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Figure S1. Thermal stability analysis by circular dichroism (CD) spectroscopy. The CD signal
of GB1 with FVall (red), FVal2 (green) and diF Val (blue) was monitored at 216 nm in a | mm
quartz cuvette using a Chirascan spectrometer (Applied Photophysics). Parameters used:
protein concentration about 0.3 mg mL!, pH 7.5, heating rate 1 °C min™!. Blanks with buffer
measured in the same cuvette were subtracted from the data. For visual clarity, the data were
scaled by setting the lowest and highest points measured to 0% and 100%, respectively. The
melting temperatures obtained from the fits are 66 °C for GB1 made with FVall (GBI1-1, red),
and 69 °C for GB1 made with FVal2 (GB1-2, black) or diFVal (GB1-d, blue).
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Figure S2. F-detected ['H,'H]-TOCSY spectra of GB1-1 and GB1-2. The 'H chemical shifts
of HP and C"H3 groups are indicated by purple and red arrows, respectively. The 1D '"F-NMR
spectra are shown at the top together with the resonance assignments. (a) Spectrum of GB1-1,
recorded in 9.5 h with a mixing time of 70 ms. The 'H chemical shifts of H? and C'H3 groups
are indicated by purple and red arrows, respectively. (c) Pulse sequence used to record the !°F-
detected ['H,'H]-TOCSY spectra. Narrow filled and wide unfilled rectangles indicate 90° and
180° pulses, respectively. Wide filled rectangles represent 0.5 ms trim pulses. Tm denotes
MLEV-17 mixing (Griesinger1988). The phases of pulses outside the mixing period T are x
unless indicated otherwise. Phase cycle: ¢1 =y, -y; ¢2 = 8(x), 8(-x); ¢3 = 2(x), 2(-x); ¢3 = 2(X),
2(-x); o4 = 16(x), 16(-x); ¢s = 4(x), 4(-X); Oreceiver = 8(X, -X), 8(-X, X). A was set to 5.2 ms and o
to A/2. Pulsed field gradients were sine-shaped and of 1 ms duration, with g; =40 G/cm and g»
= 13.5 G/cm. 'H decoupling used WALTZ-64.
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Figure S3. Selected spectral region from 3C-HSQC spectra of GB1-1 and GB1-2 showing the
cross-peaks between the protons and carbons of the CH>F groups. The spectra were recorded
with "F-decoupling using a Bruker 500 MHz NMR spectrometer equipped with a 'H/"F/!3C
cryoprobe. The spectra were recorded with a spectral width of 109 ppm in the '3C-dimension,
revealing that published '*C chemical shifts of the CHF groups of FVal2 in the protein PpiB
had been reported too low by 30 ppm due to aliasing (Frkic et al., 2024). (a) Spectrum of GB1-
1. Parameters used: fimax = 27 ms, f2max = 82 ms, total recording time 3.6 h. (b) Spectrum of

GB1-2. Parameters used: fimax = 37 ms, famax = 82 ms, total recording time 4.1 h.
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Figure S4. Intact protein mass spectrometry of GB1-d following storage -20 °C for two years.
(a) Overview. The expected mass of the full-length protein with four diFVal residues is
8,462.08 Da (8426.08 Da with three diFVal residues and one Val, 8390.08 Da with two diFVal
and two Val residues, 8354.08 Da with one diFVal and three Val residues, 8318.08 Da for the
wild-type protein). The mass spectrum of the fresh protein was reported by Maleckis et al.
(2022). (b) Zoom into the region between 7200 and 8100 Da. The calculated masses of the C-
terminally digested protein containing four diF Val residues are, respectively, 8050.59, 7913.45,
7776.3,7639.16, 7582.11, 7453.98 and 7306.8 Da for the peaks annotated in red.
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Figure S5. 2D HNCO spectra showing changes in the chemical shifts of the carbonyl groups

of FVall and FVal2 residues in GB1. The spectra were recorded as the first '*C-'H plane of the

3D HNCO experiment. Parameters: 600 MHz NMR spectrometer equipped with a cryoprobe,
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timax = 42 mS, Hmax = 122 ms, total recording time 58 h per spectrum. The cross-peaks are
labelled with the assignment of the backbone amide protons, highlighting the residues
following valine in red. (a) 2D HNCO spectrum of uniformly '*N-labelled wild-type GBI. (b)
2D HNCO spectrum of GB1-1. To simplify the NMR spectrum, the sample was produced with
5N-labelled Asn, Asp, Phe and Thr. The FVall amino acid used contained a '3C label in the
CHyF group (Maleckis et al., 2022). Red arrows indicate the changes in chemical shift of the
cross-peaks of residues following FVall from the corresponding position in the wild-type
protein (indicated by a circle). Among the other cross-peaks, N8 shows the largest shift change
(highlighted with a blue arrow). (c) Same as (b), but for GB1-2.
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Figure S6. "’N-HSQC spectra of GBI (wild-type and constructs with valine substituted for
fluorinated valines) recorded using an 800 MHz NMR spectrometer equipped with a cryoprobe.
The cross-peaks are labelled with the resonance assignments. (a) Spectrum of uniformly >N-

labelled wild-type GB1. The total recording time was 15 minutes. The red cross-peak of T49
S10



is folded. (b) Spectrum of GB1-1 at natural isotopic abundance. Parameters: #imax = 32 ms, f2max
= 96 ms, total recording time 102 h. The cross-peaks of the fluorinated valine residues are
labelled with the residue number in red. To visualize the changes in chemical shifts, circles
mark the positions of the respective cross-peaks in the wild-type protein and arrows indicate
the direction of the shift changes caused by the fluorine atoms. Blue circles and arrows identify
the most strongly shifted peaks from residues other than valine or fluorinated valine. (c)
Spectrum of GB1-2 at natural isotopic abundance. Parameters: #imax = 32 ms, fomax = 98 ms,
total recording time 48 h. Same peak labelling as in (b). (d) Spectrum of GB1-d recorded at
natural isotopic abundance. Parameters: #imax = 32 ms, fomax = 98 ms, total recording time 15 h.

