Articles | Volume 1, issue 1
https://doi.org/10.5194/mr-1-115-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/mr-1-115-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Optical detection of magnetic resonance
Experimental Physics III, TU Dortmund University, 44227 Dortmund, Germany
Cited articles
Abragam, A.: The Principles of Nuclear Magnetism, Oxford University Press, Oxford, UK, 1961. a
Ajoy, A., Liu, K., Nazaryan, R., Lv, X., Zangara, P. R., Safvati, B., Wang, G., Arnold, D., Li, G., Lin, A., Raghavan, P., Druga, E., Dhomkar, S., Pagliero, D., Reimer, J. A., Suter, D., Meriles, C. A., and Pines, A.: Orientation-independent room temperature optical 13C hyperpolarization in powdered diamond, Science Advances, 4, eaar5492, https://doi.org/10.1126/sciadv.aar5492, 2018a. a, b
Ajoy, A., Nazaryan, R., Liu, K., Lv, X., Safvati, B., Wang, G., Druga, E., Reimer, J. A., Suter, D., Ramanathan, C., Meriles, C. A., and Pines, A.: Enhanced dynamic nuclear polarization via swept microwave frequency combs, P. Natl. Acad. Sci. USA, 115, 10576–10581, https://doi.org/10.1073/pnas.1807125115, 2018b. a
Appelt, S., Häsing, F. W., Sieling, U., Gordji-Nejad, A., Glöggler, S., and Blümich, B.: Paths from weak to strong coupling in NMR, Phys. Rev. A, 81, 023420, https://doi.org/10.1103/PhysRevA.81.023420, 2010. a
Aslam, N., Pfender, M., Neumann, P., Reuter, R., Zappe, A., Fávaro de Oliveira, F., Denisenko, A., Sumiya, H., Onoda, S., Isoya, J., and Wrachtrup, J.: Nanoscale nuclear magnetic resonance with chemical resolution, Science, 357, 67–71, https://doi.org/10.1126/science.aam8697, 2017. a, b
Balian, R., Haroche, S., and Liberman, S., eds.: Coherent optical spectroscopy, Les Houches, session XXVII 1975, North Holland, Les Houches, 1977. a
Balling, L.: Optical pumping,Academic Press, London, 2–169, 1975. a
Baranov, P. G. and Romanov, N. G.: Magnetic Resonance in Micro- and Nanostructures, Appl. Magn. Reson., 21, 165–193, 2001. a
Baranov, P. G., Bundakova, A. P., Soltamova, A. A., Orlinskii, S. B., Borovykh, I. V., Zondervan, R., Verberk, R., and Schmidt, J.: Silicon vacancy in SiC as a promising quantum system for single-defect and single-photon spectroscopy, Phys. Rev. B, 83, 125203, https://doi.org/10.1103/PhysRevB.83.125203, 2011. a
Bernheim, R.: Optical pumping, Benjamin, New York, 1965. a
Biktagirov, T., Schmidt, W. G., Gerstmann, U., Yavkin, B., Orlinskii, S., Baranov, P., Dyakonov, V., and Soltamov, V.: Polytypism driven zero-field splitting of silicon vacancies in 6H-SiC, Phys. Rev. B, 98, 195204, https://doi.org/10.1103/PhysRevB.98.195204, 2018. a
Bingham, S. J., Börger, B., Gutschank, J., Suter, D., and Thomson, A. J.: Probing the electronic structure of transition metal ion centres in proteins by coherent Raman-detected electron paramagnetic resonance spectroscopy,
J. Biol. Inorg. Chem., 5, 30–35, 2000a. a
Bingham, S. J., Gutschank, J., Börger, B., Suter, D., and Thomson, A. J.: Magnetic circular dichroism anisotropy from coherent Raman detected electron paramagnetic resonance spectroscopy: Application to spin-1∕2 transition metal ion centers in proteins, J. Chem. Phys., 113, 4331–4339, 2000b. a
Blasberg, T. and Suter, D.: Excitation of coherent Raman beats in rare earth solids with a bichromatic laser field, Optics Commun., 109, 133–138, 1994. a
