Articles | Volume 3, issue 1
https://doi.org/10.5194/mr-3-1-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/mr-3-1-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Localising individual atoms of tryptophan side chains in the metallo-β-lactamase IMP-1 by pseudocontact shifts from paramagnetic lanthanoid tags at multiple sites
Henry W. Orton
ARC Centre of Excellence for Innovations in Peptide & Protein
Science, Research School of Chemistry, Australian National University,
Canberra, ACT 2601, Australia
Iresha D. Herath
Research School of Chemistry, The Australian National University,
Sullivans Creek Road, Canberra ACT 2601, Australia
Ansis Maleckis
Latvian Institute of Organic Synthesis, Aizkraukles 21, 1006 Riga,
Latvia
Shereen Jabar
Research School of Chemistry, The Australian National University,
Sullivans Creek Road, Canberra ACT 2601, Australia
Monika Szabo
Monash Institute of Pharmaceutical Sciences, Monash University,
Parkville, VIC 3052, Australia
Bim Graham
Monash Institute of Pharmaceutical Sciences, Monash University,
Parkville, VIC 3052, Australia
Colum Breen
Department of Chemistry, Loughborough University, Epinal Way, Loughborough, LE11 3TU, United Kingdom
Lydia Topping
Department of Chemistry, Loughborough University, Epinal Way, Loughborough, LE11 3TU, United Kingdom
Stephen J. Butler
Department of Chemistry, Loughborough University, Epinal Way, Loughborough, LE11 3TU, United Kingdom
Gottfried Otting
CORRESPONDING AUTHOR
ARC Centre of Excellence for Innovations in Peptide & Protein
Science, Research School of Chemistry, Australian National University,
Canberra, ACT 2601, Australia
Related authors
Henry W. Orton, Elwy H. Abdelkader, Lydia Topping, Stephen J. Butler, and Gottfried Otting
Magn. Reson., 3, 65–76, https://doi.org/10.5194/mr-3-65-2022, https://doi.org/10.5194/mr-3-65-2022, 2022
Short summary
Short summary
Installing a tag containing a paramagnetic metal ion on a protein can lead to large changes (pseudocontact shifts) in the resonances observed in NMR spectra. These are easily measured and contain valuable long-range structural information. The present work shows that a single tagging site furnished with different tags can be sufficient to localise atoms in proteins with high accuracy. In fact, this strategy works almost as well as the same number of tags distributed over multiple tagging sites.
Elwy H. Abdelkader, Nicholas F. Chilton, Ansis Maleckis, and Gottfried Otting
Magn. Reson. Discuss., https://doi.org/10.5194/mr-2025-12, https://doi.org/10.5194/mr-2025-12, 2025
Preprint under review for MR
Short summary
Short summary
The small protein GB1, where all valine residues were replaced by fluorinated analogues containing one or two CH2F groups, produces 19F NMR spectra with exceptional resolution. We establish a convenient strategy for their assignment and analyse the rotameric states of the CH2F groups by virtue of 3-bond coupling constants and a γ-effect on 13C chemical shifts, which is underpinned by DFT calculations. Transient fluorine-fluorine contacts are documented by through-space 19F-19F couplings.
Yi Jiun Tan, Elwy H. Abdelkader, Iresha D. Herath, Ansis Maleckis, and Gottfried Otting
Magn. Reson., 6, 131–142, https://doi.org/10.5194/mr-6-131-2025, https://doi.org/10.5194/mr-6-131-2025, 2025
Short summary
Short summary
A protein is produced where a single amino acid type is substituted globally by a fluorinated analogue. Through-space fluorine–fluorine contacts are observed by 19F NMR (nuclear magnetic resonance) spectroscopy. Substitution of methyl groups by CH2F groups yields outstanding spectral resolution with minimal structural perturbation of the protein. Our work identifies the γ-gauche effect as the main reason for the spectral dispersion.
Damian Van Raad, Gottfried Otting, and Thomas Huber
Magn. Reson., 4, 187–197, https://doi.org/10.5194/mr-4-187-2023, https://doi.org/10.5194/mr-4-187-2023, 2023
Short summary
Short summary
A novel cell-free protein synthesis system called eCells produces amino acids based on specific isotopes using low-cost precursors. The system selectively labels methyl groups, i.e valine and leucine, with high efficiency. eCells achieve high levels of 13C incorporation and deuteration in protein preparations, making them suitable for NMR experiments of large protein complexes. They are easy to prepare, can be scaled up in volume and are a promising tool for protein production and NMR studies.
