Articles | Volume 3, issue 1
https://doi.org/10.5194/mr-3-15-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/mr-3-15-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Correction of field instabilities in biomolecular solid-state NMR by simultaneous acquisition of a frequency reference
Václav Římal
Physical Chemistry, ETH Zurich, Zurich, 8093, Switzerland
Morgane Callon
Physical Chemistry, ETH Zurich, Zurich, 8093, Switzerland
Alexander A. Malär
Physical Chemistry, ETH Zurich, Zurich, 8093, Switzerland
Riccardo Cadalbert
Physical Chemistry, ETH Zurich, Zurich, 8093, Switzerland
Anahit Torosyan
Physical Chemistry, ETH Zurich, Zurich, 8093, Switzerland
Thomas Wiegand
Physical Chemistry, ETH Zurich, Zurich, 8093, Switzerland
Matthias Ernst
Physical Chemistry, ETH Zurich, Zurich, 8093, Switzerland
Anja Böckmann
Molecular Microbiology and Structural Biochemistry, UMR 5086,
CNRS/Université de Lyon, 69367 Lyon, France
Physical Chemistry, ETH Zurich, Zurich, 8093, Switzerland
Related authors
No articles found.
Luzian Thomas and Matthias Ernst
Magn. Reson., 5, 153–166, https://doi.org/10.5194/mr-5-153-2024, https://doi.org/10.5194/mr-5-153-2024, 2024
Short summary
Short summary
The paper investigates the suitability of an existing solution-state NMR spin decoupling sequence for use as a low-power solid-state NMR decoupling sequence under sample spinning. Complications arise from resonance conditions between the spin modulations by the pulse sequence and the sample rotation. We show that the timing of the pulse sequence is the most important criterion needed to achieve good decoupling. The paper gives recommendations for optimum parameters.
Louis Brigandat, Maëlys Laux, Caroline Marteau, Laura Cole, Anja Böckmann, Lauriane Lecoq, Marie-Laure Fogeron, and Morgane Callon
Magn. Reson., 5, 95–101, https://doi.org/10.5194/mr-5-95-2024, https://doi.org/10.5194/mr-5-95-2024, 2024
Short summary
Short summary
We used NMR to sequentially assign the side-chain resonances of the cytosolic domain of glycoprotein n of the Crimean–Congo hemorrhagic fever virus. The combination of cell-free protein synthesis with high-field NMR and artificial intelligence approaches facilitated a time- and effort-efficient approach. Our results will be harnessed to study the membrane-bound form of the domain and its interactions with virulence factors, which will ultimately help to understand their role in disease.
Kathrin Aebischer, Lea Marie Becker, Paul Schanda, and Matthias Ernst
Magn. Reson., 5, 69–86, https://doi.org/10.5194/mr-5-69-2024, https://doi.org/10.5194/mr-5-69-2024, 2024
Short summary
Short summary
To characterize the amplitude of dynamic processes in molecules, anisotropic parameters can be measured using solid-state NMR. However, the timescales of motion that lead to such a scaling of the anisotropic interactions are not clear. Using numerical simulations in small spin systems, we could show that mostly the magnitude of the anisotropic interaction determines the range of timescales detected by the scaled anisotropic interaction, and experimental parameters play a very minor role.
Aaron Himmler, Mohammed M. Albannay, Gevin von Witte, Sebastian Kozerke, and Matthias Ernst
Magn. Reson., 3, 203–209, https://doi.org/10.5194/mr-3-203-2022, https://doi.org/10.5194/mr-3-203-2022, 2022
Short summary
Short summary
Dynamic nuclear polarization requires a waveguide that connects the cold (1–10 K) sample space to the outside. To reduce the heating of the sample, a waveguide is produced from steel which has low thermal conductivity but attenuates the microwaves. Therefore, the inside of the waveguide should be plated with silver to reduce electrical losses. We show a new simple way to electroplate such waveguides with a thin silver layer and show that this improves the experimental performance.
Kathrin Aebischer, Zdeněk Tošner, and Matthias Ernst
Magn. Reson., 2, 523–543, https://doi.org/10.5194/mr-2-523-2021, https://doi.org/10.5194/mr-2-523-2021, 2021
Short summary
Short summary
The radio-frequency (rf) field amplitude in solid-state NMR probes changes over the sample volume, i.e. different parts of the sample will experience different nutation frequencies. If the sample is rotated inside the coil as it is typical for magic angle spinning in solid-state NMR, such a position-dependent inhomogeneity leads to an additional time dependence of the rf field amplitude. We show that such time-dependent modulations do not play an important role in many experiments.
