Research article 17 Dec 2020
Research article | 17 Dec 2020
Hyperfine spectroscopy in a quantum-limited spectrometer
Sebastian Probst et al.
Cited articles
Abe, E., Tyryshkin, A. M., Tojo, S., Morton, J. J. L., Witzel, W. M., Fujimoto, A., Ager, J. W., Haller, E. E., Isoya, J., Lyon, S. A., Thewalt, M. L. W., and Itoh, K. M.: Electron spin coherence of phosphorus donors in silicon: Effect of environmental nuclei, Phys. Rev. B, 82, 121201, https://doi.org/10.1103/PhysRevB.82.121201, 2010. a
Abragam, A. and Bleaney, B.: Electron Paramagnetic Resonance of Transition Ions, OUP Oxford, UK, google-Books-ID: ASNoAgAAQBAJ, ISBN 987-0-19-965152-8, 13 pp., 2012. a
Antipin, A., Katyshev, A., Kurkin, I., and Shekun, L.: Paramagnetic resonance and spin-lattice relaxation of Er3+ and Tb3+ ions in CaWO4 crystal lattice, Sov. Phys. Solid State, 10, 468–474, 1968. a
Artzi, Y., Twig, Y., and Blank, A.: Induction-detection electron spin resonance with spin sensitivity of a few tens of spins, Appl. Phys. Lett., 106, 084104, https://doi.org/10.1063/1.4913806, 2015. a
Baumann, S., Paul, W., Choi, T., Lutz, C. P., Ardavan, A., and Heinrich, A. J.: Electron paramagnetic resonance of individual atoms on a surface, Science, 350, 417–420, https://doi.org/10.1126/science.aac8703, 2015. a
Benningshof, O. W. B., Mohebbi, H. R., Taminiau, I. A. J., Miao, G. X., and Cory, D. G.: Superconducting microstrip resonator for pulsed ESR of thin films, J. Magn. Reson., 230, 84–87, https://doi.org/10.1016/j.jmr.2013.01.010, 2013. a
Bienfait, A., Pla, J., Kubo, Y., Stern, M., Zhou, X., Lo, C.-C., Weis, C., Schenkel, T., Thewalt, M., Vion, D., Esteve, D., Julsgaard, B., Moelmer, K., Morton, J., and Bertet, P.: Reaching the quantum limit of sensitivity in electron spin resonance, Nat. Nanotechnol., 11, 253–257, https://doi.org/10.1038/nnano.2015.282, 2015. a, b, c, d, e, f, g
Bienfait, A., Pla, J., Kubo, Y., Zhou, X., Stern, M., Lo, C.-C., Weis, C., Schenkel, T., Vion, D., Esteve, D., Morton, J., and Bertet, P.: Controlling Spin Relaxation with a Cavity, Nature, 531, 74–77, https://doi.org/10.1038/nature16944, 2016. a
Byrd, R., Lu, P., Nocedal, J., and Zhu, C.: A Limited Memory Algorithm for Bound Constrained Optimization, SIAM J. Sci. Comput., 16, 1190–1208, https://doi.org/10.1137/0916069, 1995. a
Car, B., Veissier, L., Louchet-Chauvet, A., Le Gouët, J.-L., and Chanelière, T.: Selective Optical Addressing of Nuclear Spins through Superhyperfine Interaction in Rare-Earth Doped Solids, Phys. Rev. Lett., 120, 197401, https://doi.org/10.1103/PhysRevLett.120.197401, 2018. a
Childress, L., Dutt, M. V. G., Taylor, J. M., Zibrov, A. S., Jelezko, F., Wrachtrup, J., Hemmer, P. R., and Lukin, M. D.: Coherent Dynamics of Coupled Electron and Nuclear Spin Qubits in Diamond, Science, 314, 281–285, https://doi.org/10.1126/science.1131871, 2006. a
Day, P. K., LeDuc, H. G., Mazin, B. A., Vayonakis, A., and Zmuidzinas, J.: A broadband superconducting detector suitable for use in large arrays, Nature, 425, 817–821, https://doi.org/10.1038/nature02037, 2003. a
Eichler, C., Sigillito, A. J., Lyon, S. A., and Petta, J. R.: Electron Spin Resonance at the Level of 104 Spins Using Low Impedance Superconducting Resonators, Phys. Rev. Lett., 118, 037701, https://doi.org/10.1103/PhysRevLett.118.037701, 2017. a, b, c