Sreelakshmi Mekkattu Tharayil, Mithun C. Mahawaththa, Akiva Feintuch, Ansis Maleckis, Sven Ullrich, Richard Morewood, Michael J. Maxwell, Thomas Huber, Christoph Nitsche, Daniella Goldfarb, and Gottfried Otting
Magn. Reson., 3, 169–182, https://doi.org/10.5194/mr-3-169-2022, https://doi.org/10.5194/mr-3-169-2022, 2022
Short summary
Short summary
Having shown that tagging a protein at a single site with different lanthanoid complexes delivers outstanding structural information at a selected site of a protein (such as active sites and ligand binding sites), we now present a simple way by which different lanthanoid complexes can be assembled on a highly solvent-exposed cysteine residue. Furthermore, the chemical assembly is selective for selenocysteine, if a selenocysteine residue can be introduced into the protein of interest.
Henry W. Orton, Elwy H. Abdelkader, Lydia Topping, Stephen J. Butler, and Gottfried Otting
Magn. Reson., 3, 65–76, https://doi.org/10.5194/mr-3-65-2022, https://doi.org/10.5194/mr-3-65-2022, 2022
Short summary
Short summary
Installing a tag containing a paramagnetic metal ion on a protein can lead to large changes (pseudocontact shifts) in the resonances observed in NMR spectra. These are easily measured and contain valuable long-range structural information. The present work shows that a single tagging site furnished with different tags can be sufficient to localise atoms in proteins with high accuracy. In fact, this strategy works almost as well as the same number of tags distributed over multiple tagging sites.
Sreelakshmi Mekkattu Tharayil, Mithun Chamikara Mahawaththa, Choy-Theng Loh, Ibidolapo Adekoya, and Gottfried Otting
Magn. Reson., 2, 1–13, https://doi.org/10.5194/mr-2-1-2021, https://doi.org/10.5194/mr-2-1-2021, 2021
Short summary
Short summary
A new way is presented for creating lanthanide binding sites on proteins using site-specifically introduced phosphoserine residues. The paramagnetic effects of lanthanides generate long-range effects, which contain structural information and are readily measured by NMR spectroscopy. Excellent correlations between experimentally observed and back-calculated pseudocontact shifts attest to very good immobilization of the lanthanide ions relative to the proteins.
Cited articles
Arakawa, Y., Murakami, M., Suzuki, K., Ito, H., Wacharotayankun, R., Ohsuka, S., Kato, N., and Ohta, M.: A novel integron-like element carrying the metallo-β-lactamase gene blaIMP, Antimicrob. Agents Chemother., 39,
1612–1615, https://doi.org/10.1128/AAC.39.7.1612, 1995.
Bertini, I., Janik, M. B. L., Lee, Y. M., Luchinat, C., and Rosato, A.:
Magnetic susceptibility tensor anisotropies for a lanthanide ion series in a
fixed protein matrix, J. Am. Chem. Soc., 123, 4181–4188, https://doi.org/10.1021/ja0028626, 2001.
Brem, J., van Berkel, S. S., Zollman, D., Lee, S. Y., Gileadi, O., McHugh,
P. J., Walsh, T. R., McDonough, M. A., and Schofield, C. J.: Structural basis
of metallo-β-lactamase inhibition by captopril
stereoisomers, Antimicrob. Agents Chemother., 60, 142–150, https://doi.org/10.1128/AAC.01335-15, 2016.
Brewer, K. D., Bacaj, T., Cavalli, A., Camilloni, C., Swarbrick, J. D., Liu,
J., Zhou, A., Zhou, P., Barlow, N., Xu, J., Seven, A. B., Prinslow, E. A.,
Voleti, R., Häussinger, D., Bonvin, A. M. J. J., Tomchick, D. R.,
Vendruscolo, M., Graham, B., Südhof, T. C., and Rizo, J.:
Dynamic binding mode of a synaptotagmin-1-SNARE complex in solution, Nat.
Struct. Mol. Biol., 22, 555–564, https://doi.org/10.1038/nsmb.3035, 2015.
