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Abstract

This work provides a comprehensive theoretical framework for understanding the

symmetry properties of High-Resolution NMR spectra. We analyze the conditions un-

der which a spectrum exhibits mirror symmetry (palindromicity). We demonstrate

that such symmetry can arise from two distinct mechanisms: (1) the direct geometric

bisymmetry of the Hamiltonian matrix in a generalized canonical basis (typical for bal-

anced systems like AnBn or AnXn), and (2) a more fundamental property of topological

isospectrality (similarity) under parameter exchange induced by the internal symmetry

of the spin system, which applies even when the matrix lacks geometric symmetry (as

observed in AA′BB′ systems).
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4.1 Connection: Why Commutation Implies Symmetry . . . . . . . . . . . . . . 7

4.1.1 The Indistinguishability Argument . . . . . . . . . . . . . . . . . . . 7
4.2 The Generalized Canonical Basis (Q̂-basis) . . . . . . . . . . . . . . . . . . . 7

4.2.1 Structure and Symmetry of the Zero-Quantum Block (Mz = 0) . . . . 8
4.3 Rigorous Mathematical Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4.3.1 Proof via Unitary Transformation . . . . . . . . . . . . . . . . . . . . 8
4.3.2 Proof via Method of Moments . . . . . . . . . . . . . . . . . . . . . . 9

4.4 Generalized Symmetry (Re�ect and Shift) . . . . . . . . . . . . . . . . . . . 9
4.5 Invariance of the Characteristic Polynomial . . . . . . . . . . . . . . . . . . . 9

5 Beyond Geometric Symmetry: The Case of AA′BB′ (AA′XX ′) Spin System 10
5.1 System Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
5.2 Representations in P-Basis and Q-Basis . . . . . . . . . . . . . . . . . . . . . 10

5.2.1 The P-Basis (P-Ordered Product Basis) . . . . . . . . . . . . . . . . 10
5.2.2 The Q-Basis (Generalized Parity Basis) . . . . . . . . . . . . . . . . . 11

5.3 Conjugation by Operator Q̂ . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.3.1 Action in the P-Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5.3.2 Action in the Q-Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5.4 Symmetrized Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5.4.1 The Symmetric Subspace . . . . . . . . . . . . . . . . . . . . . . . . . 12
5.4.2 The Asymmetric Subspace . . . . . . . . . . . . . . . . . . . . . . . . 12

5.5 Summary: The Four Pillars of AA′BB′ Symmetry Analysis . . . . . . . . . . 15
5.6 Comparison with Magnetic Equivalence AnBn (AnXn) . . . . . . . . . . . . 16

6 The General Theorem of Spectral Symmetry 16

7 Spectral Asymmetry of Some Symmetric [A′X ′]n Spin Systems 17

8 Implications for Structure Elucidation (The Inverse Problem) 19

9 Conclusion 20

2



DOI: 10.13140/RG.2.2.19473.90724

1 General Formulas

The Hamiltonian of a nuclear spin system in a strong magnetic �eld (high-resolution NMR)
is represented as the sum of the Zeeman interaction and spin-spin interactions:

Ĥ = ĤZ + ĤSS = ĤZ + (ĤJ + ĤD) (1)

Where the components are de�ned as follows:

� Zeeman Interaction (ĤZ): Interaction of spins with the external magnetic �eld B0.

ĤZ =
n∑

i=1

νiÎiz (2)

Here νi is the resonance frequency of the i-th nucleus, and Îiz is the operator of the
z-component of the spin angular momentum.

� Spin-Spin Interaction (ĤSS): The sum of isotropic scalar (J) and secular dipolar
(D) contributions. In the secular approximation (high �eld), only the terms commuting
with total Iz are retained:

ĤSS =
∑
i<j

Jij(
ˆ⃗
Ii ·

ˆ⃗
Ij) +

∑
i<j

dij(3Îiz Îjz −
ˆ⃗
Ii ·

ˆ⃗
Ij) (3)

where Jij is the scalar coupling constant and dij is the residual dipolar coupling constant
(if present).

2 Canonical Basis and Matrix Symmetries

It is important to distinguish between the symmetry of a speci�c spin system and the gen-
eral symmetry properties of the Hamiltonian matrix representation. In this section, we
de�ne the Canonical Basis − a general-purpose basis applicable to any spin system. We
then demonstrate that in this basis, the Hamiltonian matrices possess inherent symmetries
(persymmetry and bisymmetry) that stem solely from the algebra of spin operators. For
the matrix representation, we employ the basis of simple products of single-spin functions
(Product functions basis). Each state |ψk⟩ of a system of N spins (where I = 1/2) is de�ned
by the set of magnetic quantum numbers mi = ±1/2:

|ψk⟩ = |m(k)
1 ,m

(k)
2 , . . . ,m

(k)
N ⟩ (4)

2.1 Basis Ordering and Structure

The basis functions are ordered to satisfy two fundamental conditions simultaneously:

1. Mz-Sorting: The states are arranged by the descending order of the total spin pro-
jection Mz =

∑
mi. This ensures that the Hamiltonian matrix has a block-diagonal

structure.

2. Spin-Inversion Centrosymmetry: Within the Mz ordering, the sequence is chosen
such that the entire basis is centrosymmetric with respect to the global spin inversion
operator P̂ (where P̂ �ips all spins mi → −mi).
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2.2 Mathematical De�nition of the Symmetry

This centrosymmetric property implies a rigorous mapping between the physical operation of
spin inversion and the index numbers of the basis functions. If the dimension of the Hilbert
space is D = 2N , then for any k-th basis function:

P̂ |ψk⟩ = |ψD+1−k⟩ (5)

This relationship links the algebraic properties of the spin operators directly to the per-
symmetry (symmetry with respect to the anti-diagonal) of the Hamiltonian matrix.

2.3 Zeeman Interaction: Anti-Persymmetry

In the product basis, the operator ĤZ is strictly diagonal since the basis functions are
eigenfunctions of Îiz.