Blasberg, T. and Suter, D.: Bichromatic Excitation of Coherent Raman Beats in Rare Earth Solids, Phys. Rev. B, 51, 6309–6318, 1995. a
Budker, D. and Romalis, M.: Optical magnetometry, Nat. Phys., 3, 227–234, https://doi.org/10.1038/nphys566, 2007. a
Chakraborty, T., Zhang, J., and Suter, D.: Polarizing the electronic and nuclear spin of the NV-center in diamond in arbitrary magnetic fields: analysis of the optical pumping process, New J. Phys., 19, 073030, https://doi.org/10.1088/1367-2630/aa7727, 2017. a
Chekhovich, E. A., Ulhaq, A., Zallo, E., Ding, F., Schmidt, O. G., and Skolnick, M. S.: Measurement of the spin temperature of optically cooled nuclei and GaAs hyperfine constants in GaAs/AlGaAs quantum dots, Nat. Mater., 16, 982–986, https://doi.org/10.1038/nmat4959, 2017. a
Cohen-Tannoudji, C.: Theorie quantique du cycle de pompage optique, Ann. Phys., 7, 423–460, 1962. a
Cohen-Tannoudji, C. and Dupont-Roc, J.: Experimental study of Zeeman light shifts in weak magnetic fields, Phys. Rev. A, 5, 968–984, 1972. a
Crookham, H., Kennedy, T., and Treacy, D.: 31P electron-nuclear double resonance of the PIn antisite in InP:Zn detected via luminescence, Phys. Rev. B, 46, 1377–1381, 1992. a
Decomps, B., Dumont, M., and Ducloy, M.: Linear and nonlinear phenomena in laser optical pumping, Springer, Berlin, 283–350, 1976. a
Demtröder, W.: Laser Spektroskopie, Springer, Berlin, 1991. a
Eickhoff, M. and Suter, D.: Pulsed optically detected NMR of single GaAs/AlGaAs Quantum Wells, J. Magn. Reson., 166, 69–75, 2004. a
Eickhoff, M., Lenzmann, B., Flinn, G., and Suter, D.: Coupling mechanisms for optically induced NMR in GaAs quantum wells, Phys. Rev. B, 65, 125301, https://doi.org/10.1103/PhysRevB.65.125301, 2002. a
Eickhoff, M., Lenzmann, B., Suter, D., Hayes, S. E., and Wieck, A. D.: Mapping of strain and electric fields in quantum-well samples by laser-assisted NMR, Phys. Rev. B, 67, 085308, https://doi.org/10.1103/PhysRevB.67.085308, 2003. a, b, c
Ellett, A.: Polarisation of Resonance Radiation in Magnetic Fields, Nature, 114, 931–932, https://doi.org/10.1038/114931a0, 1924. a
Falk, A. L., Buckley, B. B., Calusine, G., Koehl, W. F., Dobrovitski, V. V., Politi, A., Zorman, C. A., Feng, P. X. L., and Awschalom, D. D.: Polytype control of spin qubits in silicon carbide, Nat. Commun., 4, 1819, https://doi.org/10.1038/ncomms2854, 2013. a
Geschwind, S., Devlin, G. E., Cohen, R. L., and Chinn, S. R.: Orbach Relaxation and Hyperfine Structure in the Excited State of Cr3+ in Al2O3, Phys. Rev., 137, A1087–A1100, https://doi.org/10.1103/PhysRev.137.A1087, 1965. a, b, c
Giri, R., Cronenberger, S., Glazov, M. M., Kavokin, K. V., Lemaître, A., Bloch, J., Vladimirova, M., and Scalbert, D.: Nondestructive Measurement of Nuclear Magnetization by Off-Resonant Faraday Rotation, Phys. Rev. Lett., 111, 087603, https://doi.org/10.1103/PhysRevLett.111.087603, 2013. a
Glaser, E., Trombetta, J., Kennedy, T., Prokes, S., Glembocki, O., Wang, K., and Chern, C.: Detection of magnetic resonance on photoluminescence from a Si/SiGe strained-layer superlattice, Phys. Rev. Lett., 65, 1247–1250, 1990. a
Glaser, E., Kennedy, T., Doverspike, K., Rowland, L., Gaskill, D. K., Freitas, J., Khan, M., Olson, D., Kuzina, J., and Wickenden, D.: Optically detected magnetic resonance of GaN films grown by organometallic chemical-vapor deposition, Phys. Rev. B, 51, 13326–13336, 1995. a