Bush, K.: Alarming β-lactamase-mediated resistance in
multidrug-resistant Enterobacteriaceae, Curr. Opin. Microbiol., 13, 558–564, https://doi.org/10.1016/j.mib.2010.09.006, 2010.
Bush, K.: Proliferation and significance of clinically relevant β-lactamases, Ann. N. Y. Acad. Sci., 1277, 84–90, https://doi.org/10.1111/nyas.12023, 2013.
Carruthers, T. J., Carr, P. D., Loh, C.-T., Jackson, C. J., and Otting, G.:
Fe3+ located in the dinuclear metallo-β-lactamase IMP-1 by
pseudocontact shifts, Angew. Chemie Int. Ed., 53, 14269–14272, https://doi.org/10.1002/anie.201408693, 2014.
Chen, W.-N., Nitsche, C., Pilla, K. B., Graham, B., Huber, T., Klein, C. D.,
and Otting, G.: Sensitive NMR approach for determining the binding mode of
tightly binding ligand molecules to protein targets, J. Am. Chem. Soc., 138,
4539–4546, https://doi.org/10.1021/jacs.6b00416, 2016.
Concha, N. O., Rasmussen, B. A., Bush, K., and Herzberg, O.: Crystal
structure of the wide-spectrum binuclear zinc β-lactamase from
Bacteroides fragilis, Structure, 4, 823–836, https://doi.org/10.1016/S0969-2126(96)00089-5, 1996.
Concha, N. O., Janson, C. A., Rowling, P., Pearson, S., Cheever, C. A.,
Clarke, B. P., Lewis, C., Galleni, M., Frere, J.-M., Payne, D. J., Bateson,
J. H., and Abdel-Meguid, S. S.: Crystal Structure of the IMP-1
metallo-β-lactamase from Pseudomonas aeruginosa and its complex with a mercaptocarboxylate
inhibitor: binding determinants of a potent, broad-spectrum inhibitor,
Biochemistry, 39, 4288–4298, https://doi.org/10.1021/bi992569m, 2000.
Crick, D. J., Wang, J. X., Graham, B., Swarbrick, J. D., Mott, H. R., and
Nietlispach, D.: Integral membrane protein structure determination using
pseudocontact shifts, J. Biomol. NMR, 61, 197–207, https://doi.org/10.1007/s10858-015-9899-6, 2015.
de la Cruz, L., Nguyen, T. H. D., Ozawa, K., Shin, J., Graham, B., Huber, T.,
and Otting, G.: Binding of low-molecular weight inhibitors promotes large
conformational changes in the dengue virus NS2B-NS3 protease: fold analysis
by pseudocontact shifts, J. Am. Chem. Soc., 133, 19205–19215, https://doi.org/10.1021/ja208435s, 2011.
Galleni, M., Lamotte-Brasseur, J., Rossolini, G. M., Spencer, J., Dideberg,
O., Frère, J.-M., and The Metallo-β-Lactamase Working Group:
Standard numbering scheme for class B β-lactamases, Antimicrob.
Agents Chemother., 45, 660–663, https://doi.org/10.1128/AAC.45.3.660-663.2001, 2001.
Gianquinto, E., Tondi, D., D'Arrigo, G., Lazzarato, L., and Spyrakis, F.:
Can we exploit β-lactamases intrinsic dynamics for designing more
effective inhibitors?, Antibiotics, 9, 833, https://doi.org/10.3390/antibiotics9110833, 2020.
González, M. M., Abriata, L. A., Tomatis, P. E., and Vila, A. J.:
Optimization of conformational dynamics in an epistatic evolutionary
trajectory, Mol. Biol. Evol., 33, 1768–1776, https://doi.org/10.1093/molbev/msw052, 2016.
Graham, B., Loh, C. T., Swarbrick, J. D., Ung, P., Shin, J., Yagi, H., Jia,
X., Chhabra, S., Pintacuda, G., Huber, T., and Otting, G.: A DOTA-amide
lanthanide tag for reliable generation of pseudocontact shifts in protein
NMR spectra, Bioconjugate Chem., 22, 2118–2125,
https://doi.org/10.1021/bc200353c, 2011.
