Articles | Volume 1, issue 2
https://doi.org/10.5194/mr-1-155-2020
https://doi.org/10.5194/mr-1-155-2020
Research article
 | 
10 Jul 2020
Research article |  | 10 Jul 2020

Multiple solvent signal presaturation and decoupling artifact removal in 13C{1H} nuclear magnetic resonance

Marine Canton, Richard Roe, Stéphane Poigny, Jean-Hugues Renault, and Jean-Marc Nuzillard

Related authors

Virtual decoupling to break the simplification versus resolution trade-off in nuclear magnetic resonance of complex metabolic mixtures
Cyril Charlier, Neil Cox, Sophie Martine Prud'homme, Alain Geffard, Jean-Marc Nuzillard, Burkhard Luy, and Guy Lippens
Magn. Reson., 2, 619–627, https://doi.org/10.5194/mr-2-619-2021,https://doi.org/10.5194/mr-2-619-2021, 2021
Short summary

Related subject area

Field: Liquid-state NMR | Topic: Pulse-sequence development
PRESERVE: adding variable flip-angle excitation to TROSY NMR spectroscopy
Bernhard Brutscher
Magn. Reson. Discuss., https://doi.org/10.5194/mr-2024-9,https://doi.org/10.5194/mr-2024-9, 2024
Revised manuscript accepted for MR
Short summary
A modular library for fast prototyping of solution-state nuclear magnetic resonance experiments
Michał Górka and Wiktor Koźmiński
Magn. Reson., 5, 51–59, https://doi.org/10.5194/mr-5-51-2024,https://doi.org/10.5194/mr-5-51-2024, 2024
Short summary
Various facets of intermolecular transfer of phase coherence by nuclear dipolar fields
Philippe Pelupessy
Magn. Reson., 4, 271–283, https://doi.org/10.5194/mr-4-271-2023,https://doi.org/10.5194/mr-4-271-2023, 2023
Short summary
SORDOR pulses: expansion of the Böhlen–Bodenhausen scheme for low-power broadband magnetic resonance
Jens D. Haller, David L. Goodwin, and Burkhard Luy
Magn. Reson., 3, 53–63, https://doi.org/10.5194/mr-3-53-2022,https://doi.org/10.5194/mr-3-53-2022, 2022
Short summary
Mechanisms of coherent re-arrangement for long-lived spin order
Florin Teleanu and Paul R. Vasos
Magn. Reson., 2, 741–749, https://doi.org/10.5194/mr-2-741-2021,https://doi.org/10.5194/mr-2-741-2021, 2021
Short summary

Cited articles

Bakiri, A., Hubert, J., Reynaud, R., Lanthony, S., Harakat, D., Renault, J.-H., and Nuzillard, J.-M.: Computer-Aided 13C NMR Chemical Profiling of Crude Natural Extracts without Fractionation, J. Nat. Prod., 80, 1387–1396, https://doi.org/10.1021/acs.jnatprod.6b01063, 2017. a
Blechta, V. and Schraml, J.: NMR artifacts caused by decoupling of multiple-spin coherences: improved SLAP experiment, Magn. Reson. Chem., 53, 460–466, https://doi.org/10.1002/mrc.4221, 2015. a
Bloch, F.: Nuclear Induction, Phys. Rev., 70, 460–474, https://doi.org/10.1103/PhysRev.70.460, 1946. a
Canet, D., Roumestand, C., and Boubel, J.-C.: A general computer program for calculating selectivity profiles in NMR spectroscopy, Proceedings – Indian Academy of Sciences Chemical Sciences, 106, 1449–1462, 1994. a, b
Canton, M., Roe, R., Poigny, S., Renault, J.-H., and Nuzillard, J.-M.: Multiple solvent signal presaturation and decoupling artifact removal in 13C{1H} NMR (Version 0.0.1), Zenodo, https://doi.org/10.5281/zenodo.3635970, 2020. a
Download
Short summary
The cosmetic industry integrates in its products active ingredients of vegetal origin. For this purpose, plant extracts are prepared and their content must be characterized to check their conformity with safety regulations. Many plant extracts contain a high proportion of high-boiling-point solvents that may conflict with analytical protocols. Extract analysis by fractionation and subsequent 13C NMR analysis required a new solvent signal suppression technique to provide better analytical data.