Articles | Volume 6, issue 2
https://doi.org/10.5194/mr-6-243-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/mr-6-243-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Quantifying the carbon footprint of conference travel: the case of NMR meetings
Lucky N. Kapoor
Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
Natália Ružičková
Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
Predrag Živadinović
Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
Valentin Leitner
Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
Maria Anna Sisak
Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
Cecelia Mweka
Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
Jeroen Dobbelaere
Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
Georgios Katsaros
Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
Related authors
No articles found.
Kathrin Aebischer, Lea Marie Becker, Paul Schanda, and Matthias Ernst
Magn. Reson., 5, 69–86, https://doi.org/10.5194/mr-5-69-2024, https://doi.org/10.5194/mr-5-69-2024, 2024
Short summary
Short summary
To characterize the amplitude of dynamic processes in molecules, anisotropic parameters can be measured using solid-state NMR. However, the timescales of motion that lead to such a scaling of the anisotropic interactions are not clear. Using numerical simulations in small spin systems, we could show that mostly the magnitude of the anisotropic interaction determines the range of timescales detected by the scaled anisotropic interaction, and experimental parameters play a very minor role.
Federico Napoli, Jia-Ying Guan, Charles-Adrien Arnaud, Pavel Macek, Hugo Fraga, Cécile Breyton, and Paul Schanda
Magn. Reson., 5, 33–49, https://doi.org/10.5194/mr-5-33-2024, https://doi.org/10.5194/mr-5-33-2024, 2024
Short summary
Short summary
Protons (1H) are useful reporters of protein structure and dynamics in solid-state NMR. However, 1H abundance is detrimental to the resolution of NMR spectra. Substituting 1H by deuterons has been an efficient strategy to improve spectral quality, but when the crucial backbone amide sites are not protonated, much information is loss. We propose a method to completely protonate the amide sites, while maintaining high-resolution information, which partially also extends to backbone alpha-1H.
Alicia Vallet, Adrien Favier, Bernhard Brutscher, and Paul Schanda
Magn. Reson., 1, 331–345, https://doi.org/10.5194/mr-1-331-2020, https://doi.org/10.5194/mr-1-331-2020, 2020
Short summary
Short summary
We introduce ssNMRlib, a library of pulse sequences and jython scripts for user-friendly setup and acquisition of solids-state NMR experiments. ssNMRlib facilitates all steps of data acquisition, including calibration of various pulse-sequence parameters and semi-automatic setup of even complex high-dimensional experiments, using an intuitive graphical user interface, launched directly within Bruker's Topspin acquisition program.
Cited articles
Baer, P., Harte, J., Haya, B., Herzog, A. V., Holdren, J., Hultman, N. E., Kammen, D. M., Norgaard, R. B., and Raymond, L.: Equity and greenhouse gas responsibility, Science, 289, 2287–2287, https://doi.org/10.1126/science.289.5488.2287, 2000. a
Bergero, C., Gosnell, G., Gielen, D., Kang, S., Bazilian, M., and Davis, S. J.: Pathways to net-zero emissions from aviation, Nat. Sustain., 6, 404–414, https://doi.org/10.1038/s41893-022-01046-9, 2023. a
Bull, J. W., Taylor, I., Biggs, E., Grub, H. M., Yearley, T., Waters, H., and Milner-Gulland, E.: Analysis: the biodiversity footprint of the University of Oxford, Nature, 604, 420–424, https://doi.org/10.1038/d41586-022-01034-1, 2022. a, b, c
Cohen, S., Hanna, P., Higham, J., Hopkins, D., and Orchiston, C.: Gender discourses in academic mobility, Gender, Work & Organization, 27, 149–165, https://doi.org/10.1111/gwao.12413, 2020. a
Crippa, M., Guizzardi, D., Pagani, F., Banja, M., Muntean, M., Schaaf, E., Monforti-Ferrario, F., Becker, W., Quadrelli, R., Risquez Martin, A., Taghavi-Moharamli, P., Köykkä, J., Grassi, G., Rossi, S., Melo, J., Oom, D., Branco, A., San-Miguel, J., Manca, G., Pisoni, E., Vignati, E., and Pekar, F.: GHG emissions of all world countries, Publications Office of the European Union, Luxembourg, https://doi.org/10.2760/4002897, 2024. a