Guan, J. Y., Keizers, P. H. J., Liu, W. M., Löhr, F., Skinner, S. P.,
Heeneman, E. A., Schwalbe, H., Ubbink, M., and Siegal, G.: Small-molecule
binding sites on proteins established by paramagnetic NMR spectroscopy. J.
Am. Chem. Soc., 135, 5859–5868, https://doi.org/10.1021/ja401323m, 2013.
Herath, I. D., Breen, C., Hewitt, S. H., Berki, T. R., Kassir, A. F.,
Dodson, C., Judd, M., Jabar, S., Cox, N., Otting, G., and Butler, S. J.: A
chiral lanthanide tag for stable and rigid attachment to single cysteine
residues in proteins for NMR, EPR and time-resolved luminescence studies,
Chem. Eur. J., 27, 13009–13023, https://doi.org/10.1002/chem.202101143, 2021.
Hinchliffe, P., González, M. M., Mojica, M. F., González, J. M.,
Castillo, V., Saiz, C., Kosmopoulou, M., Tooke, C. L., Llarrull, L. I.,
Mahler, G., and Bonomo, R. A.: Cross-class metallo-β-lactamase
inhibition by bisthiazolidines reveals multiple binding modes, Proc. Nat.
Acad. Sci., 113, E3745–E3754, https://doi.org/10.1073/pnas.1601368113,
2016.
Hinchliffe, P., Tanner, C. A., Krismanich, A. P., Labbé, G., Goodfellow,
V. J., Marrone, L., Desoky, A. Y., Calvopiña, K., Whittle, E. E., Zeng,
F., and Avison, M. B.: Structural and kinetic studies of the potent
inhibition of metallo-β-lactamases by
6-phosphonomethylpyridine-2-carboxylates, Biochemistry, 57, 1880–1892,
https://doi.org/10.1021/acs.biochem.7b01299, 2018.
Hiraiwa, Y., Saito, J., Watanabe, T., Yamada, M., Morinaka, A., Fukushima,
T., and Kudo, T.: X-ray crystallographic analysis of IMP-1 metallo-β-lactamase complexed with a 3-aminophthalic acid derivative,
structure-based drug design, and synthesis of 3,6-disubstituted phthalic
acid derivative inhibitors, Bioorg. Med. Chem. Lett., 24, 4891–4894,
https://doi.org/10.1016/j.bmcl.2014.08.039, 2014.
Huntley, J. J. A., Scrofani, S. D. B., Osborne, M. J., Wright, P. E., and Dyson, H. J.: Dynamics of the metallo-β-lactamase from Bacteroides fragilis in the presence and
absence of a tight-binding inhibitor, Biochemistry, 39, 13356–13364,
https://doi.org/10.1021/bi001210r, 2000.
Huntley, J. J. A., Fast, W., Benkovic, S. J., Wright, P. E., and Dyson, H.
J.: Role of a solvent-exposed tryptophan in the recognition and binding of
antibiotic substrates for a metallo-β-lactamase, Protein Sci., 12,
1368–1375, https://doi.org/10.1110/ps.0305303, 2003.
Ito, H., Arakawa, Y., Ohsuka, S., Wachorotayankun, R., Kato, N., and Ohta,
M.: Plasmid-mediated dissemination of the metallo-β-lactamase gene
blaIMP among clinically isolated strains of Serratia marcescens, Antimicrob. Agents
Chemother., 39, 824–829, https://doi.org/10.1128/AAC.39.4.824,
1995.
John, M., Park, A. Y., Pintacuda, G., Dixon, N. E., and Otting, G.: Weak
alignment of paramagnetic proteins warrants correction for residual CSA
effects in measurements of pseudocontact shifts, J. Am. Chem. Soc., 127,
17190–17191, https://doi.org/10.1021/ja0564259, 2005.
Joss, D., Walliser, R. M., Zimmermann, K., and Häussinger, D.:
Conformationally locked lanthanide chelating tags for convenient
pseudocontact shift protein nuclear magnetic resonance spectroscopy, J.
Biomol. NMR, 72, 29–38, https://doi.org/10.1007/s10858-018-0203-4, 2018.
Keizers, P. H. J., Saragliadis, A., Hiruma, Y., Overhand, M., and Ubbink,
M.: Design, synthesis, and evaluation of a lanthanide chelating protein
probe: CLaNP-5 yields predictable paramagnetic effects independent of
environment, J. Am. Chem. Soc., 130, 14802–14812, https://doi.org/10.1021/ja8054832, 2008.