Matías Chávez, Thomas Wiegand, Alexander A. Malär, Beat H. Meier, and Matthias Ernst
Magn. Reson., 2, 499–509, https://doi.org/10.5194/mr-2-499-2021, https://doi.org/10.5194/mr-2-499-2021, 2021
Short summary
Short summary
Sample rotation around the magic angle averages out the dipolar couplings in homonuclear spin systems in a first-order approximation. However, in higher orders, residual coupling terms remain and lead to a broadening of the spectral lines. We investigate the source of this broadening and the effects on the powder line shape in small spin systems with and without chemical shifts. We show that one can expect different scaling behavior as a function of the spinning frequency for the two cases.
Kathrin Aebischer, Nino Wili, Zdeněk Tošner, and Matthias Ernst
Magn. Reson., 1, 187–195, https://doi.org/10.5194/mr-1-187-2020, https://doi.org/10.5194/mr-1-187-2020, 2020
Short summary
Short summary
Resonant pulses in a spin-lock frame are used to select parts of the rf-field distribution in NMR experiments. Such pulses can be implemented in a straightforward way and arbitrarily shaped pulses can be used. We show an application of such pulses in homonuclear decoupling where restricting the amplitude distribution of the rf field leads to improved performance.
Johannes Hellwagner, Liam Grunwald, Manuel Ochsner, Daniel Zindel, Beat H. Meier, and Matthias Ernst
Magn. Reson., 1, 13–25, https://doi.org/10.5194/mr-1-13-2020, https://doi.org/10.5194/mr-1-13-2020, 2020
Short summary
Short summary
This paper analyzes a commonly used line-narrowing mechanism (homonuclear decoupling) in solid-state NMR and discusses what limits the achievable line width. Based on theoretical considerations, the contribution of different effects to the line width is discussed and a new contributing term is identified. This research allows us to evaluate new ways to improve the line width in such homonuclear decoupled spectra.
Related subject area
Field: Solid-state NMR | Topic: Instrumentation
When the MOUSE leaves the house
Highly stable magic angle spinning spherical rotors
Bernhard Blümich and Jens Anders
Magn. Reson., 2, 149–160, https://doi.org/10.5194/mr-2-149-2021, https://doi.org/10.5194/mr-2-149-2021, 2021
Short summary
Short summary
The NMR-MOUSE is a magnetic resonance tool for non-destructive materials testing inside a laboratory. The history and use of this sensor are reviewed with attention to issues encountered when employed outside. Improvements are outlined to facilitate outdoor measurements.
Thomas M. Osborn Popp, Alexander Däpp, Chukun Gao, Pin-Hui Chen, Lauren E. Price, Nicholas H. Alaniva, and Alexander B. Barnes
Magn. Reson., 1, 97–103, https://doi.org/10.5194/mr-1-97-2020, https://doi.org/10.5194/mr-1-97-2020, 2020
Short summary
Short summary
We have recently demonstrated the capability to rapidly spin spherical rotors inclined precisely at the magic angle (54.74°) with respect to the external magnetic field used for nuclear magnetic resonance (NMR) experiments. We show that it is possible to spin a spherical rotor without using turbine grooves and that these rotors are extremely stable because of the inherent spherical-ring geometry. These results portend the facile implementation of spherical rotors for solid-state NMR experiments.
Cited articles
Böckmann, A., Gardiennet, C., Verel, R., Hunkeler, A., Loquet, A.,
Pintacuda, G., Emsley, L., Meier, B. H., and Lesage, A.: Characterization of
different water pools in solid-state NMR protein samples, J. Biomol. NMR,
45, 319–327, https://doi.org/10.1007/s10858-009-9374-3, 2009.
Bodenhausen, G., Kogler, H., and Ernst, R. R.: Selection of
coherence-transfer pathways in NMR pulse experiments, J. Magn. Reson.,
58, 370–388, https://doi.org/10.1016/0022-2364(84)90142-2, 1984.
