Specific comments

Materials and Methods

- Line 177: *A phase cycle of eight steps*.
- More than one 8-step phase cycling scheme has been proposed for 4-pulse HYSCORE, see e.g. DOI 10.1016/0022-2364(90)90181-8 and DOI 10.1007/s00723-008-0140-6. It would be beneficial to highlight which one was used and add the corresponding reference.
- Lines 183-184: The pulse lengths were 1 μ s for the first variable mw frequency (mw₂) [...].
 - $\circ~$ What was the amplitude of the HTA pulse ω_{HTA} measured at the observer frequency (mw_1)?
 - Was such a short HTA pulse used indeed?
- Line 207: which specific reference was used for the listed *g* principal values?

ELDOR-detected NMR

- Line 261: the text mentions the variation of the *spin echo* intensity, however FID-detected EDNMR has been used for this work.
- Lines 261-262: is detected by a decrement on the spin echo generated by the detection sequence at a variable frequency when it hits an allowed EPR transition.
 - $\circ~$ It may be better to rewrite this sentence as it seems as if the observer frequency mw_1 were swept during the experiment.
 - Also line 263: are obtained when plotting the echo intensity as a function of the <u>detection frequency</u> (ELDOR frequency); this is not in agreement with what is stated in 2.2.3, first pulse with variable frequency (mw₂) [...] second pulse with fixed mw frequency mw₁.
- Line 269: Q-band ELDOR-detected NMR is especially suitable for detecting nuclear frequencies of ¹³C(4a).
 - Some clarification of why this is the case would be beneficial, especially considering the resolution limitations of EDNMR compared to ENDOR.
 - Related to this point, according to the cited references for the spectrometer (Gromov *et al.*, 2001) and the microwave resonator (Tschaggelar *et al.*, 2009) the used equipment should be capable of performing ENDOR measurements. Was there a specific reason to choose EDNMR over Davies ENDOR? Was Davies ENDOR attempted on the studied system?
- Figure 3:
 - The EDNMR spectra are strongly asymmetric. This may impact the quality of the subtraction. How was the experiment set up? Where was the detection frequency placed within the resonator mode?
 - $\circ~$ Panel a: the signals at 11 MHz appear in the spectra of both [^13C(2)-FMN]-Fld and [^13C(2,4a)-FMN]-Fld.

Is the presence of a signal at 11 MHz in the subtraction spectrum an artefact caused by different acquisition conditions (e.g., different ω_{HTA} field strength, resonator bandwidth, position of the pulses in the resonator mode) between the two experiments?

 \circ Related to the comment about the *Materials and Methods* section, is the width of the central blind spot compatible with a 1 μ s HTA pulse?

- The *x*-axis of both panels reads *ELDOR frequency (MHz)*. This nomenclature may be misleading: the spectra are displayed against the frequency difference between the HTA pulse and the detection frequency; the frequency of the ELDOR source should be in the ~34 GHz range.
- Line 283 (legend): which yields no orientation selection. The figure inset shows indeed some orientation selection; it may be better to use a milder statement, e.g. "negligible" or "weak".
- Line 285 (legend): how were the orientation selection spheres obtained? Which spin Hamiltonian was used? Which pulse excitation bandwidth?
- Line 289: $2v_L({}^{13}C) = 13.1 \text{ MHz. } v_L({}^{13}C)$ at the chosen magnetic field should be ~13.11 MHz, hence $2v_L({}^{13}C)$ is ~26 MHz.
- Line 294: The difference between the frequency of the detected peaks is close to $2v_L(^{13}C)$, which confirms the assignment of the peaks [...]. The frequency difference between the peaks, located at ±30 MHz and ±11 MHz, is approximately 19 MHz. This value is rather far from $2v_L(^{13}C) = 26$ MHz.
- Lines 295-297: I would consider rewriting the sentence as, in its current form, it may lack some clarity.
- Lines 300-301: it's not entirely clear to me how the edge of the outermost signal in the EDNMR spectrum could be converted directly into a value of $|A_z|$, especially considering that the system is in the strong-coupling case. Was equation 6, $v_+ + v_- = |A_z|$, used to estimate $|A_z|$?
- Line 302: I agree with the observation, especially for the outermost signal. Were measurements performed at several ω_{HTA} field strengths and/or different lengths of the HTA pulse to ensure the absence of additional broadening due to the choice of the experimental conditions?
- Line 305: is the notion *larger nuclear frequency* related to v₊?