Keizers, P. H. J., Mersinli, B., Reinle, W., Donauer, J., Hiruma, Y.,
Hannemann, F., Overhand, M., Bernhardt, R., and Ubbink, M.: A solution model
of the complex formed by adrenodoxin and adrenodoxin reductase determined by
paramagnetic NMR spectroscopy, Biochemistry, 49, 6846–6855,
https://doi.org/10.1021/bi100598f, 2010.
Kobashigawa, Y., Saio, T., Ushio, M., Sekiguchi, M., Yokochi, M., Ogura, K.,
and Inagaki, F.: Convenient method for resolving degeneracies due to
symmetry of the magnetic susceptibility tensor and its application to pseudo
contact shift-based protein-protein complex structure determination, J.
Biomol. NMR, 53, 53–63, https://doi.org/10.1007/s10858-012-9623-8, 2012.
Laraki, N., Galleni, M., Thamm, I., Riccio, M. L., Amicosante, G.,
Frère, J.-M., and Rossolini, G. M.: Structure of In101, a
blaIMP-containing Pseudomonas aeruginosa integron phyletically related to In5, which carries an
unusual array of gene cassettes, Antimicrob. Agents Chemother., 43,
890–901, https://doi.org/10.1128/AAC.43.4.890, 1999a.
Laraki, N., Franceschini, N., Rossolini, G. M., Santucci, P., Meunier, C.,
De Pauw, E., Amicosante, G., Frère, J.-M., and Galleni, M.: Biochemical
characterization of the Pseudomonas aeruginosa 101/1477 metallo-β-lactamase IMP-1 produced
by Escherichia coli, Antimicrob. Agents Chemother., 43, 902–906, https://doi.org/10.1128/AAC.43.4.902, 1999b.
Lescanne, M., Ahuja, P., Blok, A., Timmer, M., Akerud, T., and Ubbink, M.:
Methyl group reorientation under ligand binding probed by pseudocontact
shifts, J. Biomol. NMR, 71, 275–285, https://doi.org/10.1007/s10858-018-0190-5, 2018.
Linciano, P., Cendron, L., Gianquinto, E., Spyrakis, F., and Tondi, D.: Ten
years with New Delhi metallo-β-lactamase-1 (NDM-1): from structural
insights to inhibitor design, ACS Infect. Dis. 5, 9–34, https://doi.org/10.1021/acsinfecdis.8b00247, 2019.
Maleckis, A., Herath, I. D., and Otting, G.: Synthesis of
13C/19F/2H labeled indoles for use as tryptophan precursors
for protein NMR spectroscopy, Org. Biomol. Chem., 19, 5133–5147, https://doi.org/10.1039/D1OB00611H, 2021.
Man, B., Su, X.-C., Liang, H., Simonsen, S., Huber, T., Messerle, B. A., and
Otting, G.: 3-Mercapto-2,6-pyridinedicarboxylic acid, a small
lanthanide-binding tag for protein studies by NMR spectroscopy, Chem. Eur.
J., 16, 3827–3832, https://doi.org/10.1002/chem.200902904,
2010.
Markley, J. L., Bax, A., Arata, Y., Hilbers, C. W., Kaptein, R., Sykes, B.
D., Wright, P. E., and Wüthrich, K.: Recommendations for the
presentation of NMR structures of proteins and nucleic acids –
IUPAC-IUBMB-IUPAB Inter-Union Task Group on the Standardization of Data
Bases of Protein and Nucleic Acid Structures Determined by NMR Spectroscopy,
J. Biomol. NMR, 12, 1–23, https://doi.org/10.1023/A:1008290618449, 1998.
Meissner, A., Duus, J. Ø., and Sørensen, O. W.: Spin-state-selective
excitation. Application for E.COSY-type measurement of JHH coupling
constants, J. Magn. Reson., 128, 92–97, https://doi.org/10.1006/jmre.1997.1213, 1997.
Moali, C., Anne, C., Lamotte-Brasseur, J., Groslambert, S., Devreese, B.,
Van Beeumen, J., Galleni, M., and Frère, J. M.: Analysis of the
importance of the metallo-β-lactamase active site loop in substrate
binding and catalysis, Chem. Biol., 10, 319–329, https://doi.org/10.1016/S1074-5521(03)00070-X, 2003.