Glaser, E. R., Kennedy, T. A., Carlos, W. E., Freitas, J. A., Wickenden, A. E., and Koleske, D. D.: Optically detected electron-nuclear double resonance of epitaxial GaN, Phys. Rev. B, 57, 8957–8965, https://doi.org/10.1103/PhysRevB.57.8957, 1998. a
Glenn, D. R., Bucher, D. B., Lee, J., Lukin, M. D., Park, H., and Walsworth, R. L.: High-resolution magnetic resonance spectroscopy using a solid-state spin sensor, Nature, 555, 351–354, https://doi.org/10.1038/nature25781, 2018. a
Grafström, S. and Suter, D.: Interaction of Spin-Polarized Atoms with a Surface Studied by Optical Reflection Spectroscopy, Phys. Rev. A, 54, 2169–2179, 1996a. a
Grafström, S. and Suter, D.: Optically Enhanced Magnetic Resonance for the Study of Atom-Surface Interaction, Z. Phys. D Atom. Mol. Cl., 38, 119–132, 1996b. a
Grafström, S., Blasberg, T., and Suter, D.: Reflection Spectroscopy of Spin Polarized Atoms near a Dielectric Surface, J. Opt. Soc. Am. B, 13, 3–10, 1996. a
Hanle, W.: Über magnetische Beeinflussung der Polarisation der Resonanzfluoreszenz, Z. Phys., 30, 93–105, https://doi.org/10.1007/BF01331827, 1924. a
Hegde, S. S., Zhang, J., and Suter, D.: Efficient Quantum Gates for Individual Nuclear Spin Qubits by Indirect Control, Phys. Rev. Lett., 124, 220501, https://doi.org/10.1103/PhysRevLett.124.220501, 2020. a, b
Hofmann, W., Denninger, G., and Pascher, H.: Investigation of the nuclear-spin polarization in InSb via spin-flip Raman gain spectroscopy, Phys. Rev. B, 48, 17035–17042, 1993a. a
Hofmann, W., Pascher, H., and Denninger, G.: Nuclear spin polarization in InSb detected by spin-flip Raman gain spectroscopy, Semicond. Sci. Tech., 8,
S309–S312, 1993b. a
Iinuma, M., Takahashi, Y., Shaké, I., Oda, M., Masaike, A., Yabuzaki, T., and Shimizu, H. M.: High Proton Polarization by Microwave-Induced Optical Nuclear Polarization at 77 K, Phys. Rev. Lett., 84, 171–174, https://doi.org/10.1103/PhysRevLett.84.171, 2000. a
Itahashi, T., Hayashi, H., Rahman, M. R., Itoh, K. M., Vlasenko, L. S., Vlasenko, M. P., and Poloskin, D. S.: Optical and dynamic nuclear polarization of 29Si nuclei via photoexcited triplet states of oxygen-vacancy complexes in isotopically controlled silicon, Phys. Rev. B, 87, 075201, https://doi.org/10.1103/PhysRevB.87.075201, 2013. a
Kastler, A.: The Zeeman-effect and the intensity and polarization of resonance and fluorescence radiation, Physica, 12, 619–626, https://doi.org/10.1016/S0031-8914(46)80088-0, 1946. a
Kikkawa, J., Smorchkova, I., Samarth, N., and Awschalom, D.: Room-temperature spin memory in two-dimensional electron gases, Science, 277, 1284–1287, 1997. a
Kikkawa, J. M. and Awschalom, D. D.: All-Optical Magnetic Resonance in Semiconductors, Science, 287, 473–476, 2000. a
Kintzer, E., Mitsunaga, M., and Brewer, R.: Raman heterodyne intereference: symmetry analysis, Phys. Rev. B, 31, 6958–6962, 1985. a
Klieber, R. and Suter, D.: Correlating NQR transitions of ground and excited electronical states, Phys. Rev. B, 71, 224418, https://doi.org/10.1103/PhysRevB.71.224418, 2005. a
Köhler, J., Disselhorst, J., Donckers, M., Groenen, E., Schmidt, J., and Moerner, W.: Magnetic resonance detection of a single molecular spin, Nature, 363, 242–244, 1993. a