¹³C HYSCORE

- The full 2D spectra (both (++) and (-+) quadrants) for [¹³C(2,4a)-FMN]-Fld are displayed neither in the main text nor in the SI.
 - I find this quite surprising, especially considering that the hyperfine interaction with ¹³C(4a) is expected to be in the strong coupling regime and should hence give signals in the (-+) quadrant as well.
 - Is the (-+) region of the mentioned spectrum devoid of any signals?
- Line 319: Since the focus here is on the ¹³C signals, Fig. 4 only shows the positive quadrant of the 2D measurements; see the comment above.
- As $I(^{13}C) = \frac{1}{2}$, it should be possible to obtain an initial estimate of a_{iso} and |T| by squaring both frequency axes, see DOI 10.1006/jmra.1995.1199.
- Line 334: $|A_3[^{13}C(4a)]|$ is reported to be negative. Is the absolute value a typo?
- Line 334: how were the uncertainties estimated?
- Line 339 (and several other places throughout the manuscript): it would be better to have specific references to figures in the Supplementary Material.
- Figure S.1: it would be better to remind the readers of the field position at which the experiment was performed.

• Figure S.2: it would be better to display the precise location with respect to the EDFS-EPR spectrum at which the experiment was performed. Is it *e.g.* the same as the one in Fig. 3a or a different one?

¹⁵N and ¹⁴N HYSCORE

- Figures 5 and 6
 - Is there a specific reason for performing the field-edge ¹⁵N and ¹⁴N experiments on the high-field side of the spectrum rather than on the low-field side? This latter position was e.g. chosen for the EDNMR experiments (see Fig. 3a) and for the field-edge ¹³C-HYSCORE measurement (see Fig. S2).
 - There is some conflict between the main text and the SI: according to the legend of Fig. S5, the experiment would have been performed at the low-field edge of the EPR spectrum whereas according to the corresponding Fig. 6a the measurements were performed on the high-field edge.
 - $\circ~$ The field settings are rather different between Fig. 5a (^{15}N) and Fig. 6a (^{14}N). According to which criterion were the edge positions selected?
 - \circ In the legends of Figures 5 and 6 it is mentioned that HYSCORE spectra were recorded at several τ values and summed. How was this performed exactly? Were there major echo intensity changes between the shortest and the longest τ values?
 - Figure 5: at least 4 dash-dot antidiagonal lines are reported. Which nuclei do these correspond to? Considering that the focus is on ¹⁵N, it may be better to highlight the corresponding Larmor frequency.
 - Figures 6, S.5 and S.6: why are antidiagonal lines at the ²H Larmor frequency reported? Were the samples partially deuterated?
- Lines 383-384: how were the uncertainties estimated? How could some rhombicity of the ¹⁵N hyperfine coupling tensors be completely ruled out from the analysis of the experimental data?

<u>General remarks</u>

- I couldn't find any information concerning the availability of the raw data.
- The limited resolution of the figures makes it sometimes challenging to observe the details described and discussed in the text.

Technical corrections

- Line 98: *though \rightarrow through?
- Lines 133-134: These results provide with a suitable protocol to experimentally access these coupling and an estimation of the spin density on the Fld model. This sentence is not entirely clear to me.
- Line 146: *at al. \rightarrow et al.
- Line 168: although clear to a readership with magnetic resonance background, it may be better to expand the abbreviation *mw* the first time it is used.
- Line 203, equation (1): the hyperfine term does not carry the sum symbol (Σ_i).
- Line 205: *semiquinome \rightarrow semiquinone.
- Line 212: *use to be (subject/verb agreement).
- Line 218: **isoaloxacine*; here, as well as in a few other places, the term *isoalloxazine* is spelt incorrectly.
- Line 228: *4a* instead of **4*.
- Line 240, equation (3): the form is not consistent with equation (2) (A_{II}(¹⁴N5) in equation 2 vs. A_z(¹⁴N5) in equation 3).
- Line 245, equation (4): for the sake of better readability, it would be better to enclose values and the related uncertainties within brackets, *i.e.* $(8.4 \pm 0.3 \text{ mT}) (7.1 \pm 0.3 \text{ mT})$.
- Line 261: *on the \rightarrow of the.
- Figure 3, text between panels *a* and *b*: *Substraction \rightarrow Subtraction.
- Line 290: *regimen \rightarrow regime.
- Line 294: ${}^{13}C4a \rightarrow {}^{13}C(4a)$.
- Line 307: $*A_{x,y}^{13}C(4a)$ $\rightarrow A_{x,y}^{13}C(4a)$].
- Line 315: **carried out in* \rightarrow carried out on.
- Line 367: *performed in $a \rightarrow$ performed on a.
- Line 372: symmetrical with respect to the diagonal or antidiagonal?
- Line 376: **HSYCORE* → HYSCORE.
- Line 416: *in Q-band \rightarrow at Q-band.
- Line 416: *have \rightarrow has.
- Line 423: * both, hyperfine \rightarrow both hyperfine.
- Line 427: * $fld \rightarrow$ Fld.
- Line 432: for the sake of completeness, it may be better to stress *Q*-band *ELDOR*-detected *NMR*.
- Line 435: * $fld \rightarrow$ Fld.
- Line 466: *specific of type \rightarrow specific of the type.
- Line 467: *of the of the \rightarrow of the.