2.3.1 Matrix Element

The energy of state |a⟩ is the sum of resonance frequencies weighted by spin projections:

⟨a|ĤZ |a⟩ =
N∑
i=1

νim
(a)
i (6)

2.3.2 Symmetry Property

Applying the inversion operator P̂ �ips all signs mi → −mi, reversing the sign of the total
Zeeman energy. Due to the centrosymmetric basis property (k ↔ D+1−k), this implies that
the Zeeman matrix is antisymmetric with respect to the anti-diagonal (anti-persymmetric):

(HZ)ii = −(HZ)D+1−i,D+1−i (7)

2.4 Spin-Spin Interaction: Bisymmetry

2.4.1 General Matrix Element Formula

The full matrix element between states |a⟩ and |b⟩ is given by explicitly summing over all
pairs:

⟨a|ĤSS|b⟩ =
N∑
k<l

[
δa,b(Jkl + 2dkl)m

(a)
k m

(a)
l︸ ︷︷ ︸

Diagonal

+
1

2
(Jkl − dkl)∆̂

(a,b)
kl︸ ︷︷ ︸

O�-diagonal

]
(8)

Where the auxiliary symbols are de�ned as follows:

� δa,b (Small Delta) is the Kronecker delta, which selects the diagonal elements:

δa,b =

{
1, if |a⟩ = |b⟩
0, if |a⟩ ̸= |b⟩

(9)

� ∆̂
(a,b)
kl (Large Delta) is the selection �lter for �ip-�op transitions. It equals 1 if and

only if the states di�er exactly by the exchange of spins k and l (where mk ̸= ml):

∆̂
(a,b)
kl =

{
1, if |b⟩ ∈ {Î+k Î

−
l |a⟩, Î

−
k Î

+
l |a⟩}

0, otherwise
(10)
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Note: While the secular Hamiltonian includes both scalar (J) and residual dipolar (d) cou-
plings with di�erent coe�cients (see Eq. 8), both tensors share the same spatial symmetry
properties de�ned by the molecular geometry. For brevity, in the subsequent symmetry
analysis, we will refer to the generalized coupling matrix simply as the J-coupling matrix,
implying that it e�ectively incorporates all spatial interaction constants.

2.4.2 Bisymmetry Property

The value of the spin-spin interaction matrix element is invariant under global spin inversion
P̂ :

⟨a|P̂ †ĤSSP̂ |b⟩ = ⟨a|ĤSS|b⟩ (11)

Conclusion: The ĤSS matrix is symmetric with respect to both the main diagonal (Hermi-
tian) and the anti-diagonal (persymmetric), making it a bisymmetric matrix. This property
is universal.

3 Elementary Spectral Transformations

3.1 Spectrum Translation via Frequency O�set

In experimental NMR, changing the transmitter o�set corresponds to a rigid translation of
the spectrum.

3.1.1 Hamiltonian Transformation

Adding a constant o�set Ω to all resonance frequencies (νi → νi +Ω) modi�es the Hamilto-
nian:

Ĥ ′ = Ĥ + ΩÎ totz (12)

Since [Ĥ, Î totz ] = 0 in the secular approximation, the eigenstates remain unchanged, but the

energy eigenvalues are shifted linearly: E ′
n = En + ΩM

(n)
z .

3.1.2 Shift of Spectral Lines

For observable single-quantum transitions (∆Mz = −1), the frequency shift is:

ω′
mn = (E ′

m − E ′
n) = (Em − En) + Ω(M (m)

z −M (n)
z ) = ωmn − Ω (13)

Since the shift is identical for all lines, the internal multiplet structure (determined by J-
couplings) remains invariant. Thus, the o�set operation performs a pure translation of the
spectral pattern.

3.2 Frequency Inversion and Spectral Re�ection

It is a fundamental property that inverting the signs of all resonance frequencies leads to
a mirror re�ection of the spectrum. This re�ection applies not only to the positions of the
multiplets but also to their internal �ne structure.
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3.2.1 Transformation of the Hamiltonian

Let Ĥ ′ be the Hamiltonian where all resonance frequencies are inverted (νi → −νi). This is
equivalent to:

Ĥ ′ = −ĤZ + ĤSS (14)

Applying the spin inversion operator P̂ :

P̂ †Ĥ ′P̂ = −(−ĤZ) + ĤSS = Ĥoriginal (15)

Thus, Ĥ ′ and Ĥoriginal are unitarily similar and share the same set of energy eigenvalues.
This implies that the set of energy intervals (which de�ne the magnitude of J-coupling
splittings) remains numerically invariant.

3.2.2 Inversion of Selection Rules

Although the energy levels are the same, the observable transitions change due to the trans-
formation of the eigenstates: |ñ⟩ = P̂ |n⟩. The observable signal depends on the transition
matrix elements of the lowering operator Î−. The operator P̂ transforms the lowering oper-
ator into the raising operator:

P̂ †Î−P̂ = −Î+ (16)

Consequently, a transition allowed in the original system at frequency ω = Ef − Ei corre-
sponds to a transition in the inverted system associated with the reverse process (∆M = +1),
appearing at frequency −ω.

3.2.3 Re�ection of Fine Structure

Crucially, this mechanism re�ects the entire topology of the spectrum. One might intuitively
expect that since the scalar couplings Jij are not inverted, the multiplets would simply shift

positions while retaining their original shape. However, the unitary transformation P̂ a�ects
the mixing coe�cients of the wavefunctions. As a result:

� The center of the multiplet moves from ν to −ν.

� The internal structure is mirrored: a transition that was on the "right" side of the
multiplet (e.g., ν + J/2) maps to the "left" side relative to the new center (−ν − J/2).

� Intensity distortions, such as the "roof e�ect" (where inner lines are stronger), are also
strictly re�ected.

Thus, Ĥ ′(−ν) generates a spectrum S(−ω) which is a perfect mirror image of S(ω) down to
the �nest detail.

3.3 Frequency Inversion and Magnet Reversal

Consider the transformation where all resonance frequencies are inverted (νi → −νi), which
is mathematically equivalent to Ĥ ′ = −ĤZ + ĤSS. Physically, this corresponds to reversing
the external magnetic �eld (B0 → −B0).

� Eigenvalues: Ĥ ′ is unitarily equivalent to Ĥ via the spin inversion operator P̂ , so
they share the same set of eigenvalues.

� Selection Rules: P̂ transforms the lowering operator Î− into Î+, e�ectively reversing
the "direction" of transitions (|n⟩ → |m⟩ becomes |m̃⟩ → |ñ⟩).

Conclusion: The spectrum in a negative �eld is the mirror image of the spectrum in a
positive �eld: S(ω) → S(−ω).
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4 Spectral Symmetry: The Ideal Case ([Ĥ, Q̂] = 0)

The Con�ict of Symmetries The total Hamiltonian Ĥ = ĤZ + ĤSS generally yields
an asymmetric spectrum because its components transform di�erently under P̂ : ĤZ is anti-
persymmetric, while ĤSS is bisymmetric.

Restoration via Generalized Parity Symmetry can be restored if the anti-persymmetry
of the Zeeman term is compensated by the structural symmetry of the parameters. We
introduce the Generalized Parity Operator Q̂ = P̂ × Π̂, where Π̂ is the permutation that
reverses the order of spins (i↔ N+1−i). The fundamental algebraic condition for symmetry
is [Ĥ, Q̂] = 0.