Koschnick, F. K., Michael, K., Spaeth, J. M., Beaumont, B., and Gibart, P.: Optical detection of electron nuclear double resonance on a residual donor in wurtzite GaN, Phys. Rev. B, 54, R11042–R11045, https://doi.org/10.1103/PhysRevB.54.R11042, 1996. a, b, c
Kothe, G., Yago, T., Weidner, J.-U., Link, G., Lukaschek, M., and Lin, T.-S.: Quantum Oscillations and Polarization of Nuclear Spins in Photoexcited Triplet States, J. Phys. Chem. B, 114, 14755–14762, https://doi.org/10.1021/jp103508t, 2010. a
Lampel, G.: Nuclear Dynamic Polarization by Optical Electronic Saturation and Optical Pumping in Semiconductors, Phys. Rev. Lett., 20, 491–493, 1968. a
Lange, W. and Mlynek, J.: Quantum beats in transmission by time-resolved polarization spectroscopy, Phys. Rev. Lett., 40, 1373–1375, 1978. a
Ledbetter, M., Crawford, C., Pines, A., Wemmer, D., Knappe, S., Kitching, J., and Budker, D.: Optical detection of NMR J-spectra at zero magnetic field, J. Magn. Reson., 199, 25–29, 2009. a
Ledbetter, M. P., Theis, T., Blanchard, J. W., Ring, H., Ganssle, P., Appelt, S., Blümich, B., Pines, A., and Budker, D.: Near-Zero-Field Nuclear Magnetic Resonance, Phys. Rev. Lett., 107, 107601, https://doi.org/10.1103/PhysRevLett.107.107601, 2011. a, b
Loubser, J. H. N. and van Wyk, J. A.: Electron spin resonance in the study of diamond, Rep. Prog. Phys., 41, 1201, https://doi.org/10.1088/0034-4885/41/8/002, 1978. a
Lovrić, M., Suter, D., Ferrier, A., and Goldner, P.: Faithful Solid State Optical Memory with Dynamically Decoupled Spin Wave Storage, Phys. Rev. Lett., 111, 020503, https://doi.org/10.1103/PhysRevLett.111.020503, 2013. a
Lukac, M. and Hahn, E.: External reflection and transmission spectroscopy of by Stark modulated optical pumping, J. Lumin., 42, 257–265, 1988. a
Manson, N. B., Harrison, J. P., and Sellars, M. J.: Nitrogen-vacancy center in diamond: Model of the electronic structure and associated dynamics, Phys. Rev. B, 74, 104303, https://doi.org/10.1103/PhysRevB.74.104303, 2006. a
Mitsunaga, M., Kintzer, E., and Brewer, R.: Raman heterodyne interference of inequivalent nuclear sites, Phys. Rev. Lett., 52, 1484–1487, 1984. a
Mitsunaga, M., Kintzer, E., and Brewer, R.: Raman heterodyne interference: observations and analytic theory, Phys. Rev. B, 31, 6947–6957, 1985. a
Mlynek, J., Wong, N., DeVoe, R., Kintzer, E., and Brewer, R.: Raman heterodyne detection of nuclear magnetic resonance, Phys. Rev. Lett., 50, 993–996, 1983. a
Mui, S., Ramaswamy, K., Stanton, C. J., Crooker, S. A., and Hayes, S. E.: Manifestation of Landau level effects in optically-pumped NMR of semi-insulating GaAs, Phys. Chem. Chem. Phys., 11, 7031–7035, https://doi.org/10.1039/B907588G, 2009. a
Neuhauser, W., Hohenstatt, M., Toschek, P. E., and Dehmelt, H.: Localized visible Ba+ mono-ion oscillator, Phys. Rev. A, 22,
1137–1140, https://doi.org/10.1103/PhysRevA.22.1137, 1980. a
Niemeyer, I., Shim, J. H., Zhang, J., Suter, D., Taniguchi, T., Teraji, T., Abe, H., Onoda, S., Yamamoto, T., Ohshima, T., Isoya, J., and Jelezko, F.: Broadband excitation by chirped pulses: application to single electron spins in diamond, New J. Phys., 15, 033027, https://doi.org/10.1088/1367-2630/15/3/033027, 2013. a
