Articles | Volume 4, issue 1
https://doi.org/10.5194/mr-4-19-2023
https://doi.org/10.5194/mr-4-19-2023
Research article
 | 
08 Feb 2023
Research article |  | 08 Feb 2023

DEEP Picker1D and Voigt Fitter1D: a versatile tool set for the automated quantitative spectral deconvolution of complex 1D-NMR spectra

Da-Wei Li, Lei Bruschweiler-Li, Alexandar L. Hansen, and Rafael Brüschweiler

Related subject area

Field: Liquid-state NMR | Topic: Computation
Analysis of chi angle distributions in free amino acids via multiplet fitting of proton scalar couplings
Nabiha R. Syed, Nafisa B. Masud, and Colin A. Smith
Magn. Reson., 5, 103–120, https://doi.org/10.5194/mr-5-103-2024,https://doi.org/10.5194/mr-5-103-2024, 2024
Short summary
Asymmetry in three-site relaxation exchange NMR
Bernhard Blümich, Matthew Parziale, and Matthew Augustine
Magn. Reson., 4, 217–229, https://doi.org/10.5194/mr-4-217-2023,https://doi.org/10.5194/mr-4-217-2023, 2023
Short summary
An improved, time-efficient approach to extract accurate distance restraints for NMR2 structure calculation
Aditya Pokharna, Felix Torres, Harindranath Kadavath, Julien Orts, and Roland Riek
Magn. Reson., 3, 137–144, https://doi.org/10.5194/mr-3-137-2022,https://doi.org/10.5194/mr-3-137-2022, 2022
Short summary
Improving the accuracy of model-based quantitative nuclear magnetic resonance
Yevgen Matviychuk, Ellen Steimers, Erik von Harbou, and Daniel J. Holland
Magn. Reson., 1, 141–153, https://doi.org/10.5194/mr-1-141-2020,https://doi.org/10.5194/mr-1-141-2020, 2020
Short summary
Paramagpy: software for fitting magnetic susceptibility tensors using paramagnetic effects measured in NMR spectra
Henry William Orton, Thomas Huber, and Gottfried Otting
Magn. Reson., 1, 1–12, https://doi.org/10.5194/mr-1-1-2020,https://doi.org/10.5194/mr-1-1-2020, 2020
Short summary

Cited articles

Abadi, M., Barham, P., Chen, J. M., Chen, Z. F., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S., Murray, D. G., Steiner, B., Tucker, P., Vasudevan, V., Warden, P., Wicke, M., Yu, Y., and Zheng, X. Q.: TensorFlow: A system for large-scale machine learning, in: Proceedings of Osdi'16: 12th Usenix Symposium on Operating Systems Design and Implementation, Savannah, GA, USA, 265–283, WOS:000569062400017, 2016. 
Canueto, D., Gomez, J., Salek, R. M., Correig, X., and Canellas, N.: rDolphin: a GUI R package for proficient automatic profiling of 1D (1)H-NMR spectra of study datasets, Metabolomics, 14, 24, https://doi.org/10.1007/s11306-018-1319-y, 2018. 
Cobas, C., Seoane, F., Vaz, E., Bernstein, M. A., Dominguez, S., Perez, M., and Sykora, S.: Automatic assignment of 1H-NMR spectra of small molecules, Magn. Reson. Chem., 51, 649–654, https://doi.org/10.1002/mrc.3995, 2013. 
Dashti, H., Wedell, J. R., Westler, W. M., Tonelli, M., Aceti, D., Amarasinghe, G. K., Markley, J. L., and Eghbalnia, H. R.: Applications of Parametrized NMR Spin Systems of Small Molecules, Anal. Chem., 90, 10646–10649, https://doi.org/10.1021/acs.analchem.8b02660, 2018. 
Delaglio, F., Grzesiek, S., Vuister, G. W., Zhu, G., Pfeifer, J., and Bax, A.: NMRPipe: a multidimensional spectral processing system based on UNIX pipes, J. Biomol. NMR, 6, 277–293, https://doi.org/10.1007/BF00197809, 1995. 
Download
Short summary
Recent advances in machine learning have opened new opportunities toward the automated analysis and spectral reconstruction of highly complex NMR spectra, including ones encountered in metabolomics. We demonstrate the combined power of the deep neural network DEEP Picker 1D and the Voigt Fitter1D software for the quantitative streamlined analysis of 1D 1H NMR spectra, extending the reach of a wide range of NMR applications.