Elzerman, J. M., Hanson, R., Beveren, L. H. W. v., Witkamp, B., Vandersypen, L. M. K., and Kouwenhoven, L. P.: Single-shot read-out of an individual electron spin in a quantum dot, Nature, 430, 431–435, https://doi.org/10.1038/nature02693, 2004. a
Feher, G.: Electron Spin Resonance Experiments on Donors in Silicon. I. Electronic Structure of Donors by the Electron Nuclear Double Resonance Technique, Phys. Rev., 114, 1219–1244, https://doi.org/10.1103/PhysRev.114.1219, 1959. a
Graaf, S. E. d., Danilov, A. V., Adamyan, A., Bauch, T., and Kubatkin, S. E.: Magnetic field resilient superconducting fractal resonators for coupling to free spins, J. Appl. Phys., 112, 123905, https://doi.org/10.1063/1.4769208, 2012. a
Guillot-Noël, O., Vezin, H., Goldner, P., Beaudoux, F., Vincent, J., Lejay, J., and Lorgeré, I.: Direct observation of rare-earth-host interactions in Er:Y2SiO5, Phys. Rev. B, 76, 180408, https://doi.org/10.1103/PhysRevB.76.180408, 2007. a
Hale, E. B. and Mieher, R. L.: Shallow Donor Electrons in Silicon. II. Considerations Regarding the Fermi Contact Interactions, Phys. Rev., 184, 751–759, https://doi.org/10.1103/physrev.184.751, 1969. a
Jelezko, F., Gaebel, T., Popa, I., Gruber, A., and Wrachtrup, J.: Observation of Coherent Oscillations in a Single Electron Spin, Phys. Rev. Lett., 92, 076401, https://doi.org/10.1103/PhysRevLett.92.076401, 2004. a
Kasumaj, B. and Stoll, S.: 5- and 6-pulse electron spin echo envelope modulation (ESEEM) of multi-nuclear spin systems, J. Magn. Reson., 190, 233–247, https://doi.org/10.1016/j.jmr.2007.11.001, 2008. a, b, c
Kohn, W. and Luttinger, J. M.: Theory of Donor States in Silicon, Physical Review, 98, 915–922, https://doi.org/10.1103/PhysRev.98.915, 1955. a
Kubo, Y., Ong, F. R., Bertet, P., Vion, D., Jacques, V., Zheng, D., Dréau, A., Roch, J.-F., Auffeves, A., Jelezko, F., Wrachtrup, J., Barthe, M. F., Bergonzo, P., and Esteve, D.: Strong Coupling of a Spin Ensemble to a Superconducting Resonator, Phys. Rev. Lett., 105, 140502, https://doi.org/10.1103/PhysRevLett.105.140502, 2010. a
Macklin, C., O’Brien, K., Hover, D., Schwartz, M. E., Bolkhovsky, V., Zhang, X., Oliver, W. D., and Siddiqi, I.: A near–quantum-limited Josephson traveling-wave parametric amplifier, Science, 350, 307–310, https://doi.org/10.1126/science.aaa8525, 2015. a
Mahashabde, S., Otto, E., Montemurro, D., de Graaf, S., Kubatkin, S., and Danilov, A.: Fast Tunable High-Q-Factor Superconducting Microwave Resonators, Phys. Rev. Applied 14, 044040, https://doi.org/10.1103/PhysRevApplied.14.044040, 2020. a
Mansir, J., Conti, P., Zeng, Z., Pla, J., Bertet, P., Swift, M., Van de Walle, C., Thewalt, M., Sklenard, B., Niquet, Y., and Morton, J.: Linear Hyperfine Tuning of Donor Spins in Silicon Using Hydrostatic Strain, Phys. Rev. Lett., 120, 167701, https://doi.org/10.1103/PhysRevLett.120.167701, 2018. a
Mims, W. B.: Envelope Modulation in Spin-Echo Experiments, Phys.
Rev. B, 5, 2409–2419, https://doi.org/10.1103/physrevb.5.2409, 1972. a
Mims, W. B., Nassau, K., and McGee, J. D.: Spectral Diffusion in Electron Resonance Lines, Phys. Rev., 123, 2059–2069, https://doi.org/10.1103/PhysRev.123.2059, 1961. a
Mims, W. B., Davis, J. L., and Peisach, J.: The exchange of hydrogen ions and of water molecules near the active site of cytochrome c, J. Magn.