Davidson, M. D.: How fairness principles in the climate debate relate to theories of distributive justice, Sustainability, 13, 7302, https://doi.org/10.3390/su13137302, 2021. a
Debbage, K. G. and Debbage, N.: Aviation carbon emissions, route choice and tourist destinations: are non-stop routes a remedy?, Ann. Tour. Res., 79, 102765, https://doi.org/10.1016/j.annals.2019.102765, 2019. a, b
De Paepe, M., Jeanneau, L., Mariette, J., Aumont, O., and Estevez-Torres, A.: Purchases dominate the carbon footprint of research laboratories, PLOS Sustain. Transform., 3, e0000116, https://doi.org/10.1371/journal.pstr.0000116, 2024. a, b, c
Department of Business Energy & Industrial Strategy: 2017 government ghg conversion factors for company reporting: methodology paper for emission factors, https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/650244/2017_methodology_paper_FINAL_MASTER.pdf (last access: 29 April 2025), 2017. a
Educators in VR: Green Conference: Reducing carbon emissions with a virtual conference, https://educatorsinvr.com/2020/03/09/green-conference-reducing-carbon-emissions-with-a-virtual-conference/ (last access: 17 June 2025), 2020. a
Estevez-Torres, A., Gauffre, F., Gouget, G., Grazon, C., and Loubet, P.: Carbon footprint and mitigation strategies of three chemistry laboratories, Green Chem., 26, 2613–2622, https://doi.org/10.1039/D3GC03668E, 2024. a
European Environment Agency: Greenhouse gas emission intensity of electricity generation in europe, https://www.eea.europa.eu/en/analysis/indicators/greenhouse-gas-emission-intensity-of-1 (last access: 15 May 2025), 2023. a
Gössling, S. and Humpe, A.: The global scale, distribution and growth of aviation: implications for climate change, Glob. Environ. Change, 65, 102194, https://doi.org/10.1016/j.gloenvcha.2020.102194, 2020. a
Greer, F., Rakas, J., and Horvath, A.: Airports and environmental sustainability: a comprehensive review, Environ. Res. Lett., 15, 103007, https://doi.org/10.1088/1748-9326/abb42a, 2020. a
Haage, V.: A survey of travel behaviour among scientists in Germany and the potential for change, eLife, 9, e56765, https://doi.org/10.7554/eLife.56765, 2020. a
Hauss, K.: What are the social and scientific benefits of participating at academic conferences? insights from a survey among doctoral students and postdocs in Germany, Res. Eval., 30, 1–12, https://doi.org/10.1093/reseval/rvaa018, 2020. a
Higham, J. E. S., Hopkins, D., and Orchiston, C.: The work-sociology of academic aeromobility at remote institutions, Mobilities, 14, 612–631, https://doi.org/10.1080/17450101.2019.1589727, 2019. a
Hopkins, D., Higham, J., Orchiston, C., and Duncan, T.: Practising academic mobilities: bodies, networks and institutional rhythms, Geogr. J., 185, 472–484, https://doi.org/10.1111/geoj.12301, 2019. a
Intergovernmental Panel on Climate Change (IPCC), Core Writing Team, Lee, H., and Romero, J. (Eds.): Climate change 2023: synthesis report. Contribution of working groups I, II and III to the Sixth assessment report of the Intergovernmental Panel on Climate Change, Tech. rep., Intergovernmental Panel on Climate Change (IPCC), Geneva, Switzerland, https://www.ipcc.ch/report/ar6/syr/ (last access: 15 May 2025), 2023. a
International Union of Railways (UIC): Ecopassenger: environmental impact calculator, https://www.ecopassenger.org (last access: 10 March 2025), 2025. a
Jäckle, S.: Reducing the carbon footprint of academic conferences by online participation: The case of the 2020 virtual European consortium for political research general conference, PS Political Sci. Politics, 54, 456–461, 2021. a
Jäckle, S.: The carbon footprint of travelling to international academic conferences and options to minimise it, in: Academic flying and the means of communication, edited by: Bjørkdahl, K. and Franco Duharte, A. S., 19–52, Palgrave Macmillan, Singapore, https://doi.org/10.1007/978-981-16-4911-0_2, 2022. a