Callon, M., Malär, A. A., Pfister, S., Římal, V., Weber, M. E.,
Wiegand, T., Zehnder, J., Chávez, M., Cadalbert, R., Deb, R., Däpp,
A., Fogeron, M.-L., Hunkeler, A., Lecoq, L., Torosyan, A., Zyla, D.,
Glockshuber, R., Jonas, S., Nassal, M., Ernst, M., Böckmann, A., and
Meier, B. H.: Biomolecular solid-state NMR spectroscopy at 1200 MHz: the
gain in resolution, J. Biomol. NMR, 75, 255–272,
https://doi.org/10.1007/s10858-021-00373-x, 2021.
Gallo, A., Franks, W. T., and Lewandowski, J. R.: A suite of solid-state NMR
experiments to utilize orphaned magnetization for assignment of proteins
using parallel high and low gamma detection, J. Magn. Reson., 305, 219–231,
https://doi.org/10.1016/j.jmr.2019.07.006, 2019.
Gopinath, T. and Veglia, G.: Proton-detected polarization optimized
experiments (POE) using ultrafast magic angle spinning solid-state NMR:
Multi-acquisition of membrane protein spectra, J. Magn. Reson., 310, 106664,
https://doi.org/10.1016/j.jmr.2019.106664, 2020.
Gor'kov, P. L., Witter, R., Chekmenev, E. Y., Nozirov, F., Fu, R., and Brey,
W. W.: Low-E probe for 19F–1H NMR of dilute biological solids, J.
Magn. Reson., 189, 182–189, https://doi.org/10.1016/j.jmr.2007.09.008,
2007.
Gottlieb, H. E., Kotlyar, V., and Nudelman, A.: NMR Chemical Shifts of Common
Laboratory Solvents as Trace Impurities, J. Org. Chem., 62, 7512–7515,
https://doi.org/10.1021/jo971176v, 1997.
Henry, P.-G., van de Moortele, P.-F., Giacomini, E., Nauerth, A., and Bloch,
G.: Field-frequency locked in vivo proton MRS on a whole-body spectrometer,
Magn. Reson. Med., 42, 636–642,
https://doi.org/10.1002/(SICI)1522-2594(199910)42:4<636::AID-MRM4>3.0.CO;2-I, 1999.
Kupče, Ē. and Claridge, T. D. W.: NOAH: NMR Supersequences for Small
Molecule Analysis and Structure Elucidation, Angew. Chem. Int. Ed., 56,
11779–11783, https://doi.org/10.1002/anie.201705506, 2017.
Kupče, Ē. and Freeman, R.: Molecular structure from a single NMR
sequence (fast-PANACEA), J. Magn. Reson., 206, 147–153,
https://doi.org/10.1016/j.jmr.2010.06.018, 2010.
Lacabanne, D., Fogeron, M.-L., Wiegand, T., Cadalbert, R., Meier, B. H., and
Böckmann, A.: Protein sample preparation for solid-state NMR
investigations, Prog. Nucl. Mag. Res. Sp., 110, 20–33,
https://doi.org/10.1016/j.pnmrs.2019.01.001, 2019.
Malär, A. A., Völker, L. A., Cadalbert, R., Lecoq, L., Ernst, M.,
Böckmann, A., Meier, B. H., and Wiegand, T.: Temperature-Dependent
Solid-State NMR Proton Chemical-Shift Values and Hydrogen Bonding, J. Phys.
Chem. B, 125, 6222–6230, https://doi.org/10.1021/acs.jpcb.1c04061,
2021.
Minkler, M. J., Kim, J. M., Shinde, V. V., and Beckingham, B. S.: Low-field
1H NMR spectroscopy: Factors impacting signal-to-noise ratio and
experimental time in the context of mixed microstructure polyisoprenes,
Magn. Reson. Chem., 58, 1168–1176, https://doi.org/10.1002/mrc.5022,
2020.
Najbauer, E. E. and Andreas, L. B.: Correcting for magnetic field drift in
magic-angle spinning NMR datasets, J. Magn. Reson., 305, 1–4,
https://doi.org/10.1016/j.jmr.2019.05.005, 2019.
Near, J., Edden, R., Evans, C. J., Paquin, R., Harris, A., and Jezzard, P.:
Frequency and phase drift correction of magnetic resonance spectroscopy data
by spectral registration in the time domain, Magn. Reson. Med., 73,
44–50, https://doi.org/10.1002/mrm.25094, 2015.
