Articles | Volume 4, issue 2
https://doi.org/10.5194/mr-4-231-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/mr-4-231-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Cryogenic-compatible spherical rotors and stators for magic angle spinning dynamic nuclear polarization
Lauren E. Price
Department of Chemistry and Applied Biochemistry, ETH Zürich, Zurich 8093, Switzerland
Nicholas Alaniva
Department of Chemistry and Applied Biochemistry, ETH Zürich, Zurich 8093, Switzerland
Marthe Millen
Department of Chemistry and Applied Biochemistry, ETH Zürich, Zurich 8093, Switzerland
Till Epprecht
Department of Chemistry and Applied Biochemistry, ETH Zürich, Zurich 8093, Switzerland
Michael Urban
Department of Chemistry and Applied Biochemistry, ETH Zürich, Zurich 8093, Switzerland
Alexander Däpp
Department of Chemistry and Applied Biochemistry, ETH Zürich, Zurich 8093, Switzerland
Alexander B. Barnes
CORRESPONDING AUTHOR
Department of Chemistry and Applied Biochemistry, ETH Zürich, Zurich 8093, Switzerland
Related authors
Thomas M. Osborn Popp, Alexander Däpp, Chukun Gao, Pin-Hui Chen, Lauren E. Price, Nicholas H. Alaniva, and Alexander B. Barnes
Magn. Reson., 1, 97–103, https://doi.org/10.5194/mr-1-97-2020, https://doi.org/10.5194/mr-1-97-2020, 2020
Short summary
Short summary
We have recently demonstrated the capability to rapidly spin spherical rotors inclined precisely at the magic angle (54.74°) with respect to the external magnetic field used for nuclear magnetic resonance (NMR) experiments. We show that it is possible to spin a spherical rotor without using turbine grooves and that these rotors are extremely stable because of the inherent spherical-ring geometry. These results portend the facile implementation of spherical rotors for solid-state NMR experiments.
Jörg Wolfgang Anselm Fischer, Julian Stropp, René Tschaggelar, Oliver Oberhänsli, Nicholas Alaniva, Mariko Inoue, Kazushi Mashima, Alexander Benjamin Barnes, Gunnar Jeschke, and Daniel Klose
Magn. Reson., 5, 143–152, https://doi.org/10.5194/mr-5-143-2024, https://doi.org/10.5194/mr-5-143-2024, 2024
Short summary
Short summary
We show the design, simulations, and experimental performance of a 35 GHz electron paramagnetic resonance (EPR) resonator based on a cylindrical cavity with 3 mm sample access. The design is robust; simple to manufacture and maintain; and, with its elevated Q value, well-suited to sensitive EPR experiments using continuous-wave or low-power pulsed excitation. Thus, we make multi-frequency EPR spectroscopy, a powerful approach to deconvolute overlapping paramagnetic species, more accessible.
Thomas M. Osborn Popp, Alexander Däpp, Chukun Gao, Pin-Hui Chen, Lauren E. Price, Nicholas H. Alaniva, and Alexander B. Barnes
Magn. Reson., 1, 97–103, https://doi.org/10.5194/mr-1-97-2020, https://doi.org/10.5194/mr-1-97-2020, 2020
Short summary
Short summary
We have recently demonstrated the capability to rapidly spin spherical rotors inclined precisely at the magic angle (54.74°) with respect to the external magnetic field used for nuclear magnetic resonance (NMR) experiments. We show that it is possible to spin a spherical rotor without using turbine grooves and that these rotors are extremely stable because of the inherent spherical-ring geometry. These results portend the facile implementation of spherical rotors for solid-state NMR experiments.
Cited articles
Afeworki, M., Mckay, R. A., and Schaefer, J.: Dynamic nuclear polarization enhanced nuclear magnetic resonance of polymer-blend interfaces, Mater. Sci. Eng., 10, 221–228, 1993.
Afsar, M. N. and Chi, H.: WINDOW MATERIALS FOR HIGH POWER GYROTRON*, Int. J. Infrared Millim. W., 15, 1161–1179, 1994.