Orton, H., Otting, G., and Herath, I.: NMR dataset for metallo-B-lactamase IMP-1, Zenodo [data set], https://doi.org/10.5281/zenodo.5518294, 2021.
Orton, H. W.: Paramagpy source code (v1.0), Zenodo [code], https://doi.org/10.5281/zenodo.3594568, 2019.
Orton, H. W., Huber, T., and Otting, G.: Paramagpy: software for fitting magnetic susceptibility tensors using paramagnetic effects measured in NMR spectra, Magn. Reson., 1, 1–12, https://doi.org/10.5194/mr-1-1-2020, 2020.
Palacios, A. R, Mojica, M. F., Giannini, E., Taracila, M. A., Bethel, C. R.,
Alzari, P. M., Otero, L. H., Klinke, S., Llarrull, L. I., Bonomo, R. A., and
Vila, A. J.: The reaction mechanism of metallo-β-lactamases is tuned
by the conformation of an active-site mobile loop, Antimicrob. Agents
Chemother, 63, e01754-18, https://doi.org/10.1128/AAC.01754-18,
2019.
Payne, D. J., Hueso-Rodriguez, J. A., Boyd, H., Concha, N. O., Janson, C.
A., Gilpin, M., Bateson, J. H., Cheever, C., Niconovich, N. L., Pearson, S.,
Rittenhouse, S., Tew, D., Díez, E., Pérez, P., de la Fuente, J.,
Rees, M., and Rivera-Sagredo, A.: Identification of a series of tricyclic
natural products as potent broad-spectrum inhibitors of metallo-β-lactamases, Antimicrob. Agents Chemother., 46, 1880–1886, https://doi.org/10.1128/AAC.46.6.1880-1886.2002, 2002.
Pearce, B. J. G., Jabar, S., Loh, C. T., Szabo, M., Graham, B., and Otting,
G.: Structure restraints from heteronuclear pseudocontact shifts generated
by lanthanide tags at two different sites, J. Biomol. NMR, 68, 19–32,
https://doi.org/10.1007/s10858-017-0111-z, 2017.
Pilla, K. B., Otting, G., and Huber, T.: Protein structure determination by
assembling super-secondary structure motifs using pseudocontact shifts,
Structure, 25, 559–568, https://doi.org/10.1016/j.str.2017.01.011, 2017.
Pintacuda, G., Park, A. Y., Keniry, M. A., Dixon, N. E., and Otting, G.:
Lanthanide labeling offers fast NMR approach to 3D structure determinations
of protein-protein complexes, J. Am. Chem. Soc., 128, 3696–3702,
https://doi.org/10.1021/ja057008z, 2006.
Qi, R. and Otting, G.: Mutant T4 DNA polymerase for easy cloning and mutagenesis, PLOS One, 14, e0211065, https://doi.org/10.1371/journal.pone.0211065, 2019.
Rossi, M.-A., Martinez, V., Hinchliffe, P., Mojica, M. F., Castillo, V.,
Moreno, D. M., Smith, R., Spellberg, B., Drusano, G. L., Banchio, C.,
Bonomo, R. A., Spencer, J., Vila, A. J., and Mahler, G.:
2-Mercaptomethyl-thiazolidines use conserved aromatic–S interactions to
achieve broad-range inhibition of metallo-β-lactamases, Chem. Sci.,
12, 2898–2908, https://doi.org/10.1039/d0sc05172a, 2021.
Salimraj, R., Hinchliffe, P., Kosmopoulou, M., Tyrrell, J. M., Brem, J., van
Berkel, S. S., Verma, A., Owens, R. J., McDonough, M. A., Walsh, T. R.,
Schofield, C. J., and Spencer, J.: Crystal structures of VIM-1 complexes
explain active site heterogeneity in VIM-class metallo-β-lactamases,
FEBS J., 286, 169–183, https://doi.org/10.1111/febs.14695,
2018.
Shishmarev, D. and Otting, G.: How reliable are pseudocontact shifts induced
in proteins and ligands by mobile paramagnetic metal tags? A modelling
study, J. Biomol. NMR, 56, 203–216, https://doi.org/10.1007/s10858-013-9738-6, 2013.
