Supporting information for:

NMR side-chain assignments of the Crimean-Congo haemorrhagic fever virus glycoprotein n cytosolic domain

Louis Brigandat^{#1}, Maëlys Laux^{#1}, Caroline Marteau¹, Laura Cole¹, Anja Böckmann¹, Lauriane Lecoq¹, Marie-Laure Fogeron¹, Morgane Callon¹

¹MMSB Lyon, UMR5086 CNRS Lyon University, 7, passage du Vercors, 69367 Lyon Cedex 07, France

Figure S1: Circular dichroism spectra of Gn^{cyto} showing that addition of EDTA causes loss of secondary structure content due to Zn^{2+} depletion, both when synthesized in the presence (purple line) or in the absence (blue line) of ZnSO₄. When the protein is synthesized without addition of ZnSO₄, secondary structure is observed (green curve), likely by use of ions present in the extract, but the features are less pronounced than when ZnSO₄ is added to the cell-free reaction (red curve).

Figure S2: Comparison between the ¹⁵N HSQC spectrum recorded on the CFPS Gn^{cyto} sample in red, compared to a simulation using the chemical shifts deposited in the BMRB 17383 (Estrada and De Guzman, 2011). The sequences of the analyzed proteins are shown in Figure S3.

chemical shift, $\partial^{15}N$ is the amide nitrogen chemical shift, $\gamma^{15}N$ is the gyromagnetic ratio of nitrogen and $\gamma^{1}H$ the proton gyromagnetic ratio. Differences in the amino-acid sequence are highlighted.

References

Estrada, D. F. and De Guzman, R. N.: Structural Characterization of the Crimean-Congo Hemorrhagic Fever Virus Gn Tail Provides Insight into Virus Assembly, Journal of Biological Chemistry, 286, 21678–21686, https://doi.org/10.1074/jbc.M110.216515, 2011.