4.1 Connection: Why Commutation Implies Symmetry

Why does the algebraic condition [Ĥ, Q̂] = 0 force the spectrum to be a palindrome?

4.1.1 The Indistinguishability Argument

1. Magnet Reversal E�ect: Changing the sign of the magnetic �eld re�ects the spec-
trum: S(ω) → S(−ω) (Section 5.3).

2. Structural Symmetry: If the system parameters satisfy the conditions for [Ĥ, Q̂] =
0, then the state of the system in a reversed �eld (−ν) is structurally identical to the
original state (ν), di�ering only in the spins order (operator Π̂).

3. Conclusion: Since the physics is invariant under relabeling, the spectrum of the
"reversed magnet" system must be identical to the spectrum of the "original" system:

S(−ω) = S(ω) (17)

The commutation relation [Ĥ, Q̂] = 0 is the rigorous operator statement that the system is
invariant under the combined operation of �eld inversion and relabeling.

4.2 The Generalized Canonical Basis (Q̂-basis)

To make the spectral symmetry manifest in the matrix form, we introduce a reordered basis
adapted to the combined operator Q̂. In this basis, the pairing of states is de�ned by the
generalized parity operator Q̂ = P̂ Π̂.

Mechanism of Symmetry Restoration

In a centered spectrum (
∑
νi = 0), the resonance frequencies obey νk = −νN+1−k. Since the

paired states in this basis are structural mirror images of each other, every spin contribution
+νi in one state is perfectly compensated by a contribution −νi in its partner.

Consider a 3-spin system. The state |+−−⟩ (m1 = +,m2 = −,m3 = −) transforms into
its symmetric partner as follows:

|+−−⟩ Π̂−→ | − −+⟩ P̂−→ |++−⟩

This combined operation guarantees that if the resonance frequencies are antisymmetric
relative to the center, the paired states possess identical Zeeman energies (E = E ′). This
transforms the Zeeman matrix for these Shell states from anti-persymmetric to persymmetric,
matching the symmetry of the spin-spin interaction.

7
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4.2.1 Structure and Symmetry of the Zero-Quantum Block (Mz = 0)

For subspaces with Mz ̸= 0, the operator Q̂ simply maps the entire block +M to the
block −M . However, in systems with an even number of spins (N ≥ 2), the Zero-Quantum
subspace (Mz = 0) is mapped onto itself. It is only within this block that self-conjugate states
(states invariant under Q̂) can arise. To manage this complexity, the basis is organized into
a Nested "Shell-Core" Structure, which leads to a speci�c hybrid symmetry of the Zeeman
interaction.

1. The Shell (Transverse Pairs): States that are not invariant under Q̂ form pairs
|ψa⟩ ↔ |ψb⟩.

� Symmetry Implication: As a consequence of the restoration mechanism described
above, the total Zeeman energies of the pair are strictly equal (Ea = Eb). This
equality transforms the Zeeman matrix relation from anti-persymmetry (Hij =
−Hji) to persymmetry (Hij = Hji), resolving the con�ict with the symmetric
J-coupling term.

2. The Core (Self-Conjugate States): States that are invariant under Q̂ lie in the
exact center of the basis (Mz = 0). They are mapped onto themselves (or within
the small core block) by Q̂, meaning they lack a distinct "frequency-compensating"
partner.

� Mechanism of Persistence: For these states, the pairing is de�ned solely by spin
inversion P̂ , which reverses all spins without swapping nuclei. This operation
simply �ips the sign of the total energy: E → −E.

� Symmetry Implication: Since there is no partner with equal energy to restore
balance, the condition Ei = −Ej persists. Therefore, the Zeeman matrix in the
"Core" region remains anti-persymmetric, preventing the total Hamiltonian from
becoming globally bisymmetric.

� Algebraic Consistency: Crucially, this violation of geometric bisymmetry does not
imply a breakdown of the fundamental commutation relation [Ĥ, Q̂] = 0 (for bal-
anced systems). The apparent con�ict is an artifact of the matrix representation:
for self-conjugate states, Q̂ acts via spin inversion P̂ (�ipping Zeeman energy
signs) rather than by swapping degenerate partners. Thus, algebraic symmetry
is preserved despite the hybrid geometric structure.

Conclusion: The total Zeeman matrix in the Q̂-basis possesses a hybrid symmetry : it is
persymmetric in the outer shell but anti-persymmetric in the inner core. This hybrid nature
prevents the total Hamiltonian Ĥ = ĤZ + ĤSS from being globally bisymmetric, even if ĤSS

is perfect. Crucially, this geometric asymmetry of the matrix representation does not violate
the algebraic symmetry condition.

4.3 Rigorous Mathematical Proofs

4.3.1 Proof via Unitary Transformation

The NMR spectrum S(ω) is the Fourier transform of the correlation function. Applying the
unitary transformation Q̂ to the trace (noting that Q̂†ÎxQ̂ = −Îx and the trace is invariant
under unitary similarity Tr(A) = Tr(Q̂†AQ̂)):

Corr′(t) = Tr
(
e−iĤt(−Îx)eiĤt(−Îx)

)
= Corr(t) (18)

8
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Since Q̂ involves spin inversion, it e�ectively maps S(ω) → S(−ω). If the correlation function
is invariant, the spectrum is symmetric.

4.3.2 Proof via Method of Moments

The symmetry can also be proven by showing that all odd Van Vleck moments vanish. The
n-th moment Mn is de�ned as:

Mn =

∫ ∞

−∞
ωnI(ω)dω ∝ Tr{[Ĥ, [Ĥ, . . . [Ĥ, Îx] . . . ]]Îx} (19)

Applying the transformation P̂ maps Ĥ → Ĥ ′(−ν). Since the spectrum of the inverted
system is the mirror image of the original, I(ω) = I(−ω). Consequently, all odd moments
M1,M3, . . . must be identically zero.

4.4 Generalized Symmetry (Re�ect and Shift)

If the system possesses structural symmetry (Jij are centrosymmetric) but the transmitter
o�set is not set to zero (i.e., νi ̸= −νN+1−i), the spectrum is still a palindrome, but centered
at ω0 ̸= 0. The generalized symmetry condition is:

S(2ω0 − ω) = S(ω) (20)

This implies that the mirror image of the spectrum can be superimposed onto the original
spectrum by a rigid linear translation.

4.5 Invariance of the Characteristic Polynomial

The condition of unitary similarity discussed above has a fundamental algebraic conse-
quence concerning the characteristic polynomial of the Hamiltonian, de�ned as P (λ) =

det
(
Ĥ − λÊ

)
.

