t− cosq2t

W

−2
(
Î1y Î2z + Î1z Î2y

)
· q1 sinq2t− q2 sinq1t

W (63)

where W = 2π
√
J2 +∆ν2 and q1;2 = π

(√
J2 +∆ν2 ∓ J

)
. The cosine terms contain two frequencies that give four

line positions ±q1 and ±q2 symmetrically around zero after complex Fourier transformation. The intensities are given

by the prefactors of the corresponding trigonometric functions. The lower frequency oscillation has the larger prefactor,420

which reflects the roof effect. See for example Abragam (1961), chapter XI, section B. In this book, positions and

intensities are calculated from transition frequencies and probabilities for the transitions between the levels. Fig. 3 shows

the relationship between q1, q2 and the intensities and positions of the four lines of an AB spin system.

For the case ∆ν = 0 the Hamiltonian commutes with the initial state with the consequence that the density operator

remains constant the Fourier transform of which is just a resonance at zero frequency.425
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Figure 4. Nutation curves for different ratios of rf field strength and coupling strength. For homonuclear dipolar coupling: DII/ω1 = (a): 0,

(b): 0.15; (c): 0.3; (d): 0.45; (e): 0.6; (f): 0.75; for quadrupolar coupling: ωQ/ω1 = (a): 0; (b): 0.2; (c): 0.4; (d) 0.6; (e): 0.8; (f): 1.

– rf irradiation onto homonuclearly coupled spins 1/2 which are initially in equilibrium (nutation):

Î1z + Î2z
(ĤII+ĤIx) t

−−−−−−−−−−−→
(
Î1z + Î2z

)
·
(
cosWtcos

3DII

4
t+

3DII

4W
sinWtsin

3DII

4
t

)
+
(
Î1y + Î2y

)
· ω1I

W
sinWt cos

3DII

4
t

−2
(
Î1xÎ2z + Î1z Î2x

)
· ω1I

W
sinWt cos

3DII

4
t

−2
(
Î1y Î2x + Î1xÎ2y

)
·
(
cosWtsin

3DII

4
t− 3DII

4W
sinWtcos

3DII

4
t

)
(64)

where W =
√

ω2
1I +

9
16D

2
II.

This propagation formula describes the effect of a limited power rf pulse on the equilibrium magnetization. The time

evolution of the prefactor of Î1y + Î2y is shown in Fig. 4.430

Comments on Eqn. (64):

– As the coupling frequency increases, so does the nutation frequency W . However, this oscillation is modulated by

half of the dipolar frequency, see Fig. 4.

– As a consequence, the π and π/2 conditions for achieving maximum and zero y magnetization, respectively, are

modified with respect to the coupling-free case. Similar to Equation (65), this results in435

τπ/2 =
π

2
√
ω2

1I +
9
16D

2
II

; τπ =
π√

ω2
1I +

9
16D

2
II

(65)
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– Nutation under quadrupolar interaction, spin 1:

Îz
(ĤQ+ĤIx) t

−−−−−−−−−−−→ Îz ·
(
cos

Wt

2
cos

ωQt

2
+

ωQt

W
sin

Wt

2
sin

ωQt

2

)
+ Îy · 2ω1

W
sin

Wt

2
sin

ωQt

2

−
(
ÎxÎz + Îz Îx

)
· 2ω1

W
sin

Wt

2
sin

ωQt

2
+
(
Îy Îx + ÎxÎy

)
·
(
cos

Wt

2
sin

ωQt

2
+

ωQt

W
sin

Wt

2
cos

ωQt

2

)
(66)

with W =
√

4ω2
1 +ω2

Q. This is consistent with the findings of Bloom et al. (1980), Barbara et al. (1986) and Vega and

Luz (1987). Again, the result is that nutation occurs faster than ω1I if there is an additional interaction.440

4.5 Example for a 5D subspace

We consider cross polarization under finite rf power, assuming that the Hartmann-Hahn condition is satisfied: ω1I = ω1S =: ω1.

Other than in the corresponding 3D examples shown above, the initial state consists of a transversally polarized S spin and a

depolarized I spin, i.e. ρ̂(0) = Ŝx:

Ŝx
(ĤIx+ĤSx+ĤIS) · t−−−−−−−−−−−−−−−→ 1

2

[(
cosDISt+

4ω2
1 +D2

IS cosqt

q2

)
· Ŝx

−
(
DIS

q
sinqt+sinDISt

)
· 2ÎzŜy + 4

DISω1

q2
(1− cosqt)

(
ÎzŜz − ÎyŜy

)
+

(
DIS

q
sinqt− sinDISt

)
· 2ÎyŜz +

(
−cosDISt+

4ω2
1 +D2

IS cosqt

q2

)
· Îx
]