Kikstra, J. S., Nicholls, Z. R. J., Smith, C. J., Lewis, J., Lamboll, R. D., Byers, E., Sandstad, M., Meinshausen, M., Gidden, M. J., Rogelj, J., Kriegler, E., Peters, G. P., Fuglestvedt, J. S., Skeie, R. B., Samset, B. H., Wienpahl, L., van Vuuren, D. P., van der Wijst, K.-I., Al Khourdajie, A., Forster, P. M., Reisinger, A., Schaeffer, R., and Riahi, K.: The IPCC Sixth Assessment Report WGIII climate assessment of mitigation pathways: from emissions to global temperatures, Geosci. Model Dev., 15, 9075–9109, https://doi.org/10.5194/gmd-15-9075-2022, 2022. a
Landgraf, M. and Horvath, A.: Embodied greenhouse gas assessment of railway infrastructure: the case of Austria, Environ. Res.: Infrastruct. Sustain., 1, 025008, https://doi.org/10.1088/2634-4505/ac1242, 2021. a, b, c
Lee, D. S., Fahey, D. W., Skowron, A., Allen, M. R., Burkhardt, U., Chen, Q., Doherty, S. J., Freeman, S., Forster, P. M., Fuglestvedt, J., Gettelman, A., De León, R. R., Lim, L. L., Lund, M. T., Millar, R. J., Owen, B., Penner, J. E., Pitari, G., Prather, M. J., Sausen, R., and Wilcox, L. J.: The contribution of global aviation to anthropogenic climate forcing for 2000 to 2018, Atmos. Environ., 244, 117834, https://doi.org/10.1016/j.atmosenv.2020.117834, 2021. a, b
Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P. R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., Connors, S., Matthews, J. B. R., Chen, Y., Zhou, X., Gomis, M. I., Lonnoy, E., Maycock, T., Tignor, M., and Waterfield, T. (Eds.): Global warming of 1.5 °C: An IPCC Special Report on the Impacts of Global Warming of 1.5 °C Above Pre-industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty, IPCC, special Report No. 15, https://www.ipcc.ch/sr15/ (last access: 15 May 2025), 2018. a
Matthews, H. D. and Wynes, S.: Current global efforts are insufficient to limit warming to 1.5 °C, Science, 376, 1404–1409, 2022. a
Orsi, F.: Cutting the carbon emission of international conferences: is decentralization an option?, J. Transp. Geogr., 24, 462–466, https://doi.org/10.1016/j.jtrangeo.2012.04.010, 2012. a, b, c, d
Österreichische Bundesbahnen (ÖBB): Zahlen Daten Fakten 2022/23, https://presse.oebb.at/dam/jcr:58b03a4f-07d2-46e0-ae40-4900fb5062b4/OEBB_Zahlen_2023-1_web.pdf (last access: 5 May 2025), 2023. a
Ports of Stockholm: Sustainability report 2024, Tech. rep., Ports of Stockholm, https://www.stockholmshamnar.se/siteassets/trycksaker/ports-of-stockholm-2024.pdf (last access: 18 March 2025), 2024. a
Ricaurte, E. and Jagarajan, R.: Cornell hotel sustainability benchmarking index 2024, Technical report, Cornell University Center for Hospitality Research, 2024. a
Ritchie, H., Rosado, P., and Roser, M.: CO2 emissions per capita, https://ourworldindata.org/grapher/co-emissions-per-capita (last access: 15 May 2025), 2023. a
Sahinkaya, S. A. and Babuna, F. G.: Baseline values of greenhouse gas emissions for an airport, Int. J. Glob. Warm., 23, 129–137, https://doi.org/10.1504/IJGW.2021.112892, 2021. a
Scarborough, P., Appleby, P. N., Mizdrak, A., Briggs, A. D. M., Travis, R. C., Bradbury, K. E., and Key, T. J.: Dietary greenhouse gas emissions of meat-eaters, fish-eaters, vegetarians and vegans in the UK, Clim. Change, 125, 179–192, https://doi.org/10.1007/s10584-014-1169-1, 2014. a
Schanda, P.: Data of: “Quantifying the carbon footprint of conference travel: the case of NMR meetings”, Institute of Science and Technology Austria [data set], https://doi.org/10.15479/AT-ISTA-20242, 2025. a
Tuchschmid, M., Knörr, W., Schacht, A., Mottschall, M., and Schmied, M.: Carbon footprint and environmental impact of railway infrastructure, Tech. rep., International Union of Railways (UIC), https://uic.org/IMG/pdf/uic_rail_infrastructure_111104.pdf (last access: 15 May 2025), 2011. a
Wynes, S., Donner, S. D., Tannason, S., and Nabors, N.: Academic air travel has a limited influence on professional success, Journal of Cleaner Production, 226, 959–967, https://doi.org/10.1016/j.jclepro.2019.04.109, 2019. a
Short summary
By reviewing attendee lists of 10 MR (magnetic resonance) meetings over the last year, we estimate the climate footprint of conferences and explore possibilities to reduce it. This paper will facilitate discussions about possible actions the community may take.
By reviewing attendee lists of 10 MR (magnetic resonance) meetings over the last year, we...