Albert, B. J., Pahng, S. H., Alaniva, N., Sesti, E. L., Rand, P. W., Saliba, E. P., Scott, F. J., Choi, E. J., and Barnes, A. B.: Instrumentation for cryogenic magic angle spinning dynamic nuclear polarization using 90 L of liquid nitrogen per day, J. Magn. Reson., 283, 71–78, https://doi.org/10.1016/J.JMR.2017.08.014, 2017.
Albert, B. J., Gao, C., Sesti, E. L., Saliba, E. P., Alaniva, N., Scott, F. J., Sigurdsson, S. Th., and Barnes, A. B.: Dynamic Nuclear Polarization Nuclear Magnetic Resonance in Human Cells Using Fluorescent Polarizing Agents, Biochemistry, 57, 4741–4746, https://doi.org/10.1021/acs.biochem.8b00257, 2018.
Alessandro, E., Sudheer, N., Jawla, K., Shapiro, M. A., Woskov, P. P., Temkin, R. J., Nanni, E. A., Jawla, S. K., Shapiro, M. A., Woskov, P. P., and Temkin, R. J.: Low-loss Transmission Lines for High-power Terahertz Radiation, J. Infrared Millim. Te., 33, 695–714, https://doi.org/10.1007/s10762-012-9870-5, 2012.
Andrew, E. R.: Magic Angle Spinning in Solid State n.m.r. Spectroscopy, Philos. T. R. Soc. S.-A, 299, 505–520, 1981.
Andrew, E. R., Bradbury, A., and Eades, R. G.: Nuclear Magnetic Resonance Spectra from a Crystal rotate at High Speed, Nature, 182, 1659, https://doi.org/10.1038/1821659a0, 1958.
Bajaj, V. S., Hornstein, M. K., Kreischer, K. E., Sirigiri, J. R., Woskov, P. P., Mak-Jurkauskas, M. L., Herzfeld, J., Temkin, R. J., and Griffin, R. G.: 250 GHz CW gyrotron oscillator for dynamic nuclear polarization in biological solid state NMR, J. Magn. Reson., 189, 251–279, https://doi.org/10.1016/J.JMR.2007.09.013, 2007.
Barnes, A. B., Mak-Jurkauskas, M. L., Matsuki, Y., Bajaj, V. S., van der Wel, P. C. A., DeRocher, R., Bryant, J., Sirigiri, J. R., Temkin, R. J., Lugtenburg, J., Herzfeld, J., and Griffin, R. G.: Cryogenic sample exchange NMR probe for magic angle spinning dynamic nuclear polarization, J. Magn. Reson., 198, 261–270, https://doi.org/10.1016/J.JMR.2009.03.003, 2009.
Barnes, A. B., Nanni, E. A., Herzfeld, J., Griffin, R. G., and Temkin, R. J.: A 250 GHz gyrotron with a 3 GHz tuning bandwidth for dynamic nuclear polarization, J. Magn. Reson., 221, 147–153, https://doi.org/10.1016/J.JMR.2012.03.014, 2012.
Berruyer, P., Emsley, L., and Lesage, A.: DNP in materials science: Touching the surface, eMagRes, 7, 93–104, https://doi.org/10.1002/9780470034590.emrstm1554, 2018.
Chen, P., Albert, B. J., Gao, C., Alaniva, N., Price, L. E., Scott, F. J., Saliba, E. P., Sesti, E. L., Judge, P. T., Fisher, E. W., and Barnes, A. B.: Magic angle spinning spheres, Sci. Adv., 4, eaau1540, https://doi.org/10.1126/sciadv.aau1540, 2018.
Chen, P.-H., Gao, C., Price, L. E., Urban, M. A., Popp, T. M. O., and Barnes, A. B.: Two millimeter diameter spherical rotors spinning at 68 kHz for MAS NMR, J. Magn. Reson. Open, 8–9, 100015, https://doi.org/10.1016/J.JMRO.2021.100015, 2021.