Theorem 1 (Spectral Enantiomerism). If two distinct Hamiltonians possess identical char-
acteristic polynomials, then their spectra either coincide or are mirror re�ections of each
other (spectral �enantiomers�).

Proof. The identity of characteristic polynomials, P1(λ) = P2(λ), implies that the two Hamil-
tonians share the exact same set of eigenvalues (energy levels). Mathematically, this means
the matrices are isospectral. Consequently, the set of all possible transition frequencies
ωij = Ei − Ej is identical for both systems.

The distinction between "identical" and "mirror-image" spectra arises from the properties
of the eigenvectors, which determine the transition intensities:

1. Identical Spectra: If the unitary transformation Û linking the Hamiltonians (Ĥ ′ =
Û †ĤÛ) preserves the selection rules (e.g., commutes with total spin Iz), the transition
intensities remain mapped to the same frequencies.

2. Spectral Enantiomers: If the transformation inverts the selection rules (e.g., maps
transitions ∆M = −1 to ∆M = +1, as seen with the operator Q̂ involving spin
inversion), the intensities are mapped to the re�ected frequencies (−ω).

9



DOI: 10.13140/RG.2.2.19473.90724

5 Beyond Geometric Symmetry: The Case of AA′BB′

(AA′XX ′) Spin System

This section presents a comprehensive analysis of the origin of mirror symmetry in the
NMR spectra of AA′BB′ (AA′XX ′) spin systems, based on the generalized parity operator
Q̂ = P̂ Π̂ framework. We demonstrate that the observed spectral symmetry is an inherent
algebraic property dictated by the structure of the spin Hamiltonian. By decomposing the
Hamiltonian into symmetry-distinct invariant subspaces, we identify two independent mech-
anisms that ensure spectral symmetry despite the geometric asymmetry of the J-coupling
network (JAA′ ̸= JBB′).

5.1 System Description

The analyzed AA′BB′ spin system is de�ned by the following parameters:

Spins A A′ B B′

νi ν0 +∆/2 ν0 +∆/2 ν0 −∆/2 ν0 −∆/2

J-couplings JAA′ JAB JAB′

JAB′ JAB

JBB′

� Spins: Four spins labeled A,A′, B,B′.

� Resonance Frequencies: Symmetric distribution relative to the center ν0:

νA = νA′ = ν0 +∆/2, νB = νB′ = ν0 −∆/2

� J -Coupling Network: The scalar coupling matrix J is de�ned by the unique cou-
pling constants (JAB ̸= JAB′ and JAA′ ̸= JBB′) as follows:

J =


0 JAA′ JAB JAB′

JAA′ 0 JAB′ JAB

JAB JAB′ 0 JBB′

JAB′ JAB JBB′ 0


5.2 Representations in P-Basis and Q-Basis

5.2.1 The P-Basis (P-Ordered Product Basis)

The P-basis is partitioned into subspaces according to the total angular momentum pro-
jection Mz. Crucially, the ordering is de�ned such that the entire basis sequence forms a
palindrome with respect to the collective spin inversion operator P̂ . This means the second
half of the basis is the state-by-state spin inversion of the �rst half (in reverse order).

Spin Product basis functions are conveniently de�ned using the binary representation of integer numbers
(from 0 to 2N −1), grouped by Hamming weight. For four spins, the P-ordered Product basis takes the form:

Mz = +2 Mz = +1 Mz = 0 Mz = −1 Mz = −2

0 1 2 4 8 6 5 3 || 12 10 9 7 11 13 14 15

↑↑↑↑ ↑↑↑↓ ↑↑↓↑ ↑↓↑↑ ↓↑↑↑ ↑↓↓↑ ↑↓↑↓ ↑↑↓↓ ↓↓↑↑ ↓↑↓↑ ↓↑↑↓ ↑↓↓↓ ↓↑↓↓ ↓↓↑↓ ↓↓↓↑ ↓↓↓↓

The symbol || demarcates the center of the basis and relates the second half to the �rst via mirror re�ection

with spin inversion.

10
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� Zeeman Hamiltonian (ĤZ): The matrix is diagonal. Since the spectrum is centered,
the elements exhibit anti-persymmetry :

(HZ)i,i = −(HZ)N−i+1,N−i+1

� Spin-Spin Hamiltonian (ĤSS): The matrix is bisymmetric (symmetric with respect
to both the main and anti-diagonals).

5.2.2 The Q-Basis (Generalized Parity Basis)

The Q-basis is constructed to align with the generalized parity operator Q̂ = P̂ Π̂. In the
�rst half, it coincides with the P-basis; in the second half, the spin order of the P-basis states
is reversed. This additional spin order reversal results in some basis functions within the
Mz = 0 subblock being mapped onto themselves under the action of Q̂, thereby forming the
kernel of the Q-basis.

For four spins, the Q-ordered Product basis takes the form:

Mz = +2 Mz = +1 Mz = 0 Mz = −1 Mz = −2

0 1 2 4 8 6 5 3 || 12 10 9 14 13 11 7 15

↑↑↑↑ ↑↑↑↓ ↑↑↓↑ ↑↓↑↑ ↓↑↑↑ ↑↓↓↑ ↑↓↑↓ ↑↑↓↓ ↓↓↑↑ ↓↑↓↑ ↓↑↑↓ ↓↓↓↑ ↓↓↑↓ ↓↑↓↓ ↑↓↓↓ ↓↓↓↓︸ ︷︷ ︸
Outer Shell

︸ ︷︷ ︸
Core

︸ ︷︷ ︸
Outer Shell

The symbol || demarcates the center of the basis.

The Outer Shells (Mz ̸= 0) These subblocks correspond to Q̂-basis states for Mz = ±2
and Mz = ±1.

� Structure of ĤSS: The global bisymmetry is lost. The "lower" block is the geometric
re�ection of the "upper" block, but with a complete parameter substitution JAA′ ↔
JBB′ .

� Structure of ĤZ: The matrix is diagonal and exhibits global persymmetry due to the
resonance frequency balance (νA = −νB).

The Zero-Quantum Block (Mz = 0) In this central subblock, the Q-basis identi�es the
self-conjugate Core.

1. Inner Shells: Paired states surrounding the core that map into each other under Q̂.

� Spin-Spin Term: Retains bisymmetry, but creates a symmetry con�ict due to
mixing with the Core.

� Zeeman Term: Exhibits persymmetry.

2. The Core: Self-conjugate states grouped in the center.

� Spin-Spin Term: Retains bisymmetry.

� Zeeman Term: Retains anti-persymmetry (Hii = −HN−i+1,N−i+1).