(67)445

Eq. (67) describes the evolution of the magnetization of the initially polarized spin. That of the other spin evolves as given in

Eq. (68):

Îx
(ĤIx+ĤSx+ĤIS) · t−−−−−−−−−−−−−−−→ 1

2

[
Ŝx ·

(
−cosDISt+

4ω2
1 +D2

IS cosqt

q2

)
−
(
DIS

q
sinqt− sinDISt

)
· 2ÎzŜy + 4

DISω1

q2
(1− cosqt)

(
ÎzŜz − ÎyŜy

)
−
(
DIS

q
sinqt+sinDISt

)
· 2ÎyŜz +

(
cosDISt+

4ω2
1 +D2

IS cosqt

q2

)
· Îx
]

(68)

4.6 Examples for a 6D subspace

– HH-CP experiment with finite rf power, deviation from the Hartmann-Hahn condition, the initial state consists of a450

transversally polarized S spin and a depolarized I spin, i.e. ρ̂(0) = Ŝx. Using the variables defined in subsection 4.3.5
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Figure 5. Examples for cross-polarization buildup curves for the I spins in an ensemble of spin pairs I,S corresponding to Eqn. (69) with

ωø = 3DIS. The deviation ω∆ from the Hartmann-Hahn condition is varied.

we obtain

Ŝx
(ĤIx+ĤSx+ĤIS) · t−−−−−−−−−−−−−−−→ Ŝx ·

1

2

(
ω2
∆ +D2

IS cosq∆t

q2∆
+

4ω2
ø +D2

IS cosqøt

q2ø

)
− ÎzŜy ·DIS

(
sinq∆t

q∆
+

sinqøt

qø

)
+2ÎzŜzDIS

[
ω∆

2q∆
(1− cosq∆t)+

ωø

qø
(1− cosqøt)

]
+2ÎyŜyDIS

[
ω∆

2q∆
(1− cosq∆t)−

ωø

qø
(1− cosqøt)

]
+ ÎyŜz ·DIS

(
sinq∆t

q∆
− sinqøt

qø

)
+ Îx ·

1

2

(
4ω2

ø +D2
IS cosqøt

q2ø
− ω2

∆ +D2
IS cosq∆t

q2∆

)
(69)

Fig. 5 shows the build-up curve for the I magnetization for the case where it was initially unpolarized, and S was

polarized. For zero deviation from the Hartmann-Hahn condition, the curve still looks similar to the squared sine derived455

for infinite rf power (Eq. (53)). Small deformations result from the fact that the rf power is finite. An increasing deviation

from the Hartmann-Hahn condition leads to a strong loss of the polarization-transfer efficiency, in addition to further

deviation from the ideal curve.

– HHCP of an I spin from two S spins: The Hamiltonian is the same as in 4.3.4, and we consider the problem in the

doubly-rotating frame. In this example, however, we want to follow the time evolution of all three spins individually460

which could not be separated in the 3D example. The propagation rules for all three spins can be found in the SI. Here is
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the propagation rule for the case that the system starts with polarized S spins, i.e. Â= Ŝ1z + Ŝ2z and Ĥ = ĤHH2:

Ŝ1z + Ŝ2z
ĤHH2 · t−−−−−−−−→ Îz · sin2

qt

2
+
(
Ŝ1z + Ŝ2z

)
·
1+ cos2 qt

2

2
+
(
Ŝ1z − Ŝ2z

)
· D

2
2 −D2

1

2q2
sin2

qt

2

+
(
ÎxŜ1y − ÎyŜ1x

)D1

q
sinqt+

(
ÎxŜ2y − ÎyŜ2x

)D2

q
sinqt− Îz

(
Ŝ1xŜ2x − Ŝ1yŜ2y

)
· 4D1D2

q2
sin2

qt

2
(70)

with q =
√
D2

1 +D2
2 . This propagation rule describes the oscillatory polarization exchange between the spin polariza-

tions and three unobservable states on the one hand, and the oscillatory polarization transfer between the spins on the465

other hand, as it may happen for example in 13CH2 or in 15NH2 groups.

5 Outlook: Time-dependent Hamiltonians and Liouvillians

In order to obtain the propagator matrices and the propagation formulae of the respective Liouvillians, it was assumed in

the above sections that the interactions and thus also the Hamiltonian and the Liouvillian are time-invariant. However, the

method can be extended to situations where the interaction constants vary with time, either fluctuating due to thermal motion470

or periodically due to sample spinning. The commutator equations are also valid, i.e. steps 1 and 2 of the given procedure

can be performed to obtain the relevant subspace and the Liouvillian matrix associated with that subspace. In other words, the

Liouvillian matrices obtained for the above examples (see SI) can also be used in the time-dependent situations. The Liouville-

von Neumann equation now belongs to a system of linear differential equations, but with time-dependent coefficients. There is

no general scheme for their integration. The propagator matrix is no longer the matrix exponential of −iLt.475

However, in some cases solutions are possible in the following ways: (i) Use of the time-averaged Liouvillian for an exact

solution when L depends linearly on a single time-dependent parameter, (ii) Use of the Shirley method, based on the Floquet

theorem, also for an analytical solution.