Cohen, M., Feynman, R. P., and Lowe, L. J.: PHYSICAL REVIEW LETTERS FREE INDUCTION DECAYS OF ROTATING SOLIDS, Phys. Rev. Lett., 71, 285–287, 1957.
Cook, B. and Lowe, I. J.: A large-inductance, high-frequency, high-Q, series-tuned coil for NMR, J. Magn. Reson., 49, 346–349, https://doi.org/10.1016/0022-2364(82)90200-1, 1982.
Drouet d'Aubigny, C. Y., Walker, C. K., Young, A. G., Gensheimer, P., Golish, D. R., and Groppi, C. E. (Eds.): Terahertz traveling wave tube amplifiers as high-power local oscillators for large heterodyne receiver arrays, in: Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy V, Society of Photo-Optical Instrumentation Engineers, 774115, https://doi.org/10.1117/12.857904, 2010.
Gao, C., Judge, P. T., Sesti, E. L., Price, L. E., Alaniva, N., Saliba, E. P., Albert, B. J., Soper, N. J., Chen, P.-H., and Barnes, A. B.: Four millimeter spherical rotors spinning at 28 kHz with double-saddle coils for cross polarization NMR, J. Magn. Reson., 303, 1–6, https://doi.org/10.1016/j.jmr.2019.03.006, 2019a.
Gao, C., Alaniva, N., Saliba, E. P., Sesti, E. L., Judge, P. T., Scott, F. J., Halbritter, T., Sigurdsson, S. T., and Barnes, A. B.: Frequency-chirped dynamic nuclear polarization with magic angle spinning using a frequency-agile gyrotron, J. Magn. Reson., 308, 106586, https://doi.org/10.1016/J.JMR.2019.106586, 2019b.
Gauto, D., Dakhlaoui, O., Marin-Montesinos, I., Hediger, S., and De Paëpe, G.: Targeted DNP for biomolecular solid-state NMR, Chem. Sci., 12, 6223–6237, https://doi.org/10.1039/d0sc06959k, 2021.
Helson, K. R., Miller, K. H., Rostem, K., Quijada, M., and Wollack, E. J.: Dielectric properties of conductively loaded polyimides in the far infrared, Opt. Lett., 43, 5303, https://doi.org/10.1364/ol.43.005303, 2018.
Herzog, N., Wilhelm, D., Koch, S., Purea, A., Osen, D., Knott, B., and Engelke, F.: Aerodynamic Optimization of a Microturbine Inserted in a Magic-Angle Spinning System, J. Fluid. Eng.-T. ASME, 138, 121106, https://doi.org/10.1115/1.4034188, 2016.
Herzog, N., Weber, A., Purea, A., Osen, D., Knott, B., Engelke, F., and Wilhelm, D.: Ultra Low Temperature Microturbine for Magic Angle Spinning System, J. Fluid. Eng.-T. ASME, 144, 081205, https://doi.org/10.1115/1.4053746, 2022.
Hirsh, D. A., Rossini, A. J., Emsley, L., and Schurko, R. W.: 35Cl dynamic nuclear polarization solid-state NMR of active pharmaceutical ingredients, Phys. Chem. Chem. Phys., 18, 25893–25904, https://doi.org/10.1039/c6cp04353d, 2016.
Hu, K.-N., Yu, H.-H., Swager, T. M., and Griffin, R. G.: Dynamic Nuclear Polarization with Biradicals, J. Am. Chem. Soc., 126, 10844–10845, https://doi.org/10.1021/ja039749a, 2004.
Judge, P. T., Sesti, E. L., Saliba, E. P., Alaniva, N., Halbritter, T., Sigurdsson, S. T., and Barnes, A. B.: Sensitivity analysis of magic angle spinning dynamic nuclear polarization below 6 K, J. Magn. Reson., 305, 51–57, https://doi.org/10.1016/J.JMR.2019.05.011, 2019.
