Articles | Volume 1, issue 2
https://doi.org/10.5194/mr-1-225-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/mr-1-225-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Topologically optimized magnetic lens for magnetic resonance applications
Sagar Wadhwa
Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
Mazin Jouda
Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
Yongbo Deng
State Key Laboratory of Applied Optics (SKLAO), Changchun Institute of Optics, Fine Mechanics and Physics (CIOMP), Chinese Academy of Sciences, Dongnanhu Road 3888, Changchun 130033, China
Omar Nassar
Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
Dario Mager
Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
Related authors
No articles found.
Sagar Wadhwa, Nan Wang, Klaus-Martin Reichert, Manuel Butzer, Omar Nassar, Mazin Jouda, Jan G. Korvink, Ulrich Gengenbach, Dario Mager, and Martin Ungerer
Magn. Reson. Discuss., https://doi.org/10.5194/mr-2024-22, https://doi.org/10.5194/mr-2024-22, 2025
Preprint under review for MR
Short summary
Short summary
We present a technology that allows the direct writing of conductive tracks on cylindrical substrates as receiver coils for magnetic resonance experiments. The structures are written with high precision, which has two benefits. First the real structures behave pretty similar to the simulated designs, second it allows the writing of coils others then the fairly straight forward solenoidal coils, thereby making other designs available for MR micro-coils.
Jan Korvink
Magn. Reson. Discuss., https://doi.org/10.5194/mr-2022-24, https://doi.org/10.5194/mr-2022-24, 2023
Publication in MR not foreseen
Short summary
Short summary
The magic angle spinning (MAS) technique of solid state NMR requires samples to be rapidly rotated within a magnetic field. The rotation rate speed record is 150 kHz, or 9 million RPM, and hence MAS turbines hold the world rotation speed record for extended objects. The containers holding the samples are made of the strongest materials known, to be able to withstand the excessive centrifugal forces. To overcome the speed limit, this paper delineates a way to do so using an optical tweezers setup
Neil MacKinnon, Mehrdad Alinaghian, Pedro Silva, Thomas Gloge, Burkhard Luy, Mazin Jouda, and Jan G. Korvink
Magn. Reson., 2, 835–842, https://doi.org/10.5194/mr-2-835-2021, https://doi.org/10.5194/mr-2-835-2021, 2021
Short summary
Short summary
To increase experimental efficiency, information can be encoded in parallel by taking advantage of highly resolved NMR spectra. Here we demonstrate parallel encoding of optimal diffusion parameters by selectively using a resonance for each molecule in the sample. This yields a factor of n decrease in experimental time since n experiments can be encoded into a single measurement. This principle can be extended to additional experimental parameters as a means to further improve measurement time.
Pedro Freire Silva, Mazin Jouda, and Jan G. Korvink
Magn. Reson., 2, 607–617, https://doi.org/10.5194/mr-2-607-2021, https://doi.org/10.5194/mr-2-607-2021, 2021
Short summary
Short summary
We use the theory of magnetostatic reciprocity to compute manufacturable solutions of complex magnet geometries, establishing a quantitative metric for the placement and subsequent orientation of discrete pieces of permanent magnetic material. This leads to self-assembled micro-magnets, adjustable magnetic arrays, and an unbounded magnetic field intensity in a small volume, despite realistic modelling of complex material behaviours.
Mazin Jouda, Saraí M. Torres Delgado, Mehrdad Alinaghian Jouzdani, Dario Mager, and Jan G. Korvink
Magn. Reson., 1, 105–113, https://doi.org/10.5194/mr-1-105-2020, https://doi.org/10.5194/mr-1-105-2020, 2020
Short summary
Short summary
We have assembled a few off-the-shelf electronic chips and a popular Arduino Uno microcomputer board in an automatic system that performs so-called tuning and matching of an arbitrary NMR probe head at very low cost. This removes the tedium of doing the job by hand, the bane of many NMR analysts. It also brings accuracy and repeatability into the process, which is so necessary for high throughput analysis or when working with low-field permanent magnesystems with excessive magnetic field drift.