Same peak labelling as in (b).

Table S1. DNA and corresponding amino acid sequence of the GBI construct used in the

current work.

Protein DNA sequence Amino acid sequence?

GB1 ATGGCTTCTATGACCGGTATGACCTACAAACTGATC | MASMTGMTYKLILNGKTLKG
CTGAACGGTAAAACCCTGAAAGGTGAAACCACCACC | ETTTEAVDAATAEKVFKQYA
GAAGCGGTTGACGCGGCGACCGCGGAAAAAGTTTTC | NDNGVDGEWTYDDATKTFTV
AAACAGTACGCGAACGACAACGGTGTTGACGGTGAA | TEENLYFQGHHHHHH
TGGACCTACGACGACGCGACCAAAACCTTCACCGTT
ACCGAAGAAAACCTGTATTTTCAGGGCCATCATCAT
CACCATCAC

2 The present work uses the common sequence numbering of wild-type GB1 (Juszewski et al.,
1999). The N-terminal MASMTG tag was numbered -5 to 0. The N-terminal methionine was

lost during protein expression.
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Table S2. 71(*°F), R2(*°F) and R,(*°F) values of GB1-d.?

Sequence position and Ti("F)/s Ry("F)/s™ Rip(’F)/s
stereospecific (uncertainties from (uncertainties from
assignment of the CH,F fitting in brackets) fitting in brackets)
group
29, v 0.43 15.9(0.1) 14.5(0.3)
21,72 0.40 9.8(0.2) 9.3(0.5)
54, 71 0.58 26 (1) 23 (2)
21,7 0.58 11.6 (0.4) 12.1 (0.5)
39, v2 0.36 19 (1) 16.8 (0.5)
39,11 0.36 21 (2) 18 (0.6)
29, v» 0.42 15.6 (0.5) 13.9(0.4)
54, v2 0.61 36 (1) 26 (1)

2 T1(*°F) values were determined from the zero crossings in inversion recovery experiments
with an estimated precision of +0.02 s. R>('°F) values were measured in three spin-echo
experiments conducted with relaxation delays of 8 ps, 40 ms and 80 ms. Ri,('°F) values were
measured in CPMG experiments with 0.4 ms spacing between subsequent 180° pulses. The
relaxation delays used were 0.8, 7.2, 13.6, 20.0, 26.4, 32.8, 39.2, 45.6, 52.0, 58.4, 64.8, 71.2,
77.6 and 84.0 ms.
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DFT calculations of *C chemical shifts and *Jrc coupling constants

Restricted Kohn-Sham density-functional theory (DFT) calculations were performed using the
®B97X-D3BJ functional (Najibi and Goerigk, 2018), D3BJ dispersion corrections (Grimme et
al., 2010; 2011), the aug-cc-pvdz basis set (Kendall et al., 1992), and the RIJCOSX
approximation for two-electron integrals (Neese, 2003; Neese et al., 2009; Helmich-Paris et al.,
2021) with on-the-fly auxiliary basis sets (Stoychev et al., 2017), and in the presence of a
solvent continuum (Garcia-Rates and Neese, 2020) with a dielectric constant of 6.5 and a
refractive index of 1.4 in Orca 6.0.0 (Neese, 2022, 2023). Each valine residue and rotamer was
taken from our previous work (Frkic et al., 2024). Calculations for the 13C chemical shifts and
3Jrc coupling constants were performed using the gauge-including atomic orbital (GIAO)
method (Stoychev et al., 2018). To obtain the torsional dependence data, we optimised the
structure of (CH3)CHCH>F in the gas phase but including a solvent continuum (Garcia-Rates
and Neese, 2020) with a dielectric constant of 6.5 and a refractive index of 1.4. The relative
torsion of the methyl-C-C-C-F dihedral angle (i.e. a rotation of the -CH>F group) was scanned
without any other optimization and the '3C chemical shifts and 3Jrc coupling constants were
calculated (Figure S7 and main text Figure 12b). We also performed another scan where the
remaining degrees of freedom were relaxed during the torsion scan (Figure S8). The relaxed
coordinates differ only marginally from the non-relaxed coordinates, but a notable change for

3Jrc at T = 0° was observed.
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Figure S7. Torsion angle dependence of *C chemical shifts and 3Jrc coupling constants
predicted by DFT calculations for (2R)-1-fluoro-2-methylpropane(3-'3C). (a) AS('3C) versus
the torsion angle t. The calculations were performed without relaxing the molecular geometry
prior to calculating the NMR parameters. (b) >Jrc versus the torsion angle t. See Figure 12 of

the main text for a plot of A8('3C) versus 3Jrc.
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Figure S8. Calculated torsion angle dependence of '3C chemical shifts and *Jrc coupling
constants in (2R)-1-fluoro-2-methylpropane(3-'3C) with relaxation of all other molecular
degrees of freedom. (a) AS('*C) versus the torsion angle t. (b) *Jrc versus the torsion angle 7.
(c) Correlation of AS('3C) with the 3Jrc coupling constants in the representation of Figure 12
of the main text. The points for the three staggered rotamers (=60° and 180°) are on a nearly

straight line.
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