Nilsson, M., Rippe, L., Kroell, S., Klieber, R., and Suter, D.: Hole-burning techniques for isolation and study of individual hyperfine transitions in inhomogeneously broadened solids demonstrated in , Phys. Rev. B, 70, 214116, https://doi.org/10.1103/PhysRevB.70.214116, 2004. a
Oestreich, M., Römer, M., Haug, R. J., and Hägele, D.: Spin Noise Spectroscopy in GaAs, Phys. Rev. Lett., 95, 216603, https://doi.org/10.1103/PhysRevLett.95.216603, 2005. a
Overhauser, A. W.: Polarization of Nuclei in Metals, Phys. Rev., 92, 411–415, https://doi.org/10.1103/PhysRev.92.411, 1953. a
Parsons, R. R.: Band-To-Band Optical Pumping in Solids and Polarized Photoluminescence, Phys. Rev. Lett., 23, 1152–1154, https://doi.org/10.1103/PhysRevLett.23.1152, 1969. a
Pietrass, T., Bifone, A., Room, T., and Hahn, E. L.: Optically enhanced high-field NMR of GaAs, Phys. Rev. B, 53, 4428–4433, 1996. a
Rao, K. R. K. and Suter, D.: Characterization of hyperfine interaction between an NV electron spin and a first-shell 13C nuclear spin in diamond, Phys. Rev. B, 94, 060101, https://doi.org/10.1103/PhysRevB.94.060101, 2016. a, b
Savukov, I. M. and Romalis, M.: NMR Detection with an Atomic Magnetometer, Phys. Rev. Lett., 94, 123001, https://doi.org/10.1103/PhysRevLett.94.123001, 2005. a
Schreiner, M., Krapf, M., Pascher, H., Denninger, G., Weimann, G., and Schlapp, W.: Optically detected electron spin polarization and Hanle effect in AlGaAs/GaAs heterostructures, Superlattice. Microst., 11, 409–414,
1992. a
Schreiner, M., Pascher, H., Denninger, G., Studenikin, S. A., Weimann, G., and Losch, R.: Nuclear spin relaxation in AlGaAs/GaAs heterostructures observed via optically detected magnetic resonance (ODMR) experiments, Solid State Commun., 102, 715–720, 1997. a
Schweika-Kresimon, M. O., Gutschank, J., and Suter, D.: Magneto-optical and EPR transitions in Raman heterodyne spectroscopy, Phys. Rev. A, 66, 043816, https://doi.org/10.1103/PhysRevA.66.043816, 2002. a
Shen, Y.: The principles of nonlinear optics, Wiley, New York, 1984. a
Singh, H., Anisimov, A. N., Nagalyuk, S. S., Mokhov, E. N., Baranov, P. G., and Suter, D.: Experimental characterization of spin- silicon vacancy centers in 6H-SiC, Phys. Rev. B, 101, 134110, https://doi.org/10.1103/PhysRevB.101.134110, 2020. a, b
Sleator, T., Hahn, E. L., Hilbert, C., and Clarke, J.: Nuclear-spin noise, Phys. Rev. Lett., 55, 1742–1745, 1985. a
Sloop, D. J., Yu, H.-L., Lin, T.-S., and Weissman, S. I.: Electron spin echoes of a photoexcited triplet: Pentacene in p-terphenyl crystals, J. Chem. Phys., 75, 3746–3757, https://doi.org/10.1063/1.442520, 1981. a
Stühler, J., Hirsch, M., Schaack, G., and Waag, A.: Raman spectroscopy of the paramagnetic spin flip in Cd1−xMnx Te, the role of band-gap excitons as intermediate states, and optically detected electron-nuclear double resonance, Phys. Rev. B, 49, 7345–7356, 1994. a
Suter, D.: Optically Excited Zeeman Coherences in Atomic Groundstates: Nuclear Spin Effects, Phys. Rev. A, 46, 344–350, 1992. a
Suter, D. and Mlynek, J.: Laser excitation and detection of magnetic resonance, Adv. Magn. Opt. Reson., 16, 1–83, 1991. a
Suter, D., Aebersold, J., and Mlynek, J.: Evanescent Wave Spectroscopy of Sublevel Resonances near a Glass/Vapor Interface, Opt. Commun., 84, 269–274, 1991a. a
Suter, D., Klepel, H., and Mlynek, J.: Time-resolved twodimensional spectroscopy of optically driven atomic sublevel coherences, Phys. Rev. Lett., 67, 2001–2004, 1991b. a