Jutty, M. K., Wsaminathan, V., and Kazimierczuk, M. K. (Eds.): Frequency characteristics of ferrite core inductors, in: Proceedings of the 21st Electrical Electronics Insulation Conference and Electrical Manufacturing and Coil Winding, 369–372, https://doi.org/10.1109/eeic.1993.631185, 1993.
Kelz, J. I., Kelly, J. E., and Martin, R. W.: 3D-printed dissolvable inserts for efficient and customizable fabrication of NMR transceiver coils, J. Magn. Reson., 305, 89–92, https://doi.org/10.1016/J.JMR.2019.06.008, 2019.
Kelz, J. I., Uribe, J. L., and Martin, R. W.: Reimagining magnetic resonance instrumentation using open maker tools and hardware as protocol, J. Magn. Reson. Open, 6–7, 100011, https://doi.org/10.1016/J.JMRO.2021.100011, 2021.
Lamb, J. W.: MISCELLANEOUS DATA ON MATERIALS FOR MILLIMETRE AND SUBMILLIMETRE OPTICS, Int. J. Infrared Milli., 17, 1997–2034, https://doi.org/10.1007/BF02069487, 1996.
Lesage, A., Lelli, M., Gajan, D., Caporini, M. A., Vitzthum, V., Miéville, P., Alauzun, J., Roussey, A., Thieuleux, C., Mehdi, A., Bodenhausen, G., Copéret, C., and Emsley, L.: Surface enhanced NMR spectroscopy by dynamic nuclear polarization, J. Am. Chem. Soc., 132, 15459–15461, https://doi.org/10.1021/ja104771z, 2010.
Lilly Thankamony, A. S., Wittmann, J. J., Kaushik, M., and Corzilius, B.: Dynamic nuclear polarization for sensitivity enhancement in modern solid-state NMR, Prog. Nucl. Mag. Res. Sp., 102–103, 120–195, https://doi.org/10.1016/J.PNMRS.2017.06.002, 2017.
Massarini, A. and Kazimierczuk, M. K.: Self-Capacitance of Inductors, IEEE T. Power Electr., 12, 671–676, https://doi.org/10.1109/63.602562, 1997.
Matsuki, Y., Nakamura, S., Fukui, S., Suematsu, H., and Fujiwara, T.: Closed-cycle cold helium magic-angle spinning for sensitivity-enhanced multi-dimensional solid-state NMR, J. Magn. Reson., 259, 76–81, https://doi.org/10.1016/J.JMR.2015.08.003, 2015.
Mentink-Vigier, F., Paul, S., Lee, D., Feintuch, A., Hediger, S., Vega, S., and De Paëpe, G.: Nuclear Depolarization and Absolute Sensitivity in Magic-Angle Spinning Cross-Effect Dynamic Nuclear Polarization, Phys. Chem. Chem. Phys., 17, 21824–21836, https://doi.org/10.1039/C5CP03457D, 2015.
Moxley-Paquette, V., Lane, D., Soong, R., Ning, P., Bastawrous, M., Wu, B., Pedram, M. Z., Haque Talukder, M. A., Ghafar-Zadeh, E., Zverev, D., Martin, R., Macpherson, B., Vargas, M., Schmidig, D., Graf, S., Frei, T., Al Adwan-Stojilkovic, D., De Castro, P., Busse, F., Bermel, W., Kuehn, T., Kuemmerle, R., Fey, M., Decker, F., Stronks, H., Sullan, R. M. A., Utz, M., and Simpson, A. J.: 5-Axis CNC Micromilling for Rapid, Cheap, and Background-Free NMR Microcoils, Anal. Chem., 92, 15454–15462, 2020.
Nanni, E. A., Barnes, A. B., Matsuki, Y., Woskov, P. P., Corzilius, B., Griffin, R. G., and Temkin, R. J.: Microwave field distribution in a magic angle spinning dynamic nuclear polarization NMR probe, J. Magn. Reson., 210, 16–23, https://doi.org/10.1016/J.JMR.2011.02.001, 2011.