The first way can be justified as follows: For the Liouville-vonNeumann equation in matrixform, one can try to find an effective

Liouvillian matrix Leff(t), which is defined as that matrix which is constant in the interval (0, t) and which has the same effect480

as the actual L, i.e. U(t) = exp(−iLefft) in matrix notation. This can be done by the Magnus expansion (Magnus, 1954):

Leff =

t∫
0

L(t1) dt1 +
1

2

t∫
0

[L(t1),L(t2)]dt1dt2 +O(L3) (71)

Although the convergence radius of this series is rather small (Maricq, 1982), it can nevertheless be used to check whether

the effective Liouvillian can be replaced by the time-averaged Liouvillian (first term on the right-hand side of Eq. (71)). If the

Liouvillian commutes at all times with itself, all higher-order terms vanish, only the zeroth order term survives. In this case,485

the effective Liouvillian is equal to the time-averaged Liouvillian. This happens besides the case of a constant Liouvillian (see

above), if the Liouvillian matrix can be written as product of a scalar function λ(t) with a constant matrix:

L(t) = λ(t)A → Leff = A
t∫

0

λ(t1) dt1 (72)
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In this case, the propagator matrix is exactly the matrix exponential

U(t) = exp

−iA
t∫

0

λ(t1) dt1

 (73)490

This concerns all 2D cases. Eq. (31) becomes

L2D = λ(t)

0 −i

i 0

 ; U2D = exp

−i

t∫
0

L2D(t1) dt1

=

cos
∫ t

0
λ(t1) dt1 −sin

∫ t

0
λ(t1) dt1

sin
∫ t

0
λ(t1) dt1 cos

∫ t

0
λ(t1) dt1

 (74)

The transformation to propagation formulae gives:

Â
Ĥ t−−−−−−→ Âcos

t∫
0

λ(t1) dt1 + B̂ sin

t∫
0

λ(t1) dt1 ;

B̂
Ĥ t−−−−−−→ B̂ cos

t∫
0

λ(t1) dt1 − Âsin

t∫
0

λ(t1) dt1 (75)

Eqs. (75) can be regarded as a rigorous extension of the POF to time-dependent systems, such as those caused by thermal495

motion or by sample spinning. For higher dimensional cases, equation (72) can only be satisfied if the two parameters a and

b are equal. While for the 4D, 5D and 6D cases this would mean very special situations, the 3D case includes with a= b the

important case of cross polarization. Then Eq. (38) changes to

L3D = a(t)


0 −i 0

i 0 −i

0 i 0

 (76)

if b is replaced by a. In the subsequent propagation formulae we have to substitute qt by
∫ t

0
q(t1)dt1 with q(t) = a(t)

√
2. This500

means that we obtain an exact solution if we replace the arguments of the trigonometric functions by integrals in the following

examples from above:

– Eqs. (32), (35) and (52): DIIt by
∫ t

0
DII(t1) dt1

– Eqs. (33), (36) and (53): DISt by
∫ t

0
DIS(t1) dt1

– Eq. (34): ωQt by
∫ t

0
ωQ(t1) dt1505

However, there is no general recipe for all other cases. In some cases, the Shirley method using the Floquet theorem, which is

applied e.g. for numerical calculations of spin systems under MAS, may also be successful for obtaining analytical expressions.

This will be the subject of a forthcoming paper.
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6 Conclusions

Repeated application of the commutator of the Hamiltonian with the initial density operator gives a system of operator equa-510

tions, the coefficient matrix of which can be used to establish a propagation rule for the spin system. This has been demonstrated

in this paper with some examples. A more detailed analysis shows that the commutator relations define subspaces which are

both Liouvillian invariant and superpropagator invariant. Therefore, the density operator propagates in such a subspace without

leaving it. If its dimension is small enough, analytical expressions for the propagation law can be obtained.

The relevant subspace for a given problem is determined by the Hamiltonian and by the initial state. If the operator character-515

izing the initial state changes, then the new subspace is the same as the previous one if and only if the new initial-state operator

is an element of the previous subspace, otherwise the two subspaces have no intersection.

The set of problems can be divided into classes with respect to the dimension of the subspaces. Problems of the 2D class can

be easily treated by propagation formulae similar to those of the well-known product-operator formalism. The propagation

formulae for the 3D and 4D classes are given in this paper, and an example is given for the 5D and 6D cases, respectively.520

If necessary, the method introduced and explained here can also be applied to cases with higher dimensions. The application

examples demonstrate the same mathematical structure of some physically different problems.