Softley, C. A., Zak, K. M., Bostock, M. J., Fino, R., Zhou, R. X., Kolonko,
M., Mejdi-Nitiu, R., Meyer, H., Sattler, M., and Popowicz, G. M.: Structure
and molecular recognition mechanism of IMP-13 metallo-β-lactamase, Antimicrob. Agents Chemother., 64, e00123-20, https://doi.org/10.1128/AAC.00123-20, 2020.
Su, X.-C., McAndrew, K., Huber, T., and Otting, G.: Lanthanide-binding
peptides for NMR measurements of residual dipolar couplings and paramagnetic
effects from multiple angles, J. Am. Chem. Soc., 130, 1681–1687,
https://doi.org/10.1021/ja076564l, 2008.
Toney, J. H., Hammond, G. G., Fitzgerald, P. M., Sharma, N., Balkovec, J.
M., Rouen, G. P., Olson, S. H., Hammond, M. L., Greenlee, M. L., and Gao, Y.
D.: Succinic acids as potent inhibitors of plasmid-borne IMP-1
metallo-β-lactamase, J. Biol. Chem., 276, 31913–31918, https://doi.org/10.1074/jbc.M104742200, 2001.
van Duin, D., Kaye, K. S., Neuner, E. A., and Bonomo, R. A.:
Carbapenem-resistant Enterobacteriaceae: a review of treatment and outcomes,
Diagn. Microbiol. Infect. Dis., 75, 115–120, https://doi.org/10.1016/j.diagmicrobio.2012.11.009, 2013.
Wachino, J., Kanechi, R., Nishino, E., Mochizuki, M., Jin, W., Kimura, K.,
Kurosaki, H., and Arakawa, Y.: 4-Amino-2-sulfanylbenzoic acid as a potent
subclass B3 metallo-β-lactamase-specific inhibitor applicable for
distinguishing metallo-β-lactamase subclasses, Antimicrob. Agents
Chemother., 63, e01197-19, https://doi.org/10.1128/AAC.01197-19,
2019.
Watanabe, M., Iyobe, S., Inoue, M., and Mitsuhashi, S.: Transferable imipenem
resistance in Pseudomonas aeruginosa, Antimicrob. Agents Chemother., 35, 147–151, https://doi.org/10.1128/AAC.35.1.147,
1991.
Wu, P. S. C., Ozawa, K., Lim, S. P., Vasudevan, S., Dixon, N. E., and Otting, G.: Cell-free transcription/translation from PCR amplified DNA for high-throughput NMR studies, Angew. Chemie Int. Ed., 46, 3356–3358, https://doi.org/10.1002/anie.200605237, 2007.
Yagi, H., Pilla, K. B., Maleckis, A., Graham, B., Huber, T., and Otting, G.:
Three-dimensional protein fold determination from backbone amide
pseudocontact shifts generated by lanthanide tags at multiple sites,
Structure, 21, 883–890, https://doi.org/10.1016/j.str.2013.04.001, 2013.
Yamaguchi, Y., Matsueda, S., Matsunaga, K., Takashio, N., Toma-Fukai, S.,
Yamagata, Y., Shibata, N., Wachino, J., Shibayama, K., Arakawa, Y., and
Kurosaki, H.: Crystal structure of IMP-2 metallo-β-lactamase from
Acinetobacter spp.: comparison of active-site loop structures between IMP-1 and IMP-2, Biol. Pharm. Bull., 38, 96–101, https://doi.org/10.1248/bpb.b14-00594, 2015.
Zimmermann, K., Joss, D., Müntener, T., Nogueira, E. S., Schäfer,
M., Knörr, L., Monnard, F. W., and Häussinger, D.: Localization of
ligands within human carbonic anhydrase II using 19F pseudocontact
shift analysis, Chem. Sci., 10, 5064–5072, https://doi.org/10.1039/c8sc05683h, 2019.
Short summary
This paper explores a method for determining the solution structure of a solvent-exposed polypeptide segment (the L3 loop), which is next to the active site of the penicillin-degrading enzyme IMP-1. Tagging three different sites on the protein with paramagnetic metal ions allowed positioning of the L3 loop with atomic resolution. It was found that the method was more robust when omitting data obtained with different metal ions if obtained with the same tag at the same tagging site.
This paper explores a method for determining the solution structure of a solvent-exposed...