5.3 Conjugation by Operator Q̂

The action of the operator Q̂ on the Hamiltonian corresponds to the transformation Ĥ ′ =
Q̂†ĤQ̂.

11
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5.3.1 Action in the P-Basis

In the P-Ordered Product Basis, the spin-spin Hamiltonian matrix is naturally bisymmetric.
Consequently, the geometric aspect of the transformation maps the matrix onto itself. The
transformation manifests purely algebraically as a parameter swap (JAA′ ↔ JBB′).

5.3.2 Action in the Q-Basis

1. Outer Shells (Mz ̸= 0): Global Re�ection For the spatially separated blocks, the
transformation acts as a geometric re�ection across the anti-diagonal.

2. Zero-Quantum Block (Mz = 0): The matrix is geometrically invariant.

� Inner Shells: Manifests as an in-place parameter swap (JAA′ ↔ JBB′).

� The Core: Numerical values remain strictly invariant because the matrix ele-
ments depend exclusively on the symmetric parameter sums (ΣJintra).

5.4 Symmetrized Representation

Transitioning to a symmetry-adapted basis via the unitary transformation U block-diagonalizes
the Hamiltonian into a symmetric subspace and an asymmetric subspace.

Basis functions of the AA′BB′ spin system, symmetrized according to the irreducible representations of the
C2 symmetry group:

Mz = +2 Mz = +1 Mz = 0 Mz = −1 Mz = −2

IR A (sym) |0⟩ |1⟩+|2⟩√
2

|4⟩+|8⟩√
2

|6⟩+|9⟩√
2

|3⟩ |12⟩ |5⟩+|10⟩√
2

|13⟩+|14⟩√
2

|7⟩+|11⟩√
2

|15⟩

IR B (asym)
|1⟩−|2⟩√

2

|4⟩−|8⟩√
2

|6⟩−|9⟩√
2

|5⟩−|10⟩√
2

|13⟩−|14⟩√
2

|7⟩−|11⟩√
2

5.4.1 The Symmetric Subspace

The symmetric subspace corresponds to states that transform according to the trivial rep-
resentation. The Hamiltonian block Ĥsym depends exclusively on the sum of JAA′ and JBB′ ,

so [Ĥsym, Q̂] = 0.
Structure of the Zero-Quantum Block: The explicit form of this 4 × 4 doubled

Hamiltonian block illustrates the extensive connectivity between basis states:


−1

2
ΣJintra −∆Jinter

√
2JAB

√
2JAB ΣJintra√

2JAB
1
2
ΣJintra − ΣJinter + 2∆ 0

√
2JAB′√

2JAB 0 1
2
ΣJintra − ΣJinter − 2∆

√
2JAB′

ΣJintra
√
2JAB′

√
2JAB′ −1

2
ΣJintra +∆Jinter


(21)

5.4.2 The Asymmetric Subspace

To illustrate the origin of isospectrality, we decompose the Hamiltonian matrix in the asym-
metric subspace. The decomposition of the doubled Hamiltonian matrix 2Ĥasym is given
by:

12
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2Ĥasym = −1

2
ΣJintraI6︸ ︷︷ ︸

Scalar Shift

+


∆ 0 0 0 0 0
0 −∆ 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 −∆ 0
0 0 0 0 0 ∆


︸ ︷︷ ︸

Zeeman Term

+


0 ∆Jinter 0 0 0 0

∆Jinter 0 0 0 0 0
0 0 −∆Jinter 0 0 0
0 0 0 ∆Jinter 0 0
0 0 0 0 0 ∆Jinter
0 0 0 0 ∆Jinter 0


︸ ︷︷ ︸

Invariant Coupling

+


∆Jintra 0 0 0 0 0

0 −∆Jintra 0 0 0 0
0 0 0 −∆Jintra 0 0
0 0 −∆Jintra 0 0 0
0 0 0 0 ∆Jintra 0
0 0 0 0 0 −∆Jintra


︸ ︷︷ ︸

Asymmetric Part

(22)
The Asymmetric Part depends on ∆Jintra = JAA′ − JBB′ . Since the parameter exchange

swaps JAA′ and JBB′ , this term changes its sign under Q̂. This results in the transformed
matrix:


d+ ∆Jinter 0 0 0 0

∆Jinter −d+ 0 0 0 0
0 0 −∆Jinter −∆Jintra 0 0
0 0 −∆Jintra ∆Jinter 0 0
0 0 0 0 −d− ∆Jinter
0 0 0 0 ∆Jinter d−


︸ ︷︷ ︸

2Ĥasym

Q̂−→


d− ∆Jinter 0 0 0 0

∆Jinter −d− 0 0 0 0
0 0 −∆Jinter +∆Jintra 0 0
0 0 +∆Jintra ∆Jinter 0 0
0 0 0 0 −d+ ∆Jinter
0 0 0 0 ∆Jinter d+


︸ ︷︷ ︸

2Q̂†ĤasymQ̂

(23)
where d± = ∆±∆Jintra.

Structure of Subblocks and Spectral Invariance It can be observed that all subblocks
are traceless symmetric matrices of dimension 2× 2. The eigenvalues for such matrices are
equal and opposite in sign.

Mz = +1 Mz = 0 Mz = −1

Ĥasym

(
d+ ∆Jinter

∆Jinter −d+

) (
−∆Jinter −∆Jintra

−∆Jintra ∆Jinter

) (
−d− ∆Jinter

∆Jinter d−

)

tan 2θ tan 2θ+ =
∆Jinter
d+

tan 2θ0 =
∆Jintra
∆Jinter

tan 2θ− =
∆Jinter
d−

E
+E+

+
√
∆J2

inter + d2+

−E+

−
√
∆J2

inter + d2+

−E0

−
√
∆J2

inter +∆J2
intra

+E0

+
√
∆J2

inter +∆J2
intra

−E−

−
√
∆J2

inter + d2−

+E−

+
√
∆J2

inter + d2−

ψ

(
cos θ+

sin θ+

) (
− sin θ+

cos θ+

) (
cos θ0

sin θ0

) (
− sin θ0

cos θ0

) (
cos θ−

− sin θ−

) (
sin θ−

cos θ−

)

13
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Doubled perturbation operator, line frequencies, and transition moments:

Perturbation operator Frequency Transition Doubled transition moment

Mz = +1 → Mz = 0

2ΣÎx,asym =

−1 1

1 1


f1 +E+→−E0 cos θ0(− cos θ+ + sin θ+) + sin θ0(cos θ+ + sin θ+)

f2 +E+→+E0 cos θ0(cos θ+ + sin θ+) + sin θ0(cos θ+ − sin θ+)