In addition, this treatment can be applied to pulse sequences in a manner similar to the POF. In some cases, an algebraic lan-

guage program may be helpful. Even numerical computations can use this framework by starting the numerical computation

on the basis of existing analytical relations. In the N -dimensional wavefunction space, the Liouville-vonNeumann equation525

corresponds to a system of N2 differential equations, which is significantly larger than that obtained by the dimension reduc-

tion with the method presented here. It may be advantageous to first apply this method on an analytical basis before starting

the numerical implementation.

If the strength of any of the considered interactions depends on time, the first two steps of this method can be applied like-

wise. Step 3 (matrix exponentialization), however, has to be modified because there is no general recipe for solving a system530

of differential equations with time-dependent coefficients. In some cases, the time-averaged Liouvillian is suitable to get an

exact solution of the problem. Even for numerical calculations it can be helpful to start with systems of differential equations

containing a reduced number of equations.

Appendix A: Norms of spin operators

Consider a system of N spins 1/2. As proved in the SI (section 1.3), the norm of a product of the Cartesian components of n535

spins from this N -spin-system (one operator for each spin) amounts to 2(N/2)−n. Furthermore, for the sum of two orthogonal

operators Â and B̂ holds ∥Â+ B̂∥=
√
∥Â∥2 + ∥B̂∥2. From this, we can derive the following rules (α,β,γ,δ ∈ {x,y,z}):

– For single spins I = 1
2 : ∥Îα∥= 1√

2
;

– For spin pairs I = 1
2 , S = 1

2 : ∥Îα∥= ∥Ŝα∥= 1 ; ∥ÎαŜβ∥= 1
2 ; ∥ÎαŜβ ± Îγ Ŝδ∥= 1√

2
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– For spin triples I = 1
2 , J = 1

2 , S = 1
2 :540

∥Îα∥= ∥Ĵα∥= ∥Ŝα∥=
√
2 ; ∥ÎαŜβ∥= 1√

2
; ∥ÎαŜβ ± Îγ Ŝδ∥= 1 ; ∥ÎαĴβŜγ∥= 1

2
√
2

Similarly, for a single spin I = 1 can be obtained:

∥Îα∥=
√
2 ; ∥ÎαÎβ + Îβ Îα∥=

√
2

Appendix B: Hamiltonians used in the main part and in the SI

– Interaction of the I and S spins with the rf field, strengths ω1I ans ω1S, respectively, assumed to be constant and parallel545

to the x axis in the rotating frame:

ĤIx =−ω1I Îx ; ĤSx =−ω1SŜx (B1)

Unless otherwise indicated, the irradiation occurs at the Larmor frequency of the respective spins. The rf phase is always

such that B1 is parallel to the x axis of the rotating frame, but the calculations can easily be modified to include other

directions of the rf field.550

– Homonuclear dipolar interaction between spin I1 and spin I2 (secular part):

ĤII =DII

(
Î1Î2 − 3Î1z Î2z

)
(B2)

where DII = (µ0γ
2
Iℏ/(4πr3II))

(
3cos2 θII − 1

)
, rII is the length of the vector connecting both spins and θII is the angle of

this vector with the external magnetic field, γI is the gyromagnetic ratio of the I spins and µ0 is the permeability of the

vacuum.555

– Heteronuclear dipolar interaction between spin I and spin S (secular part):

ĤIS =−DIS · 2ÎzŜz (B3)

where DIS =
µ0

4π
ℏγIγS

r3IS

(
3cos2 θIS − 1

)
, rIS is the length of the vector connecting both spins and θIS is the angle of this

vector with the external magnetic field, γS is the gyromagnetic ratio of the S spins. The case of J coupling between

unlike spins is mathematically equivalent to this; the corresponding formulae can be obtained by replacing DIS by −πJ .560

– Matched Hartmann-Hahn cross polarization between spin I and spin S in the doubly-rotating frame (Hartmann and

Hahn, 1962):

ĤHH =−DIS ·
(
ÎxŜx + ÎyŜy

)
(B4)

assuming DIS ≪ ω1I,ω1S so that rapidly oscillating terms can be neglected.
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– Interaction of first order of the nuclear quadrupole moment with the electric field gradient (secular part):565

ĤQ = ωQ ·
(
Î2z −

I(I +1)

3

)
(B5)

where ωQ is the quadrupolar frequency.

– Resonance offset ∆ω in the rotating frame:

Ĥ∆ =−∆ω Îz (B6)

The coupling frequencies are assumed to be unique, i.e. no powder averaging unless otherwise stated. It is also assumed that570

the coupling frequencies are constant in time, i.e. thermal motion or sample rotation is not considered.
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