Reson., 86, 273–292, https://doi.org/10.1016/0022-2364(90)90260-G, 1990. a
Mohammady, M. H., Morley, G. W., and Monteiro, T. S.: Bismuth Qubits in Silicon: The Role of EPR Cancellation Resonances, Phys. Rev. Lett., 105, 067602, https://doi.org/10.1103/physrevlett.105.067602, 2010. a, b
Morello, A., Pla, J. J., Zwanenburg, F. A., Chan, K. W., Tan, K. Y., Huebl, H., Mottonen, M., Nugroho, C. D., Yang, C., van Donkelaar, J. A., Alves, A. D. C., Jamieson, D. N., Escott, C. C., Hollenberg, L. C. L., Clark, R. G., and Dzurak, A. S.: Single-shot readout of an electron spin in silicon, Nature, 467, 687–691, https://doi.org/10.1038/nature09392, 2010. a
Narkowicz, R., Suter, D., and Niemeyer, I.: Scaling of sensitivity and efficiency in planar microresonators for electron spin resonance, Review of Scientific Instruments, 79, 084702, https://doi.org/10.1063/1.2964926, 2008. a
Pla, J., Bienfait, A., Pica, G., Mansir, J., Mohiyaddin, F., Zeng, Z., Niquet, Y., Morello, A., Schenkel, T., Morton, J., and Bertet, P.: Strain-Induced Spin-Resonance Shifts in Silicon Devices, Phys. Rev. Appl., 9, 044014, https://doi.org/10.1103/PhysRevApplied.9.044014, 2018. a, b, c
Pla, J. J., Tan, K. Y., Dehollain, J. P., Lim, W. H., Morton, J. J. L., Jamieson, D. N., Dzurak, A. S., and Morello, A.: A single-atom electron spin qubit in silicon, Nature, 489, 541–545, https://doi.org/10.1038/nature11449, 2012. a
Probst, S., Rotzinger, H., Wünsch, S., Jung, P., Jerger, M., Siegel, M., Ustinov, A. V., and Bushev, P. A.: Anisotropic Rare-Earth Spin Ensemble Strongly Coupled to a Superconducting Resonator, Phys. Rev. Lett., 110, 157001, https://doi.org/10.1103/PhysRevLett.110.157001, 2013. a
Probst, S., Rotzinger, H., Ustinov, A. V., and Bushev, P. A.: Microwave multimode memory with an erbium spin ensemble, Phys. Rev. B, 92, 014421, https://doi.org/10.1103/PhysRevB.92.014421, 2015. a
Probst, S., Bienfait, A., Campagne-Ibarcq, P., Pla, J. J., Albanese, B., Barbosa, J. F. D. S., Schenkel, T., Vion, D., Esteve, D., Moelmer, K., Morton, J. J. L., Heeres, R., and Bertet, P.: Inductive-detection electron-spin resonance spectroscopy with 65 spins sensitivity, Appl. Phys. Lett., 111, 202604, https://doi.org/10.1063/1.5002540, 2017. a, b, c, d, e, f, g, h, i, j
Probst, S., Ranjan, V., Ansel, Q., Heeres, R., Albanese, B., Albertinale, E., Vion, D., Esteve, D., Glaser, S. J., Sugny, D., and Bertet, P.: Shaped pulses for transient compensation in quantum-limited electron spin resonance spectroscopy, J. Magn. Reson., 303, 42–47, https://doi.org/10.1016/j.jmr.2019.04.008, 2019. a, b
Probst, S., Zhang, G., Rančić, M., Ranjan, V., Le Dantec, M., Zhang, Z., Albanese, B., Doll, A., Liu, R. B., Morton, J., Chanelière, T., Goldner, P., Vion, D., Esteve, D., and Bertet, P.: Replication Data for: Hyperfine spectroscopy in a quantum-limited spectrometer (2020), Harvard Dataverse, https://doi.org/10.7910/DVN/ZJ2EEX, 2020. a, b, c, d, e, f, g
Ranjan, V., Probst, S., Albanese, B., Doll, A., Jacquot, O., Flurin, E., Heeres, R., Vion, D., Esteve, D., Morton, J. J. L., and Bertet, P.: Pulsed electron spin resonance spectroscopy in the Purcell regime, J. Magn. Reson., 310, 106662, https://doi.org/10.1016/j.jmr.2019.106662, 2020a. a, b
Ranjan, V., Probst, S., Albanese, B., Schenkel, T., Vion, D., Esteve, D., Morton, J. J. L., and Bertet, P.: Electron spin resonance spectroscopy with femtoliter detection volume, Appl. Phys. Lett., 116, 184002, https://doi.org/10.1063/5.0004322, 2020b. a, b
Rowan, L. G., Hahn, E. L., and Mims, W. B.: Electron-Spin-Echo Envelope Modulation, Phys. Rev., 137, A61–A71, https://doi.org/10.1103/physrev.137.a61, 1965. a, b, c
Rugar, D., Budakian, R., Mamin, H., and Chui, B.: Single spin detection by magnetic resonance force microscopy, Nature, 430, 329–332, https://doi.org/10.1038/nature02658, 2004. a
Samkharadze, N., Bruno, A., Scarlino, P., Zheng, G., DiVincenzo, D., DiCarlo, L., and Vandersypen, L.: High-Kinetic-Inductance Superconducting Nanowire Resonators for Circuit QED in a Magnetic Field, Phys. Rev. Appl., 5, 044004, https://doi.org/10.1103/PhysRevApplied.5.044004, 2016.