−f2 −E+→−E0 cos θ0(cos θ+ + sin θ+) + sin θ0(cos θ+ − sin θ+)

−f1 −E+→+E0 −[cos θ0(− cos θ+ + sin θ+) + sin θ0(cos θ+ + sin θ+)]

Mz = 0 → Mz = −1

2ΣÎx,asym =

 1 −1

−1 −1


f3 −E0→−E− cos θ0(cos θ− + sin θ−) + sin θ0(− cos θ− + sin θ−)

f4 −E0→+E− −[cos θ0(cos θ− − sin θ−) + sin θ0(cos θ− + sin θ−)]

−f4 +E0→−E− −[cos θ0(cos θ− − sin θ−) + sin θ0(cos θ− + sin θ−)]

−f3 +E0→+E− −[cos θ0(cos θ− + sin θ−) + sin θ0(− cos θ− + sin θ−)]

The subspectrum of the asymmetric subspace consists of four symmetrically located
doublets. The action of the operator Q̂ leads to the permutation of pairs of doublets.
After the action of Q̂:

Mz = +1 Mz = 0 Mz = −1

Ĥ ′
asym

(
d− ∆Jinter

∆Jinter −d−

) (
−∆Jinter +∆Jintra

+∆Jintra ∆Jinter

) (
−d+ ∆Jinter

∆Jinter d+

)

tan 2θ′ tan 2θ− =
∆Jinter
d−

tan 2θ0 =
∆Jintra
∆Jinter

tan 2θ+ =
∆Jinter
d+

E ′
+E−

+
√
∆J2

inter + d2−

−E−

−
√
∆J2

inter + d2−

−E0

−
√
∆J2

inter +∆J2
intra

+E0

+
√

∆J2
inter +∆J2

intra

−E+

−
√

∆J2
inter + d2+

+E+

+
√
∆J2

inter + d2+

ψ′

(
cos θ−

sin θ−

) (
− sin θ−

cos θ−

) (
cos θ0

− sin θ0

) (
sin θ0

cos θ0

) (
sin θ+

cos θ+

) (
cos θ+

− sin θ+

)

Doubled perturbation operator, line frequencies, and transition moments (Q̂†ΣÎx,asymQ̂ =

ΣÎx,asym):

Perturbation operator Frequency Transition Doubled transition moment

Mz = +1 → Mz = 0

2ΣÎx,asym =

−1 1

1 1


−f4 +E−→−E0 −[cos θ0(cos θ− − sin θ−) + sin θ0(cos θ− + sin θ−)]

f3 +E−→+E0 cos θ0(cos θ− + sin θ−) + sin θ0(− cos θ− + sin θ−)

−f3 −E−→−E0 cos θ0(cos θ− + sin θ−) + sin θ0(− cos θ− + sin θ−)

f4 −E−→+E0 cos θ0(cos θ− − sin θ−) + sin θ0(cos θ− + sin θ−)]

Mz = 0 → Mz = −1

2ΣÎx,asym =

 1 −1

−1 −1


f2 −E0→−E+ cos θ0(cos θ+ + sin θ+) + sin θ0(cos θ+ − sin θ+)

−f1 −E0→+E+ cos θ0(− cos θ+ + sin θ+) + sin θ0(cos θ+ + sin θ+)

f1 +E0→−E+ cos θ0(− cos θ+ + sin θ+) + sin θ0(cos θ+ + sin θ+)

−f2 +E0→+E+ −[cos θ0(cos θ+ + sin θ+) + sin θ0(cos θ+ − sin θ+)]

The action of the operator Q̂ leads to the permutation of pairs of doublets, those due
to transitions {Mz = +1 → Mz = 0} and transitions {Mz = 0 → Mz = −1}. Now the
doublets with frequencies ±f3 and ±f4 correspond to transitions Mz = +1 → Mz = 0, and
the doublets with frequencies ±f1 and ±f2 correspond to transitions Mz = 0 → Mz = −1.
The line intensities are preserved and do not change when the blocks are swapped.

Static Nature of Spectral Symmetry The explicit Hamiltonian subblocks structure
demonstrates that the observed spectral symmetry in the asymmetric subspace is a static

14
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geometric property. Since all matrices are inherently traceless, the energy levels are strictly
constrained to appear in symmetric pairs ±E. Consequently, the parameter asymmetry
JAA′ ̸= JBB′ (or ∆Jintra ̸= 0) a�ects only the magnitude of the energy splitting but is
mathematically incapable of breaking the symmetry of the spectrum.

This speci�c structure leads to a distinct topology of transitions compared to the sym-
metric subspace. In the symmetric subspace, the spectral mirror symmetry arises from
the correspondence between transitions belonging to symmetrically located blocks (pair-
ing the transitions from the upper part of the energy diagram with those from the lower
part). In contrast, in the asymmetric subspace, the symmetric transitions are generated
locally. Speci�cally, the transitions between blocks Mz = +1 → Mz = 0 (and similarly
Mz = 0 → Mz = −1) independently form symmetric frequency subsets due to the inherent
±E structure of the participating levels. Thus, the palindromic structure of transitions is
guaranteed a priori by the algebraic form of the Hamiltonian in the symmetrized basis.

5.5 Summary: The Four Pillars of AA′BB′ Symmetry Analysis

Our analysis con�rms that the observation of spectral symmetry relies on four critical com-
ponents. Violation of any of these conditions severs the link between the Hamiltonian's
algebraic structure and the spectrum's geometric symmetry.

1. Correct Spin Indexing (Topology of J): The nuclei must be indexed (numbered)
such that the J-coupling matrix exhibits the required topological invariance or bal-
anced re�ection relative to the anti-diagonal. Arbitrary indexing destroys the structure
of the permutation operator Π̂, making the generalized parity operator Q̂ physically
meaningless for the system.

2. Frequency Centering (
∑
νi = 0): De�ning resonance frequencies relative to the

spectral center of gravity is strictly necessary to render the Zeeman matrix perfectly
anti-persymmetric (Hii = −Hjj). In the "Shell" regions, this condition ensures the
exact compensation of energies (+ν and −ν), converting the Zeeman anti-symmetry
into the persymmetry required to resolve the con�ict with the symmetric J-coupling
term.

3. Canonical Basis Sorting: The basis functions must be rigorously ordered byMz and,
crucially, arranged to be centrosymmetric with respect to the spin inversion operator
P̂ . This ensures that the physical operation of spin inversion maps exactly to the
geometric re�ection of the matrix indices (k ↔ D + 1− k).