Nimerovsky, E., Movellan, K. T., Zhang, X. C., Forster, M. C., Najbauer, E.,
Xue, K., Dervişoglu, R., Giller, K., Griesinger, C., Becker, S., and
Andreas, L. B.: Proton Detected Solid-State NMR of Membrane Proteins at 28 Tesla (1.2 GHz) and 100 kHz Magic-Angle Spinning, Biomolecules, 11, 752,
https://doi.org/10.3390/biom11050752, 2021.
Paulson, E. K. and Zilm, K. W.: External field-frequency lock probe for high
resolution solid state NMR, Rev. Sci. Instrum., 76, 026104,
https://doi.org/10.1063/1.1841972, 2005.
Penzel, S., Oss, A., Org, M. L., Samoson, A., Böckmann, A., Ernst, M.
and Meier, B. H.: Spinning faster: protein NMR at MAS frequencies up to
126 kHz, J. Biomol. NMR, 73, 19–29,
https://doi.org/10.1007/s10858-018-0219-9, 2019.
Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P.:
Minimization or Maximization of Functions, in: Numerical Recipes in C: The
Art of Scientific Computing, 2nd edn., 394–455, Cambridge University Press,
Cambridge, ISBN 0-521-43108-5, 1992.
Ravotti, F., Sborgi, L., Cadalbert, R., Huber, M., Mazur, A., Broz, P.,
Hiller, S., Meier, B. H., and Böckmann, A.: Sequence-specific solid-state
NMR assignments of the mouse ASC PYRIN domain in its filament form, Biomol.
NMR Assign., 10, 107–115, https://doi.org/10.1007/s12104-015-9647-6,
2016.
Římal, V.: Pulse and AU programs for correcting field instabilities
in NMR by simultaneous acquisition of a frequency reference (SAFR), ETH
Zurich [code], https://doi.org/10.5905/ethz-1007-485, 2022.
Římal, V., Callon, M., Malär, A. A., Cadalbert, R., Torosyan, A., Wiegand, T., Ernst, M., Böckmann, A., and Meier, B. H.:
Experimental Data for Correction of
Field Instabilities in Biomolecular Solid-State NMR by Simultaneous
Acquisition of a Frequency Reference, ETH Zurich [data set],
https://doi.org/10.3929/ethz-b-000522147, 2021.
Sborgi, L., Ravotti, F., Dandey, V. P., Dick, M. S., Mazur, A., Reckel, S.,
Chami, M., Scherer, S., Huber, M., Böckmann, A., Egelman, E. H.,
Stahlberg, H., Broz, P., Meier, B. H., and Hiller, S.: Structure and assembly
of the mouse ASC inflammasome by combined NMR spectroscopy and cryo-electron
microscopy, P. Natl. Acad. Sci., 112, 13237–13242,
https://doi.org/10.1073/pnas.1507579112, 2015.
Sharma, K., Madhu, P. K., and Mote, K. R.: A suite of pulse sequences based
on multiple sequential acquisitions at one and two radiofrequency channels
for solid-state magic-angle spinning NMR studies of proteins, J. Biomol.
NMR, 65, 127–141, https://doi.org/10.1007/s10858-016-0043-z, 2016.
Stanek, J., Schubeis, T., Paluch, P., Güntert, P., Andreas, L. B., and
Pintacuda, G.: Automated Backbone NMR Resonance Assignment of Large Proteins
Using Redundant Linking from a Single Simultaneous Acquisition, J. Am. Chem.
Soc., 142, 5793–5799, https://doi.org/10.1021/jacs.0c00251, 2020.
States, D., Haberkorn, R., and Ruben, D.: A two-dimensional nuclear
Overhauser experiment with pure absorption phase in four quadrants, J. Magn.
Reson., 48, 286–292, https://doi.org/10.1016/0022-2364(82)90279-7, 1982.
Stevens, T. J., Fogh, R. H., Boucher, W., Higman, V. A., Eisenmenger, F.,
Bardiaux, B., Van Rossum, B. J., Oschkinat, H., and Laue, E. D.: A software
framework for analysing solid-state MAS NMR data, J. Biomol. NMR, 51,
437–447, https://doi.org/10.1007/s10858-011-9569-2, 2011.