a
Sidabras, J. W., Duan, J., Winkler, M., Happe, T., Hussein, R., Zouni, A., Suter, D., Schnegg, A., Lubitz, W., and Reijerse, E. J.: Extending electron paramagnetic resonance to nanoliter volume protein single crystals using a self-resonant microhelix, Science Advances, 5, eaay1394, https://doi.org/10.1126/sciadv.aay1394, 2019. a
Sigillito, A. J., Malissa, H., Tyryshkin, A. M., Riemann, H., Abrosimov, N. V., Becker, P., Pohl, H.-J., Thewalt, M. L. W., Itoh, K. M., Morton, J. J. L., Houck, A. A., Schuster, D. I., and Lyon, S. A.: Fast, low-power manipulation of spin ensembles in superconducting microresonators, Appl. Phys. Lett., 104, 222407, https://doi.org/10.1063/1.4881613, 2014. a
Sigillito, A., Tyryshkin, A., Schenkel, T., Houck, A. A., and Lyon, S. A.: All-electric control of donor nuclear spin qubits in silicon, Nature Nanotech, 12, 958–962, https://doi.org/10.1038/nnano.2017.154, 2017. a
Song, L., Liu, Z., Kaur, P., Esquiaqui, J. M., Hunter, R. I., Hill, S., Smith, G. M., and Fanucci, G. E.: Toward increased concentration sensitivity for continuous wave EPR investigations of spin-labeled biological macromolecules at high fields, J. Magn. Reson., 265, 188–196, https://doi.org/10.1016/j.jmr.2016.02.007, 2016. a
Veldhorst, M., Hwang, J. C. C., Yang, C. H., Leenstra, A. W., de Ronde, B., Dehollain, J. P., Muhonen, J. T., Hudson, F. E., Itoh, K. M., Morello, A., and Dzurak, A. S.: An addressable quantum dot qubit with fault-tolerant control-fidelity, Nat. Nanotechnol., 9, 981–985, https://doi.org/10.1038/nnano.2014.216, 2014. a
Wallace, W. J. and Silsbee, R. H.: Microstrip resonators for electron‐spin resonance, Review of Scientific Instruments, 62, 1754–1766, https://doi.org/10.1063/1.1142418, 1991. a
Witzel, W. M., Hu, X., and Das Sarma, S.: Decoherence induced by anisotropic hyperfine interaction in Si spin qubits, Phys. Rev. B, 76, 035212, https://doi.org/10.1103/PhysRevB.76.035212, 2007. a
Wolfowicz, G., Tyryshkin, A. M., George, R. E., Riemann, H., Abrosimov, N. V., Becker, P., Pohl, H.-J., Thewalt, M. L. W., Lyon, S. A., and Morton, J. J. L.: Atomic clock transitions in silicon-based spin qubits, Nat. Nanotechnol., 8, 561–564, https://doi.org/10.1038/nnano.2013.117, 2013. a
Wrachtrup, J., Von Borczyskowski, C., Bernard, J., Orritt, M., and Brown, R.: Optical detection of magnetic resonance in a single molecule, Nature, 363, 244–245, https://doi.org/10.1038/363244a0, 1993. a
Zhou, X., Schmitt, V., Bertet, P., Vion, D., Wustmann, W., Shumeiko, V., and Esteve, D.: High-gain weakly nonlinear flux-modulated Josephson parametric amplifier using a SQUID array, Phys. Rev. B, 89, 214517, https://doi.org/10.1103/PhysRevB.89.214517, 2014. a
Short summary
Electron spin detection was recently demonstrated using superconducting circuits and amplifiers at millikelvin temperatures, reaching the quantum limit of sensitivity. We use such a setup to measure electron-spin-echo envelope modulation on a small number of electron spins, in two model systems: bismuth donors in silicon and erbium ions doped in CaWO4 (calcium tungstate). Our results are a proof of principle that hyperfine spectroscopy is feasible with these quantum-limited ESR spectrometers.
Electron spin detection was recently demonstrated using superconducting circuits and amplifiers...