Szabo, A.: On-axis photon echo modulation in Ruby, J. Opt. Soc. Am. B, 3, 514–522, 1986. a
Takei, N., Takeuchi, M., Eto, Y., Noguchi, A., Zhang, P., Ueda, M., and Kozuma, M.: Faraday rotation with a single-nuclear-spin qubit in a high-finesse optical cavity, Phys. Rev. A, 81, 042331, https://doi.org/10.1103/PhysRevA.81.042331, 2010. a, b
Teaney, D. T., Blumberg, W. E., and Portis, A. M.: Measurement of F-Center Concentration and Relaxation Time by Microwave Faraday Rotation, Phys. Rev., 119, 1851–1853, https://doi.org/10.1103/PhysRev.119.1851, 1960. a
Tittel, W., Afzelius, M., Chaneliere, T., Cone, R., Kroell, S., Moiseev, S., and Sellars, M.: Photon-echo quantum memory in solid state systems, Laser Photonics Rev., 4, 244–267, 2010. a
Van Strien, A. and Schmidt, J.: An EPR study of the triplet state of pentacene by electron spin-echo techniques and laser flash excitation, Chem. Phys. Lett., 70, 513–517, 1980. a
von Borczyskowski, C. and Boroske, E.: Nuclear quadrupole resonance after nuclear polarisation during an optical pumping cycle, Chem. Phys., 35, 367–374, https://doi.org/10.1016/S0301-0104(78)85252-5, 1978. a
Wheeler, D. D., Willmering, M. M., Sesti, E. L., Pan, X., Saha, D., Stanton, C. J., and Hayes, S. E.: Modelling of OPNMR phenomena using photon energy-dependent in GaAs and InP, J. Magn. Reson., 273, 19–26, https://doi.org/10.1016/j.jmr.2016.09.020, 2016.
a
Wong, N., Kintzer, E., Mlynek, J., DeVoe, R., and Brewer, R.: Raman heterodyne detection of nuclear magnetic resonance, Phys. Rev. B, 28, 4993–5010, 1983. a
Wood, R. W. and Ellett, A.: Polarized Resonance Radiation in Weak Magnetic Fields, Phys. Rev., 24, 243–254, https://doi.org/10.1103/PhysRev.24.243, 1924. a
Wrachtrup, J. and Finkler, A.: Single spin magnetic resonance, J. Magn. Reson., 269, 225–236, https://doi.org/10.1016/j.jmr.2016.06.017, 2016. a, b, c
Wrachtrup, J., von Borczyskowski, C., Bernard, J., Orrit, M., and Brown, R.: Optical detection of magnetic resonance in a single molecule, Nature, 363,
244–245, 1993. a
Zangara, P. R., Dhomkar, S., Ajoy, A., Liu, K., Nazaryan, R., Pagliero, D., Suter, D., Reimer, J. A., Pines, A., and Meriles, C. A.: Dynamics of frequency-swept nuclear spin optical pumping in powdered diamond at low magnetic fields, P. Natl. Acad. Sci. USA, 116, 2512–2520, https://doi.org/10.1073/pnas.1811994116, 2019. a, b
Zhang, J., Hegde, S. S., and Suter, D.: Improved Indirect Control of Nuclear Spins in Diamond N-V Centers, Phys. Rev. Appl., 12, 064047, https://doi.org/10.1103/PhysRevApplied.12.064047, 2019. a, b
Zhong, M., Hedges, M. P., Ahlefeldt, R. L., Bartholomew, J. G., Beavan, S. E., Wittig, S. M., Longdell, J. J., and Sellars, M. J.: Optically addressable nuclear spins in a solid with a six-hour coherence time, Nature, 517, 177–180, https://doi.org/10.1038/nature14025, 2015. a, b
Short summary
The combination of magnetic resonance with laser spectroscopy provides some interesting options for increasing the sensitivity and information content of magnetic resonance by many orders of magnitude. This review covers the basic physics behind the relevant processes, such as angular momentum conservation during absorption and emission.
The combination of magnetic resonance with laser spectroscopy provides some interesting options...