Takegoshi, K., Nakamura, S., and Terao, T.: 13C–1H dipolar-assisted
rotational resonance in magic-angle spinning NMR, Chem. Phys. Lett.,
344, 631–637, https://doi.org/10.1016/S0009-2614(01)00791-6, 2001.
Takegoshi, K., Nakamura, S., and Terao, T.: 13C–1H dipolar-driven
13C–13C recoupling without 13C rf irradiation in nuclear
magnetic resonance of rotating solids, J. Chem. Phys., 118, 2325–2341,
https://doi.org/10.1063/1.1534105, 2003.
Takahashi, M., Ebisawa, Y., Tennmei, K., Yanagisawa, Y., Hosono, M.,
Takasugi, K., Hase, T., Miyazaki, T., Fujito, T., Nakagome, H., Kiyoshi, T.,
Yamazaki, T., and Maeda, H.: Towards a beyond 1 GHz solid-state nuclear
magnetic resonance: External lock operation in an external current mode for
a 500 MHz nuclear magnetic resonance, Rev. Sci. Instrum., 83, 105110,
https://doi.org/10.1063/1.4757576, 2012.
Thiel, T., Czisch, M., Elbel, G. K., and Hennig, J.: Phase coherent averaging
in magnetic resonance spectroscopy using interleaved navigator scans:
Compensation of motion artifacts and magnetic field instabilities, Magn.
Reson. Med., 47, 1077–1082, https://doi.org/10.1002/mrm.10174, 2002.
Torosyan, A., Wiegand, T., Schledorn, M., Klose, D., Güntert, P.,
Böckmann, A., and Meier, B. H.: Including Protons in Solid-State NMR
Resonance Assignment and Secondary Structure Analysis: The Example of RNA
Polymerase II Subunits Rpo , Front. Mol. Biosci., 6, 100,
https://doi.org/10.3389/fmolb.2019.00100, 2019.
Van Melckebeke, H., Wasmer, C., Lange, A., AB, E., Loquet, A.,
Böckmann, A., and Meier, B. H.: Atomic-Resolution
Three-Dimensional Structure of HET-s(218−289) Amyloid Fibrils by
Solid-State NMR Spectroscopy, J. Am. Chem. Soc., 132, 13765–13775,
https://doi.org/10.1021/ja104213j, 2010.
Verel, R., Ernst, M., and Meier, B. H.: Adiabatic dipolar recoupling in
solid-state NMR: The DREAM scheme, J. Magn. Reson., 150, 81–99,
https://doi.org/10.1006/jmre.2001.2310, 2001.
Vionnet, L., Aranovitch, A., Duerst, Y., Haeberlin, M., Dietrich, B. E.,
Gross, S., and Pruessmann, K. P.: Simultaneous feedback control for joint
field and motion correction in brain MRI, Neuroimage, 226, 117286,
https://doi.org/10.1016/j.neuroimage.2020.117286, 2021.
Vranken, W. F., Boucher, W., Stevens, T. J., Fogh, R. H., Pajon, A., Llinas,
M., Ulrich, E. L., Markley, J. L., Ionides, J., and Laue, E. D.: The CCPN
data model for NMR spectroscopy: Development of a software pipeline,
Proteins, 59, 687–696,
https://doi.org/10.1002/prot.20449, 2005.
Werner, F. and Grohmann, D.: Evolution of multisubunit RNA polymerases in
the three domains of life, Nat. Rev. Microbiol., 9, 85–98,
https://doi.org/10.1038/nrmicro2507, 2011.
Zhou, D. H. and Rienstra, C. M.: High-performance solvent suppression for
proton detected solid-state NMR, J. Magn. Reson., 192, 167–172,
https://doi.org/10.1016/j.jmr.2008.01.012, 2008.
Short summary
Through the advent of fast magic-angle spinning and high magnetic fields, the spectral resolution of solid-state NMR spectra has recently been greatly improved. To take full advantage of this gain, the magnetic field must be stable over the experiment time of hours or even days. We thus monitor the field by simultaneous acquisition of a frequency reference (SAFR) and use this information to correct multidimensional spectra improving resolution and availability of productive magnet time.
Through the advent of fast magic-angle spinning and high magnetic fields, the spectral...