Nanni, E. A., Lewis, S. M., Shapiro, M. A., Griffin, R. G., and Temkin, R. J.: Photonic-band-gap traveling-wave gyrotron amplifier, Phys. Rev. Lett., 111, 235101, https://doi.org/10.1103/PhysRevLett.111.235101, 2013.
Narasimhan, S., Scherpe, S., Lucini Paioni, A., van der Zwan, J., Folkers, G. E., Ovaa, H., and Baldus, M.: DNP-Supported Solid-State NMR Spectroscopy of Proteins Inside Mammalian Cells, Angew. Chem. Int. Edit., 58, 12969–12973, https://doi.org/10.1002/anie.201903246, 2019.
Osborn Popp, T. M., Däpp, A., Gao, C., Chen, P.-H., Price, L. E., Alaniva, N. H., and Barnes, A. B.: Highly stable magic angle spinning spherical rotors, Magn. Reson., 1, 97–103, https://doi.org/10.5194/mr-1-97-2020, 2020.
Overall, S. A., Price, L. E., Albert, B. J., Gao, C., Alaniva, N., Judge, P. T., Sesti, E. L., Wender, P. A., Kyei, G. B., and Barnes, A. B.: In situ detection of endogenous HIV activation by dynamic nuclear polarization nmr and flow cytometry, Int. J. Mol. Sci., 21, 4649, https://doi.org/10.3390/ijms21134649, 2020.
Popp, T. M. O., Alaniva, N. H., Gunzenhauser, R., Chen, P.-H., Gao, C., Price, L. E., and Barnes, A. B.: Pneumatic angle adjustment for magic angle spinning spherical rotors, J. Magn. Reson. Open, 6–7, 100014, https://doi.org/10.1016/J.JMRO.2021.100014, 2021.
Purea, A., Reiter, C., Dimitriadis, A. I., de Rijk, E., Aussenac, F., Sergeyev, I., Rosay, M., and Engelke, F.: Improved waveguide coupling for 1.3 mm MAS DNP probes at 263 GHz, J. Magn. Reson., 302, 43–49, https://doi.org/10.1016/J.JMR.2019.03.009, 2019.
Roeder, S. B. W., Fukushima, E., and Gibson, A. A. V.: NMR coils with segments in parallel to achieve higher frequencies or larger sample volumes, J. Magn. Reson., 59, 307–317, https://doi.org/10.1016/0022-2364(84)90175-6, 1984.
Rosay, M., Tometich, L., Pawsey, S., Bader, R., Schauwecker, R., Blank, M., Borchard, P. M., Cauffman, S. R., Felch, K. L., Weber, R. T., Temkin, R. J., Griffin, R. G., and Maas, W. E.: Solid-state dynamic nuclear polarization at 263 GHz: spectrometer design and experimental results, Phys. Chem. Chem. Phys., 12, 5850–5860, https://doi.org/10.1039/C003685B, 2010.
Rossini, A. J., Zagdoun, A., Lelli, M., Lesage, A., Copéret, C., and Emsley, L.: Dynamic nuclear polarization surface enhanced NMR spectroscopy, Accounts Chem. Res., 46, 1942–1951, https://doi.org/10.1021/ar300322x, 2013.
Sahin, S., Nahar, N. K., and Sertel, K.: Dielectric Properties of Low-Loss Polymers for mmW and THz Applications, J. Infrared Millim. Te., 40, 557–573, https://doi.org/10.1007/s10762-019-00584-2, 2019.
Scott, F. J., Alaniva, N., Golota, N. C., Sesti, E. L., Saliba, E. P., Price, L. E., Albert, B. J., Chen, P., O'Connor, R. D., and Barnes, A. B.: A versatile custom cryostat for dynamic nuclear polarization supports multiple cryogenic magic angle spinning transmission line probes, J. Magn. Reson., 297, 23–32, https://doi.org/10.1016/j.jmr.2018.10.002, 2018a.