4. Correct Symmetrizing Transformation (Û): The unitary transition from the
product basis to the symmetry-adapted basis is essential to factorize the Hamiltonian.
It reveals the distinct algebraic nature of the irreducible blocks:

� The Symmetric block commutes with Q̂ ([Hsym, Q̂] = 0), implying geometric
invariance.

� The Asymmetric block exhibits Static Geometric Symmetry (Isospectrality). While
it does not commute with Q̂ in the strict operator sense due to parameter swap, its
subblocks are inherently traceless symmetric matrices, which enforces the spectral
invariance (±E) under the parameter re�ection.

The theoretical explanation of spectral symmetry is the result of the synergy between these
factors:

Spectral Symmetry = Topology(J) + Centering(ν) + Basis(P̂ ) + Algebra(Q̂). (24)
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5.6 Comparison with Magnetic Equivalence AnBn (AnXn)

It is important to distinguish the AA′BB′ case from systems with magnetic equivalence, such
as AnBn (AnXn). In AnBn systems, the intra-group couplings JAA and JBB do not a�ect
the transition energies (they disappear from the relevant parts of the Hamiltonian). Thus,
the condition for spectral symmetry is satis�ed trivially. In contrast, in AA′BB′ systems,
JAA′ and JBB′ actively contribute to the spectrum, and symmetry is preserved only due to
the speci�c algebraic structure (cancellation of signs in squared di�erences) described above.

6 The General Theorem of Spectral Symmetry

Based on the preceding analysis, we can formulate the �nal necessary and su�cient condi-
tion for the mirror symmetry of an NMR spectrum. We introduce the concept of re�ected
frequencies relative to the spectral center of gravity ν0 =

1
n

∑
νi.

Theorem 2 (General Isospectrality and Structural Equivalence). The NMR spectrum S(ω)
is mirror-symmetric with respect to its center if and only if the Hamiltonian satis�es the
condition of frequency re�ection isospectrality:

Spec(Ĥ(ν,J)) = Spec(Ĥ(2ν0 − ν,J)) (25)

subject to the constraint that the unitary transformation linking these Hamiltonians corre-
sponds to a permutation of nuclei.

Structural Equivalence: This fundamental condition is equivalent to the requirement that
there exists at least one speci�c spin order (permutation 1 . . . N) which simultaneously en-
sures:

1. Frequency Balance: The resonance frequencies are distributed centrosymmetrically in
this order (νi − ν0 = −(νN+1−i − ν0)).

1

2. Re�ection Invariance of the Interaction: Under this ordering, the frequency re�ection
is physically equivalent to the re�ection of the interaction matrix. Thus, condition (25)
reduces to:

Spec(Ĥ(ν,J)) = Spec(Ĥ(ν,J refl)) (26)

where the re�ected matrix is de�ned as (J refl)ij = (J)N+1−j,N+1−i.

Physical Interpretation: The theorem states that spectral symmetry arises if and only if
the spin system admits a speci�c "palindromic" spin order. In this order, the system is
indistinguishable (isospectral) from its own mirror image obtained by reversing the sequence
of spin resonance frequencies (1 ↔ N, 2 ↔ N − 1, . . . ). This means that swapping the J-
couplings across the "center" of the index sequence (e.g., exchanging J1,2 with JN,N−1) must
leave the spectrum invariant.

Corollary 2.1 (Types of Symmetry). This theorem encompasses both mechanisms discussed
in this work:

1In systems containing large groups of chemically equivalent nuclei, e.g., [A′B′]n, the requirement of
sorting by resonance frequencies is necessary but not su�cient. Due to the permutation symmetry within
equivalent groups, there exist multiple spin orderings that satisfy the frequency sorting condition. However,
as matrix analysis demonstrates, the condition of J-coupling matrix symmetry is sensitive to the relative
ordering of spins within these chemically equivalent groups. Therefore, for such spin systems, the criterion
is strictly de�ned as follows: Mirror symmetry exists if there is at least one speci�c permutation within the
chemically equivalent sets that results in a symmetric or "balanced" J-coupling matrix.
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� Geometric Symmetry: If J = J refl (the matrix is explicitly bisymmetric), the Hamil-
tonian strictly commutes with the generalized parity operator ([Ĥ, Q̂] = 0), and the
spectrum is identical (trivial isospectrality). This corresponds to systems like AnBn.

� Isospectral Symmetry: If J ̸= J refl but the Hamiltonians are isospectral due to algebraic
properties (caused by symmetry of spin system), the spectrum is symmetric despite the
violation of strict commutation. This corresponds to systems like AA′BB′.

7 Spectral Asymmetry of Some Symmetric [A′X ′]n Spin

Systems

D3-symmetric [A′X ′]3 spin system of 1,3,5-tri�uorobenzene

HA′′

FX′

HA′

FX

HA

FX′′

Spins A A′ A′′ X X′ X′′

νi νA νA νA νX νX νX

J-couplings JAA′ JAA′ JAX JAX′ JAX

JAA′ JAX JAX JAX′

JAX′ JAX JAX

JXX′ JXX′

JXX′

C2v-symmetric [A′X ′]4 spin systems

O

HX

HX′

HX′′

HX′′′

HA

HA′

HA′′

HA′′′

HA

HA′

HA′′

HA′′′

HX

HX′

HX′′

HX′′′

HA HA′′

HA′
HA′′′

FX

FX′

FX′′

FX′′′

2-

Spins A A′ A′′ A′′′ X X′ X′′ X′′′

νi νA νA νA νA νX νX νX νX

J-couplings JAA′ JAA′′ JAA′′′ JAX JAX′ JAX′′ JAX′′′

JAA′′′ JAA′′ JAX′ JAX JAX′′′ JAX′′

JAA′ JAX′′ JAX′′′ JAX JAX′

JAX′′′ JAX′′ JAX′ JAX

JXX′ JXX′′ JXX′′′

JXX′′′ JXX′′

JXX′
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D4-symmetric [A′X ′]4 spin system

HA FX′′′

HA′′′

FX′′

HA′′
FX′

HA′

FX

2-

Spins A A′ A′′ A′′′ X X′ X′′ X′′′

νi νA νA νA νA νX νX νX νX

J-couplings JAA′ JAA′′ JAA′ JAX JAX′ JAX′ JAX

JAA′ JAA′′ JAX JAX JAX′ JAX′

JAA′ JAX′ JAX JAX JAX′

JAX′ JAX′ JAX JAX

JXX′ JXX′′ JXX′

JXX′ JXX′′

JXX′

The spin ordering was assigned as follows: 1) spins were grouped by chemical equivalence
to satisfy the resonance frequency balance condition; 2) within chemically equivalent groups
(A and X), the order was chosen to be topologically mutually consistent, ensuring that
JAX = JA′X′ = JA′′X′′ = JA′′′X′′′ . For 1,3,5-tri�uorobenzene and the 1,3,5,7-tetra�uoro-
substituted cyclooctatetraene dianion, this ordering coincides with the canonical topological
order. In all considered spin systems, the J-coupling matrices exhibit high symmetry, with
the inter-group coupling blocks being symmetric with respect to the anti-diagonal (persym-
metric). However, in contrast to the [AA′BB′] case, due to the algebraic properties of the
Hamiltonian, there is no balancing of topologically equivalent homonuclear coupling con-
stant pairs in these systems. Speci�cally, the constant pairs {JAA′ , JXX′}, {JAA′′ , JXX′′},
and {JAA′′′ , JXX′′′} do not form balanced pairs. Consequently, the spectra are not invariant
under the permutation of constants within these pairs and do not possess mirror symmetry,
despite the high symmetry of the spin systems themselves.

