Articles | Volume 4, issue 2
https://doi.org/10.5194/mr-4-231-2023
https://doi.org/10.5194/mr-4-231-2023
Research article
 | 
06 Sep 2023
Research article |  | 06 Sep 2023

Cryogenic-compatible spherical rotors and stators for magic angle spinning dynamic nuclear polarization

Lauren E. Price, Nicholas Alaniva, Marthe Millen, Till Epprecht, Michael Urban, Alexander Däpp, and Alexander B. Barnes

Related authors

Highly stable magic angle spinning spherical rotors
Thomas M. Osborn Popp, Alexander Däpp, Chukun Gao, Pin-Hui Chen, Lauren E. Price, Nicholas H. Alaniva, and Alexander B. Barnes
Magn. Reson., 1, 97–103, https://doi.org/10.5194/mr-1-97-2020,https://doi.org/10.5194/mr-1-97-2020, 2020
Short summary

Cited articles

Afeworki, M., Mckay, R. A., and Schaefer, J.: Dynamic nuclear polarization enhanced nuclear magnetic resonance of polymer-blend interfaces, Mater. Sci. Eng., 10, 221–228, 1993. 
Afsar, M. N. and Chi, H.: WINDOW MATERIALS FOR HIGH POWER GYROTRON*, Int. J. Infrared Millim. W., 15, 1161–1179, 1994. 
Albert, B. J., Pahng, S. H., Alaniva, N., Sesti, E. L., Rand, P. W., Saliba, E. P., Scott, F. J., Choi, E. J., and Barnes, A. B.: Instrumentation for cryogenic magic angle spinning dynamic nuclear polarization using 90 L of liquid nitrogen per day, J. Magn. Reson., 283, 71–78, https://doi.org/10.1016/J.JMR.2017.08.014, 2017. 
Albert, B. J., Gao, C., Sesti, E. L., Saliba, E. P., Alaniva, N., Scott, F. J., Sigurdsson, S. Th., and Barnes, A. B.: Dynamic Nuclear Polarization Nuclear Magnetic Resonance in Human Cells Using Fluorescent Polarizing Agents, Biochemistry, 57, 4741–4746, https://doi.org/10.1021/acs.biochem.8b00257, 2018. 
Alessandro, E., Sudheer, N., Jawla, K., Shapiro, M. A., Woskov, P. P., Temkin, R. J., Nanni, E. A., Jawla, S. K., Shapiro, M. A., Woskov, P. P., and Temkin, R. J.: Low-loss Transmission Lines for High-power Terahertz Radiation, J. Infrared Millim. Te., 33, 695–714, https://doi.org/10.1007/s10762-012-9870-5, 2012. 
Download
Short summary
This paper describes the design and implementation of new technology for nuclear magnetic resonance, which is a technique used to understand the molecular structure and dynamics of many systems. The spherical sample container and its apparatus introduced in this paper are used to perform initial proof-of-principle experiments at cryogenic temperatures. Further development of this technology will facilitate more flexibility in magnetic resonance experiments.