Articles | Volume 1, issue 2
https://doi.org/10.5194/mr-1-225-2020
https://doi.org/10.5194/mr-1-225-2020
Research article
 | 
12 Oct 2020
Research article |  | 12 Oct 2020

Topologically optimized magnetic lens for magnetic resonance applications

Sagar Wadhwa, Mazin Jouda, Yongbo Deng, Omar Nassar, Dario Mager, and Jan G. Korvink

Related authors

A perspective for magic angle spinning above 250 kHz – OptiMAS
Jan Korvink
Magn. Reson. Discuss., https://doi.org/10.5194/mr-2022-24,https://doi.org/10.5194/mr-2022-24, 2023
Publication in MR not foreseen
Short summary
Selective excitation enables encoding and measurement of multiple diffusion parameters in a single experiment
Neil MacKinnon, Mehrdad Alinaghian, Pedro Silva, Thomas Gloge, Burkhard Luy, Mazin Jouda, and Jan G. Korvink
Magn. Reson., 2, 835–842, https://doi.org/10.5194/mr-2-835-2021,https://doi.org/10.5194/mr-2-835-2021, 2021
Short summary
Magnetostatic reciprocity for MR magnet design
Pedro Freire Silva, Mazin Jouda, and Jan G. Korvink
Magn. Reson., 2, 607–617, https://doi.org/10.5194/mr-2-607-2021,https://doi.org/10.5194/mr-2-607-2021, 2021
Short summary
ArduiTaM: accurate and inexpensive NMR auto tune and match system
Mazin Jouda, Saraí M. Torres Delgado, Mehrdad Alinaghian Jouzdani, Dario Mager, and Jan G. Korvink
Magn. Reson., 1, 105–113, https://doi.org/10.5194/mr-1-105-2020,https://doi.org/10.5194/mr-1-105-2020, 2020
Short summary

Cited articles

Aage, N., Mortensen, N. A., and Sigmund, O.: Topology optimization of metallic devices for microwave applications, Int. J. Numer. Meth. Eng., 83, 228-248, https://doi.org/10.1002/nme.2837, 2010. a
Andkjær, J., Nishiwaki, S., Nomura, T., and Sigmund, O.: Topology optimization of grating couplers for the efficient excitation of surface plasmons, J. Opt. Soc. Am. B, 27, 1828–1832, https://doi.org/10.1364/JOSAB.27.001828, 2010. a, b
Bendsøe, M. P. and Kikuchi, N.: Generating optimal topologies in structural design using a homogenization method, Comput. Method. Appl. M., 71, 197–224, https://doi.org/10.1016/0045-7825(88)90086-2, 1988. a
Demkowicz, L. and Pal, M.: An infinite element for Maxwell's equations, Comput. Method. Appl. M., 164, 77–94, https://doi.org/10.1016/S0045-7825(98)00047-4, 1998. a
Deng, Y., Liu, Z., Song, C., Hao, P., Wu, Y., Liu, Y., and Korvink, J. G.: Topology optimization of metal nanostructures for localized surface plasmon resonances, Struct. Multidiscip. O., 53, 967–972, https://doi.org/10.1007/s00158-015-1388-8, 2016. a
Download
Short summary
Magnetic resonance detectors require a high degree of precision to be useful. Their design must e.g. carefully weigh field strength and field homogeneity to find the best compromise. Here we show that inverse computational design is a viable method to find such a trade-off. Apart from the electromagnetic field solution, the simulation program also determines the boundary between insulating and conducting material and moves the material boundaries around until the compromise is best satisfied.