Scott, F. J., Saliba, E. P., Albert, B. J., Alaniva, N., Sesti, E. L., Gao, C., Golota, N. C., Choi, E. J., Jagtap, A. P., Wittmann, J. J., Eckardt, M., Harneit, W., Corzilius, B., Sigurdsson, S. Th., and Barnes, A. B.: Frequency-agile gyrotron for electron decoupling and pulsed dynamic nuclear polarization, J. Magn. Reson., 289, 45–54, https://doi.org/10.1016/J.JMR.2018.02.010, 2018b.
Sesti, E. L., Alaniva, N., Rand, P. W., Choi, E. J., Albert, B. J., Saliba, E. P., Scott, F. J., and Barnes, A. B.: Magic angle spinning NMR below 6 K with a computational fluid dynamics analysis of fluid flow and temperature gradients, J. Magn. Reson., 286, 1–9, https://doi.org/10.1016/J.JMR.2017.11.002, 2018a.
Sesti, E. L., Alaniva, N., Rand, P. W., Choi, E. J., Albert, B. J., Saliba, E. P., Scott, F. J., and Barnes, A. B.: Magic angle spinning NMR below 6 K with a computational fluid dynamics analysis of fluid flow and temperature gradients, J. Magn. Reson., 286, 1–9, https://doi.org/10.1016/J.JMR.2017.11.002, 2018b.
Smith, A. N. and Long, J. R.: Dynamic Nuclear Polarization as an Enabling Technology for Solid State Nuclear Magnetic Resonance Spectroscopy, Anal. Chem., 88, 122–132, https://doi.org/10.1021/acs.analchem.5b04376, 2015.
Tanaka, S., Nakajima, Y., Ogawa, A., Kuragano, T., Kon, Y., Tamura, M., Satoa, K., and Copéret, C.: DNP NMR spectroscopy enabled directcharacterization of polystyrene-supported catalystspecies for synthesis of glycidyl esters bytransesterification, Chem. Sci., 13, 4490–4497, https://doi.org/10.1039/d2sc00274d, 2022.
Thurber, K. R. and Tycko, R.: Biomolecular solid state NMR with magic-angle spinning at 25 K, J. Magn. Reson., 195, 179–186, https://doi.org/10.1016/J.JMR.2008.09.015, 2008.
Thurber, K. R. and Tycko, R.: Measurement of sample temperatures under magic-angle spinning from the chemical shift and spin-lattice relaxation rate of 79Br in KBr powder, J. Magn. Reson., 196, 84–87, https://doi.org/10.1016/J.JMR.2008.09.019, 2009.
Thurber, K. R., Potapov, A., Yau, W. M., and Tycko, R.: Solid state nuclear magnetic resonance with magic-angle spinning and dynamic nuclear polarization below 25 K, J. Magn. Reson., 226, 100–106, https://doi.org/10.1016/J.JMR.2012.11.009, 2013.
Tycko, R.: NMR at Low and Ultralow Temperatures, Accounts Chem. Res., 46, 1923–1932, https://doi.org/10.1021/ar300358z, 2012.
Venkatesh, A., Lund, A., Rochlitz, L., Jabbour, R., Gordon, C. P., Menzildjian, G., Viger-Gravel, J., Berruyer, P., Gajan, D., Copéret, C. C., Lesage, A., and Rossini, A. J.: The Structure of Molecular and Surface Platinum Sites Determined by DNP-SENS and Fast MAS 195 Pt Solid-State NMR Spectroscopy, J. Am. Chem. Soc., 142, 18936–18945, https://doi.org/10.1021/jacs.0c09101, 2020.
Short summary
This paper describes the design and implementation of new technology for nuclear magnetic resonance, which is a technique used to understand the molecular structure and dynamics of many systems. The spherical sample container and its apparatus introduced in this paper are used to perform initial proof-of-principle experiments at cryogenic temperatures. Further development of this technology will facilitate more flexibility in magnetic resonance experiments.
This paper describes the design and implementation of new technology for nuclear magnetic...