It is worth noting that in the product basis, the doubled o�-diagonal elements of the spin Hamiltonian

correspond to the spin-spin coupling constants. In systems with a single second-order symmetry element

(e.g., the [AA′BB′] case), the symmetrized basis consists of sums and di�erences of pairs of product basis

functions, leading to o�-diagonal elements that contain sums and di�erences of spin-spin coupling constant

pairs. However, in systems with higher symmetry, the symmetrized linear combinations involve a larger

number of basis functions. As a result, the o�-diagonal elements contain linear combinations of multiple

constants, which precludes the guarantee of pairwise balancing.

Optimality of the Topologically Mutually Consistent Spin Order

The examples above raise a fundamental question regarding the matrix representation: Is it
possible to �nd a di�erent spin permutation that yields a "better" or more symmetric form
of the J-coupling matrix? Here we demonstrate that the topologically mutually consistent
ordering, utilized in the examples above, is the optimal choice.

Theorem. For symmetric spin systems of types [A′B′]n ([A′X ′]n), the Topologically Mutually
Consistent spin ordering is most optimal. It maximizes the geometric symmetry of the J-
coupling matrix structure by rendering the intergroup coupling block persymmetric.

Proof. Let the condition for geometric spectral symmetry be the invariance of the J-matrix
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under re�ection across the anti-diagonal. For the block-structured matrix

J =

(
JAA JAX

JT
AX JXX

)
(27)

this requires the o�-diagonal block JAX to be persymmetric (symmetric with respect to its
own anti-diagonal).

1. Analysis of the Mutually Consistent Ordering When the order is chosen to be
topologically mutually consistent (mapping the indices of group X to group A via the oper-
ations of the molecular point group), the sub-block JAX inherits the symmetry structure of
the molecule. For the considered symmetry groups (e.g., Cn, Cnv, Dn), this ordering ensures
that the coupling constants satisfy the condition Ji,j = JN+1−j,N+1−i. Thus, the block JAX

becomes inherently persymmetric, guaranteeing that the heteronuclear interactions satisfy
the spectral symmetry requirements identically (automatically).

2. Analysis of Inconsistent Orderings Any permutation that violates the mutual
consistency (e.g., by reordering group X di�erently from group A) breaks the symmetry
correspondence between the indices. Consequently, the matrix elements symmetric with
respect to the anti-diagonal would correspond to physically di�erent coupling constants. This
introduces new asymmetry into the J-coupling matrix that is not intrinsic to the system's
physics.

Conclusion The Topologically Mutually Consistent Ordering is unique in that it leverages
the molecular symmetry to render the JAX block perfectly symmetric. It proves that the
observed spectral asymmetry arises exclusively from the irreducible imbalance between the
intragroup couplings (JAA ̸= J refl

XX ).

8 Implications for Structure Elucidation (The Inverse Prob-

lem)

Since the General Theorem of spectrum symmetry provides necessary and su�cient con-
ditions, the experimental observation of a mirror-symmetric spectrum imposes strict con-
straints on the topology of the underlying spin system. This allows for the partial solution
of the "inverse problem": inferring spin system properties solely from spectral symmetry.

Based on the General Theorem, we can formulate the following rule: If the experimental
spectrum possesses mirror symmetry, then there must exist a speci�c spin order in which
simultaneously:

1. The spin resonance frequencies are symmetrically ordered about the mid-resonance
frequency (ν0); and

2. In this spin order, the spectrum is invariant with respect to the re�ection of the J-
coupling matrix relative to the anti-diagonal (due to the equality or balance of the
corresponding coupling constants).

Consequently, any structural candidate that cannot support such a "palindromic" order-
ing of frequencies and balanced condition for couplings (e.g., due to the lack of necessary
internal symmetry) can be immediately rejected.
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9 Conclusion

The mirror symmetry of NMR spectra is governed by the rigid interplay between the dis-
tribution of resonance frequencies and the topology of the J-coupling network. We have
derived the General Theorem of Spectral Symmetry, establishing that:

1. The Fundamental Criterion: Mirror symmetry arises if and only if the spin system
admits a speci�c numbering of nuclei (a "palindromic spin order") that simultaneously
satis�es two conditions:

� Frequency Balance: The resonance frequencies are distributed centrosymmetri-
cally relative to the spectral center (νi − ν0 = −(νN+1−i − ν0)).

� Interaction Invariance: In this speci�c order, the spectrum remains invariant
under the re�ection of the J-coupling matrix across the anti-diagonal.

2. Mechanism of Invariance: This spectral invariance of the interaction is realized in
two distinct ways:

� Geometric Symmetry: The J-matrix is explicitly symmetric (J = J refl), which
implies the strict commutation with the generalized parity operator ([Ĥ, Q̂] = 0).

� Isospectral Symmetry: The J-matrix is not symmetric, but forms "balanced pairs"
of constants that render the Hamiltonian isospectral under re�ection (Spec(J) =
Spec(J refl)).

Systems with full magnetic equivalence (such as AnBn or AnXn) satisfy these conditions
trivially because the symmetry-breaking intra-group couplings do not a�ect the spectrum.
Systems like AA′BB′ satisfy them via algebraic isospectrality (balanced pairs) originating
from the internal symmetry of the spin system. However, in more complex systems with
chemically equivalent but magnetically non-equivalent spins (like [A′B′]n), the speci�c topo-
logical balance of J-couplings required for isospectrality may be absent. Our analysis of
[A′X ′]n systems (such as 1,3,5-tri�uorobenzene) reveals that high molecular symmetry alone
is insu�cient to guarantee spectral symmetry. In such cases, the lack of balance between
intragroup coupling constants required for isospectrality results in asymmetric spectra.
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