Articles | Volume 1, issue 2
https://doi.org/10.5194/mr-1-141-2020
https://doi.org/10.5194/mr-1-141-2020
Research article
 | 
02 Jul 2020
Research article |  | 02 Jul 2020

Improving the accuracy of model-based quantitative nuclear magnetic resonance

Yevgen Matviychuk, Ellen Steimers, Erik von Harbou, and Daniel J. Holland

Related subject area

Field: Liquid-state NMR | Topic: Computation
Analysis of chi angle distributions in free amino acids via multiplet fitting of proton scalar couplings
Nabiha R. Syed, Nafisa B. Masud, and Colin A. Smith
Magn. Reson., 5, 103–120, https://doi.org/10.5194/mr-5-103-2024,https://doi.org/10.5194/mr-5-103-2024, 2024
Short summary
Asymmetry in three-site relaxation exchange NMR
Bernhard Blümich, Matthew Parziale, and Matthew Augustine
Magn. Reson., 4, 217–229, https://doi.org/10.5194/mr-4-217-2023,https://doi.org/10.5194/mr-4-217-2023, 2023
Short summary
DEEP Picker1D and Voigt Fitter1D: a versatile tool set for the automated quantitative spectral deconvolution of complex 1D-NMR spectra
Da-Wei Li, Lei Bruschweiler-Li, Alexandar L. Hansen, and Rafael Brüschweiler
Magn. Reson., 4, 19–26, https://doi.org/10.5194/mr-4-19-2023,https://doi.org/10.5194/mr-4-19-2023, 2023
Short summary
An improved, time-efficient approach to extract accurate distance restraints for NMR2 structure calculation
Aditya Pokharna, Felix Torres, Harindranath Kadavath, Julien Orts, and Roland Riek
Magn. Reson., 3, 137–144, https://doi.org/10.5194/mr-3-137-2022,https://doi.org/10.5194/mr-3-137-2022, 2022
Short summary
Paramagpy: software for fitting magnetic susceptibility tensors using paramagnetic effects measured in NMR spectra
Henry William Orton, Thomas Huber, and Gottfried Otting
Magn. Reson., 1, 1–12, https://doi.org/10.5194/mr-1-1-2020,https://doi.org/10.5194/mr-1-1-2020, 2020
Short summary

Cited articles

Alsmeyer, F., Koß, H.-J., and Marquardt, W.: Indirect Spectral Hard Modeling for the Analysis of Reactive and Interacting Mixtures, Appl. Spectrosc., 58, 975–985, https://doi.org/10.1366/0003702041655368, 2004. a, b
Anjum, M. A., Dmochowski, P. A., and Teal, P. D.: A subband Steiglitz-McBride algorithm for automatic analysis of FID data, Magn. Reson. Chem., 56, 740–747, https://doi.org/10.1002/mrc.4723, 2018. a
Arias-Castro, E. and Donoho, D. L.: Does median filtering truly preserve edges better than linear filtering?, Ann. Stat., 37, 1172–1206, https://doi.org/10.1214/08-AOS604, 2009. a
Bretthorst, G.: Bayesian analysis. I. Parameter estimation using quadrature NMR models, J. Magn. Reson., 88, 533–551, https://doi.org/10.1016/0022-2364(90)90287-J, 1990. a, b
Bruce, S. D., Higinbotham, J., Marshall, I., and Beswick, P. H.: An Analytical Derivation of a Popular Approximation of the Voigt Function for Quantification of NMR Spectra, J. Magn. Reson., 142, 57–63, https://doi.org/10.1006/jmre.1999.1911, 2000. a
Download
Short summary
Quantitative analysis of mixtures is a challenge in applications ranging from foods to industrial chemistry. Nuclear magnetic resonance (NMR) is increasingly used for analysis; however, overlapping peaks in the spectrum pose a major difficulty, especially for the new generation of benchtop NMR instruments. We propose a fast and simple model-based approach to enhance the accuracy of quantification. We demonstrate it on industrially relevant test samples where the accuracy is increased by 40 %.