Articles | Volume 3, issue 1
https://doi.org/10.5194/mr-3-15-2022
https://doi.org/10.5194/mr-3-15-2022
Research article
 | 
09 Feb 2022
Research article |  | 09 Feb 2022

Correction of field instabilities in biomolecular solid-state NMR by simultaneous acquisition of a frequency reference

Václav Římal, Morgane Callon, Alexander A. Malär, Riccardo Cadalbert, Anahit Torosyan, Thomas Wiegand, Matthias Ernst, Anja Böckmann, and Beat H. Meier

Related authors

Low-power WALTZ decoupling under magic-angle spinning NMR
Luzian Thomas and Matthias Ernst
Magn. Reson., 5, 153–166, https://doi.org/10.5194/mr-5-153-2024,https://doi.org/10.5194/mr-5-153-2024, 2024
Short summary
NMR side-chain assignments of the Crimean–Congo hemorrhagic fever virus glycoprotein n cytosolic domain
Louis Brigandat, Maëlys Laux, Caroline Marteau, Laura Cole, Anja Böckmann, Lauriane Lecoq, Marie-Laure Fogeron, and Morgane Callon
Magn. Reson., 5, 95–101, https://doi.org/10.5194/mr-5-95-2024,https://doi.org/10.5194/mr-5-95-2024, 2024
Short summary
Evaluating the motional timescales contributing to averaged anisotropic interactions in MAS solid-state NMR
Kathrin Aebischer, Lea Marie Becker, Paul Schanda, and Matthias Ernst
Magn. Reson., 5, 69–86, https://doi.org/10.5194/mr-5-69-2024,https://doi.org/10.5194/mr-5-69-2024, 2024
Short summary
Electroplated waveguides to enhance DNP and EPR spectra of silicon and diamond particles
Aaron Himmler, Mohammed M. Albannay, Gevin von Witte, Sebastian Kozerke, and Matthias Ernst
Magn. Reson., 3, 203–209, https://doi.org/10.5194/mr-3-203-2022,https://doi.org/10.5194/mr-3-203-2022, 2022
Short summary
Effects of radial radio-frequency field inhomogeneity on MAS solid-state NMR experiments
Kathrin Aebischer, Zdeněk Tošner, and Matthias Ernst
Magn. Reson., 2, 523–543, https://doi.org/10.5194/mr-2-523-2021,https://doi.org/10.5194/mr-2-523-2021, 2021
Short summary

Related subject area

Field: Solid-state NMR | Topic: Instrumentation
When the MOUSE leaves the house
Bernhard Blümich and Jens Anders
Magn. Reson., 2, 149–160, https://doi.org/10.5194/mr-2-149-2021,https://doi.org/10.5194/mr-2-149-2021, 2021
Short summary
Highly stable magic angle spinning spherical rotors
Thomas M. Osborn Popp, Alexander Däpp, Chukun Gao, Pin-Hui Chen, Lauren E. Price, Nicholas H. Alaniva, and Alexander B. Barnes
Magn. Reson., 1, 97–103, https://doi.org/10.5194/mr-1-97-2020,https://doi.org/10.5194/mr-1-97-2020, 2020
Short summary

Cited articles

Böckmann, A., Gardiennet, C., Verel, R., Hunkeler, A., Loquet, A., Pintacuda, G., Emsley, L., Meier, B. H., and Lesage, A.: Characterization of different water pools in solid-state NMR protein samples, J. Biomol. NMR, 45, 319–327, https://doi.org/10.1007/s10858-009-9374-3, 2009. 
Bodenhausen, G., Kogler, H., and Ernst, R. R.: Selection of coherence-transfer pathways in NMR pulse experiments, J. Magn. Reson., 58, 370–388, https://doi.org/10.1016/0022-2364(84)90142-2, 1984. 
Gallo, A., Franks, W. T., and Lewandowski, J. R.: A suite of solid-state NMR experiments to utilize orphaned magnetization for assignment of proteins using parallel high and low gamma detection, J. Magn. Reson., 305, 219–231, https://doi.org/10.1016/j.jmr.2019.07.006, 2019. 
Gopinath, T. and Veglia, G.: Proton-detected polarization optimized experiments (POE) using ultrafast magic angle spinning solid-state NMR: Multi-acquisition of membrane protein spectra, J. Magn. Reson., 310, 106664, https://doi.org/10.1016/j.jmr.2019.106664, 2020. 
Download
Short summary
Through the advent of fast magic-angle spinning and high magnetic fields, the spectral resolution of solid-state NMR spectra has recently been greatly improved. To take full advantage of this gain, the magnetic field must be stable over the experiment time of hours or even days. We thus monitor the field by simultaneous acquisition of a frequency reference (SAFR) and use this information to correct multidimensional spectra improving resolution and availability of productive magnet time.