Cited articles
Aage, N., Mortensen, N. A., and Sigmund, O.: Topology optimization of metallic devices for microwave applications, Int. J. Numer. Meth. Eng., 83, 228-248, https://doi.org/10.1002/nme.2837, 2010. a
Andkjær, J., Nishiwaki, S., Nomura, T., and Sigmund, O.: Topology optimization of grating couplers for the efficient excitation of surface plasmons, J. Opt. Soc. Am. B, 27, 1828–1832, https://doi.org/10.1364/JOSAB.27.001828, 2010. a, b
Bendsøe, M. P. and Kikuchi, N.: Generating optimal topologies in structural design using a homogenization method, Comput. Method. Appl. M., 71, 197–224, https://doi.org/10.1016/0045-7825(88)90086-2, 1988. a
Demkowicz, L. and Pal, M.: An infinite element for Maxwell's equations, Comput. Method. Appl. M., 164, 77–94, https://doi.org/10.1016/S0045-7825(98)00047-4, 1998. a
Deng, Y., Liu, Z., Song, C., Hao, P., Wu, Y., Liu, Y., and Korvink, J. G.: Topology optimization of metal nanostructures for localized surface plasmon resonances, Struct. Multidiscip. O., 53, 967–972, https://doi.org/10.1007/s00158-015-1388-8, 2016. a
Deng, Y. and Korvink, J. G.: Self-consistent adjoint analysis for topology optimization of electromagnetic waves, J. Comput. Phys., 361, 353–376, https://doi.org/10.1016/j.jcp.2018.01.045, 2018. a
Diaz, A. R. and Sigmund, O.: A topology optimization method for design of negative permeability metamaterials, Struct. Multidiscip. O., 41, 163–177, https://doi.org/10.1007/s00158-009-0416-y, 2010. a
Dühring, M. B., Jensen, J. S., and Sigmund, O.: Acoustic design by topology optimization, J. Sound Vib., 317, 557–575, https://doi.org/10.1016/j.jsv.2008.03.042, 2008. a
Gersborg-Hansen, A., Bendsøe, M. P., and Sigmund, O.: Topology optimization of heat conduction problems using the finite volume method, Struct. Multidiscip. O., 31, 251–259, https://doi.org/10.1007/s00158-005-0584-3, 2006. a
Guest, J. K., Prévost, J. H., and Belytschko, T.: Achieving minimum length scale in topology optimization using nodal design variables and projection functions, Int. J. Numer. Meth. Eng., 61, 238–254, https://doi.org/10.1002/nme.1064, 2004. a
Hoult, D. I. and Richards, R. E.: The Signal to Noise Ratio of The Nuclear Magnetic Resonance Experiment, J. Magn. Reson., 24, 71–85, https://doi.org/10.1016/j.jmr.2011.09.018, 1976.
a
Jones, D. and Tamiz, M.: Practical Goal Programming, in: International Series In Operations Research and Management Science, vol. 141, edited by: Hillier, F. S., Springer, New York, Dordrecht, Heidelberg, London, https://doi.org/10.1007/978-1-4419-5771-9, 2010. a
Jouda, M., Kamberger, R., Leupold, J., Spengler, N., Hennig, J., Gruschke, O., and Korvink, J. G.: A comparison of Lenz lenses and LC resonators for NMR signal enhancement, Concept. Magn. Reson. B, 47, e21357, https://doi.org/10.1002/cmr.b.21357, 2017. a, b, c
Korvink, J. G., MacKinnon, N., Badilita, V., and Jouda, M.: Small is beautiful, J. Magn. Reson., 306, 112–117, https://doi.org/10.1016/j.jmr.2019.07.012, 2019. a
Spengler, N., While, P. T., Meissner, M. V., Wallrabe, U., and Korvink, J. G.: Magnetic Lenz lenses improve the limit-of-detection in nuclear magnetic resonance, PLOS ONE, 12, e0182779, https://doi.org/10.1371/journal.pone.0182779, 2017. a, b
Lazarov, B. S. and Sigmund, O.: Filters in topology optimization based on Helmholtz-type differential equations, Int. J. Numer. Meth. Eng., 86, 765–781, https://doi.org/10.1002/nme.3072, 2011. a
Lee, J. and Yoo, J.: Topology optimization of the permanent magnet type MRI considering the magnetic field homogeneity, J. Magn. Magn. Mater., 322, 1651–1654, https://doi.org/10.1016/j.jmmm.2009.04.078, 2010. a
Piggott, A., Lu, J., Lagoudakis, K., Petykiewicz, J., Babinec, T. M., and Vuckovic, J.: Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer, Nat. Photonics, 9, 374–377, https://doi.org/10.1038/nphoton.2015.69, 2015. a
Sigmund, O. and Hougaard, K.: Geometric Properties of Optimal Photonic Crystals, Phys. Rev. Lett., 100, 153904, https://doi.org/10.1103/PhysRevLett.100.153904, 2008. a, b
Svanberg, K.: The method of moving asymptotes – a new method for structural optimization, Int. J. Numer. Meth. Eng., 24, 359–373, https://doi.org/10.1002/nme.1620240207, 1987. a
Wadhwa, S., Jouda, M., Deng, Y., Nassar, O., Mager, D., and Korvink, J. G.: Data set for Topologically optimized magnetic lens for magnetic resonance applications, Repository KITopen, Karlsruhe Institute of Technology, https://doi.org/10.5445/IR/1000124281, 2020. a
Wang, F., Lazarov, B. S., and Sigmund, O.: On projection methods, convergence and robust formulations in topology optimization, Struct. Multidiscip. O., 43, 767–784, https://doi.org/10.1007/s00158-010-0602-y, 2011. a
Zhou, S. and Li, Q.: Topology optimization, Level set method, Variational method, Navier–Stokes flow, Maximum permeability, Minimum energy dissipation, J. Comput. Phys., 227, 10178–10195, https://doi.org/10.1016/j.jcp.2008.08.022, 2008. a
Zhou, S., Li, W., and Li, Q.: Level-set based topology optimization for electromagnetic dipole antenna design, J. Comput. Phys., 229, 6915–6930, https://doi.org/10.1016/j.jcp.2010.05.030, 2010. a, b
Short summary
Magnetic resonance detectors require a high degree of precision to be useful. Their design must e.g. carefully weigh field strength and field homogeneity to find the best compromise. Here we show that inverse computational design is a viable method to find such a
trade-off. Apart from the electromagnetic field solution, the simulation program also determines the boundary between insulating and conducting material and moves the material boundaries around until the compromise is best satisfied.
Magnetic resonance detectors require a high degree of precision to be useful. Their design must...